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Abstract—The subject of this paper is the development of a 

robust self-tuning control for multi-input multi-output (MIMO) 

linear systems with unknown time-varying parameters, which can be 

described by auto-regressive exogenous mathematical models, in 

presence of unmodelled dynamics. We propose an explicit self-

tuning control scheme which is based on the modified recursive 

least squares estimation algorithm with known dead zone. The 

considered system is represented by interconnected systems with 

multi-dead-zone. A recursive parametric estimation algorithm is 

developed, which can estimate the parameters intervening in the 

considered system. The stability conditions of the developed 

estimation scheme are established on the basis of the Lyapunov 

method. A simulation example is treated to test the performances of 

the developed explicit self-tuning control scheme. 

 

Keywords—ARX mathematical models, MIMO systems, 

Recursive parametric estimation algorithm, Robust self-tuning 

control, Stability.  

I. INTRODUCTION 

EVERAL parametric estimation algorithms and robust 

adaptive control schemes were developed on the basis of 

monovariable ARX (Auto-Regressive eXogenous) 

mathematical models in presence of unmodelled dynamics see 

[1] and [2]. In this case, a relative dead zone is employed in 

the parametric estimation algorithm [3-7]. Here, the 

implementation of the dead zone depends on the upper bound 

of the unmodelled dynamics and of the disturbances.  

Different robust adaptive control schemes of SISO (Single-

Input Single Output) linear systems, which can be described 

by the ARX mathematical models with unknown time-

varying parameters, were developed on the basis of the 

acknowledged information of the parameters of bounding 
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function (the unmodelled dynamics and disturbances). 

Among those schemes are: robust adaptive pole placement 

control based on the recursive least squares estimation 

algorithm with dead zone (see [4]), robust model reference 

adaptive control (see [3]), robust self-tuning control based on 

the modified RLS estimation algorithm with dead zone, 

where the stability of adaptive control schema was been 

established (see [5]). 

In this paper, we present a robust self-tuning control for 

MIMO (Multi-Inputs Multi-Outputs) linear time-varying 

systems, which are described by ARX mathematical models, 

in presence of unmodelled dynamics. The formulation 

problem of self-tuning control of MIMO systems is studied 

and published in the literature (see [8]).  

Study of MIMO systems, which are constituted of 

interconnected systems, has attracted the attention of several 

researchers (see [9-11]). The key idea is to decompose the 

MIMO system in several interconnected systems. In each 

interconnected system, the unmodelled dynamic is present. 

Here, we present some relative dead zones. The parametric 

estimation of each interconnected system is required, by using 

the modified RLS estimation algorithm with dead zone. The 

stability of the estimation algorithm of the parameters of 

MIMO system depends on the stability of each estimation 

algorithm employed to estimate the parameter of the 

concerned interconnected system. The stability analysis of the 

proposed parametric estimation scheme was studied on the 

basis of the Lyapunov method. 

The rest of this paper is organized as follows. In Section 2, 

we describe the considered class of MIMO systems by the 

ARX mathematical models in presence of unmodelled 

dynamics. A decomposition approach of a MIMO system into 

interconnected systems is considered. Section 3 presents 

modified Recursive Least Squares (RLS) estimation algorithm 

with a relative dead zone, which permits to estimate the 

parameters intervening of each interconnected system. The 

stability conditions of the developed recursive parametric 

estimation algorithm are established on the basis upon the 

Lyapunov method. In section 4, the robust self-tuning control 

problem, which can be applied to the considered class of 

MIMO systems, is solved. Section 5 treats a numerical 

simulation example for illustrative purposes, where the self-
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tuning control explicit scheme on the basis of the RLS 

parametric estimation algorithm with forgetting factor has 

been used to compare different simulation results obtained by 

the two control scheme. We conclude in Section 6.  

II. SYSTEM DESCRIPTION 

Let us consider a MIMO system, which is constituted by m  

inputs and m  outputs. The considered system can be 

described by the following ARX mathematical model: 

 

)()(),()(),(
11

kekukqBqkykqA C

d

C 
  (1) 

 

where )(ku , )(ky  and )(ke  represent the inputs, the outputs 

and the noises of the system at the discrete-time k , 

respectively, such that: 
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T
  (2) 
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T
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T
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d  represents the time-delay, and ),(
1

kqAC

  and ),(
1

kqBC

  

are polynomial matrices given by: 
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where na  and nb  represent the orders of the polynomial 

matrices ),(
1

kqA
  and ),(

1
kqB

 , respectively, and 

),(
1

kqA


  and ),(

1
kqB


  are the unmodelled dynamics 

present in the considered system. 

In the following, let us suppose that the parameters d , na  

and nb  are known. 

The considered ARX mathematical model can be written as 

follows: 
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where )(kv  is defined by: 
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In order to simplify the description of the dead zone, we 

propose to decompose the considered MIMO system into m  

interconnected systems. We can write the following matrices, 

with: nat ,,1  , nbl ,,1  :  
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The output )(ky i
 of the th

i  interconnected system, 

mi ,,1  , is given as follows: 
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or 

 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 102



 

 

)()()()()(      

)()()()()(

11

11

,

,,

,

ketkyktkyka

ldkukldkukbky

i

na

t

T

a

na

t

T

nb

l

T

nb

l

T

lii

titi

lib

















 (18) 

 

with 
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We can write the following expressions: 
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The output )(ky i
 given in equation (18) becomes: 
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We suppose that the upper bound 
i  of )(ki  is known 

and the noise )(kei
, with zero mean and variance 

2

i , is 

bounded with upper bound 
oim . 

The upper bound of )(kvi
 is given by the parameter 

)(kd i
, such that: 

 

oiii mkkd  )()(   (28) 

 

Noting that the parameter )(kd i  
corresponds to a relative 

dead zone, which is used in the parametric estimation 

algorithm of each interconnected system. 

III. PARAMETRIC ESTIMATION 

In this section, we treat the parametric estimation problem 

of a linear stochastic MIMO system, which can be described 

by the considered ARX mathematical model. 

A. Recursive Parametric Estimation Algorithm 

The parameters intervening in the vector )(ki  of the 

mathematical model (27), as described by (23), can be 

estimated by using the following modified least squares 

parametric estimation algorithm with a dead zone: 
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where )(ki  
represents the prediction error, 

i  is a 

constant parameter and )(ki  is a time-varying parameter, 

such that: 
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with: ]1,0[0 i , )1/(2 0 ii   , ]1,0[i . 

Noting that the estimation of the parameters of the 

considered MIMO system described by (1) corresponds to the 

estimation of the parameters of the m  interconnected 

systems, which are described by (27), using the modified RLS 

parametric estimation algorithm with a dead zone. 

 

B.  Stability Analysis of the Parametric Estimation 

Scheme 

In this subsection, we establish the stability conditions of 

the developed parametric estimation scheme, as given by 

(29), on the basis of the Lyapunov method. 

The prediction error )(ki  given in (29) can be rewritten 

as follow: 
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represents the vector 

of the parameter estimation error. 

We can rewrite the estimated vector )(ˆ ki  
as follows: 
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Using (31) and (32), the vector of the parameter estimation 
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In the following, we propose to analyze the stability 

conditions of the developed recursive parametric estimation 

scheme on the basis of the Lyapunov method. Thus, let us 

consider the following Lyapunov function )(kVi : 
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where the vector of the parameter estimation error )(
~

ki  is 

given by: 
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Using (36) and (37), the Lyapunov function )(kVi  

becomes: 
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Thus, we can write the Lyapunov function )(kVi  in the 

following form:  
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Using the matrix inversion lemma, the matrix )(
1

kP
  can 

be expressed as: 
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such that: 
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The variation of the considered Lyapunov function )(kVi , 

noted by: )1()()(  kVkVkV iii , can be expressed as 

follows: 
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Therefore, the variation of the considered Lyapunov 

function )(kVi  can be defined by:  
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Multiplying and dividing by 
i  the second member on the 

right of equation (47), we found: 
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We conclude that the derivate of the Lyapunov function is 

negative, such that: 

 

0)(  kV i
 (51) 

 

So, the stability condition of the developed parametric 

estimation scheme, which corresponds to the convergence 

condition of the modified RLS parametric estimation 

algorithm with dead zone (29), is established. 

Then, the convergence condition of the developed modified 

RLS parametric estimation algorithm with dead zone (29) is 

ensured. 

IV. ROBUST SELF-TUNING CONTROL 

In this section, we develop a robust explicit self-tuning 

control scheme, which can be applied to the considered 

MIMO systems in presence of unmodelled dynamic, as 

described by (11). 

The formulation of the robust explicit self-tuning control 

scheme can be indeed by the minimization of the following 

criterion: 
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where )1(  dky r
 represents the vector of the desired 

output signals, )(ku  is the control law and )(
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where the matrices 
tsS  and tqQ , nsts ,,1  , 

nqtq ,,1  , are defined as: 
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Noting that the orders ns  and nq  of the polynomial 

matrices )(
1

qS , and )(
1

qQ , respectively, are chosen by the 

designer. 

The derivate of the criterion )1(  dkJ , which is 

described by (52), is given by: 

 

)]1()1()[()(2

)()(2))((/)1(

1

1

1

0









dkydkyqSkB

kuqQQkudkJ

r

 (57) 

 

with 

 

)1(),()(),(

)(),(),()1()(

11

111









dkvkqFkykqG

kukqFkqqBdkyqS
 (58) 

 

where ),(
1

kqF
  and ),(

1
kqG

  are solutions of the 

following polynomial matrix equation: 

 

),(),(),()(
11111

kqGqkqFkqAqS
d 

  (59) 

 

The polynomial matrices ),(
1

kqF
  and ),(

1
kqG

  are 

given by, respectively: 

 
d

d qkFqkFkqF


 )()(1),(
1

1

1
  (60) 

 
na

na qkGqkGkGkqG







1

1

1

10

1
)()()(),(   (61) 

 

Thus, the optimal control law )(ku
 
can be written by 

 

)1(),()()(

)(),(),()(

1111

1

111









dkykqZqSkB

kykqZkqGku

r

 (62) 

 

where the polynomial matrices ),(
1

kqH
  and ),(

1
kqZ

  

are given by, respectively: 

 

)()(),(),(
1

0

1

1

11 
 qQQkBkqHkqZ  (63) 

 

),(),(),(
111

kqFkqqBkqH


  (64) 
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The proposed robust explicit self-tuning control scheme, 

which can be applied to the considered MIMO systems, is 

defined by the following three steps: 

Step 1: estimation of parameters intervening in the ARX 

mathematical model (27) using the modified parametric 

estimation algorithm RLS with relative dead zone (29); 

Step 2: determination of the parameters intervening in the 

two polynomial matrices ),(
1

kqF
  and ),(

1
kqG

  by 

resolving the following polynomial equation: 

 

),(),(),(ˆ)(
11111

kqGqkqFkqAqS
d 

  (65) 

 

Step 3: computation the control law )(ku given by (62). 

V. SIMULATION RESULTS 

To illustrate the advantages of our robust explicit self-

tuning control scheme, we consider a MIMO system, which 

can be described by an ARX mathematical model of type (1), 

with: 1d , 2m .  

The two outputs )(1 ky  and
 

)(2 ky  of the considered MIMO 

system are given by the following expressions, respectively: 

)()2()]([             

)2()]([             

)1()]([             

)1()]()([)(

1212

111

212

1111

12

11

12

11

kekukb

kukb

kyka

kykkaky

b

b

a

a

















 (66) 
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)1()]([)(

222222

121

22222

121212

21

kekukb

kukkb
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kykaky

b

b

a

a
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













 (67) 

 

where the parameters intervening in these expressions are 

supposed unknown and slowly time-varying. 

In this section, we will be interested to test the 

performances and the effectiveness of the proposed robust 

explicit self-tuning control scheme, by this numerical 

simulation example. 

Thus, the relative data of the numerical implementation of 

the proposed robust explicit self-tuning control scheme are 

the following ones: 

1. the various values of the parameters intervening in the 

expression (66) are chosen, such as: 

)12.0sin(02.010.0)(11 kka  , 13.012 a , 24.011 b , 

)02.0sin(01.0)(11 kkb  , 27.012 b , 

)02.0cos(01.0)(11 kka  , )02.0cos(01.0)(12 kka  , 

)02.0sin(01.0)(12 kkb  ; 

2. the reference signal )(1 ky r  is given by: 

)125.0sin(5)(1 kky r  ; 

3. the noise sequence )}({ 1 ke  consists of independent random 

variables with zero mean and variance 02.0
2

1  ; 

4. the various values of the parameters intervening in the 

expression (67) are chosen, such as: 

12.021 a , )12.0sin(01.026.0)(21 kkb  , 

10.022 a , )02.0cos(01.0)(22 kka  , 31.022 b , 

)02.0cos(01.0)(21 kka  , )02.0sin(01.0)(21 kkb  , 

)02.0sin(01.0)(22 kkb  ; 

5. the reference signal )(2 ky r
 is given by: 

)125.0sin(4)(2 kky r  ; 

6. the noise sequence )}({ 2 ke  consists of independent 

random variables with zero mean and variance 

01.0
2

2  ; 

7. the polynomial matrix )(
1

qS  is given by: 

 

11

2.10

01

10

01
)(






















 qqS  (68) 

 

We define the tracking errors )(1 kh
 
and )(2 kh  of the two 

interconnected systems of the considered MIMO system by: 

 

)()()( 111 kykykh r   (69) 

)()()( 222 kykykh r   (70) 

 

The simulation results of the proposed robust self-tuning 

control explicit scheme on the basis of the RLS parametric 

estimation algorithm with dead zone (Control scheme 1       ) 

and the simulation results of the self-tuning control explicit 

scheme on the basis of the RLS parametric estimation 

algorithm with forgetting factor (Control scheme 2           ) 

are shown in Fig. 1-6. 

The evolution curves of the desired output )(1 ky r
 and the 

output of the system )(1 ky  are shown in Fig. 1. The evolution 

curves of the desired output )(2 ky r
 and the output of the 

system )(2 ky  are shown in Fig. 2. In Fig. 3. and 4., we 

present the evolution curves of the variance )(
2

1 k  and 

)(
2

2 k
 
of the prediction errors )(1 k  and )(2 k . 
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Fig. 1 Evolution curves of the desired output )(1 kyr  
and the output 

)(1 ky . 
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Fig. 2 Evolution curves of the desired output )(2 ky r  
and the output 

)(2 ky . 

 

0 100 200 300 400
0

0.1

0.2

0.3

0.4

Simulation time

th
e 

fi
rs

t 
p
re

d
ic

ti
o
n
 e

rr
o
r

 

 

Control scheme 1

Control scheme 2

 
 

Fig. 3 Evolution curve of the variance )(
2

1 k  of the tracking error 

)(1 k . 
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Fig. 4 Evolution curve of the variance )(
2

2 k  of the prediction 

error )(2 k . 
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Fig. 5 Evolution curve of the variance )(
2

1 kh  of the tracking error 

)(1 kh . 
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Fig. 6 Evolution curve of the variance )(
2

2 kh  of the tracking error 

)(
2

kh .  

 

The calculated values of the prediction error variances 2

1  

and 2

2 , and the tracking error variances 2

1h  and 2

2h , are 

given in Table 1, where: 
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Table I: Values of the prediction error variances and the tracking 

error variances 

 
Prediction Error 

Variance 

Tracking Error 

Variance 

  
2

1  2

2  2

1h  
2

2h
 

Control scheme 1 

Control scheme 2 

0.0252 

0.0253 

0.0149 

0.0164 

0.0224 

0.0237 

0.0217 

0.0266 

 

From Fig. 1-6 and Table I, we can get the following 

conclusions: 

1. the outputs )(1 ky  and
 

)(2 ky
 
of the considered system 

track the desired signals )(1 kyr
 and )(2 ky r

, respectively; 

in the two control scheme. 

2. the prediction errors )(1 k  and )(2 k , and the tracking 

errors )(1 kh  and )(2 kh  becomes small in the control 

scheme 1 than control scheme 2, in the discrete-time k ; 

3. the proposed robust explicit self-tuning control scheme 1, 

which is applied to the considered MIMO system, has 

given good results than the other control scheme. 

VI. CONCLUSION 

In this paper, we have proposed a robust self-tuning control 

explicit scheme for MIMO systems, which can be described 

by ARX mathematical models in presence of unmodelled 

dynamics. The problem formulation of this control scheme is 

conducted by the decomposition of the MIMO systems into 

interconnected systems. 

A recursive parametric estimation algorithm is developed 

on the basis of the modified RLS parametric estimation 

algorithm with dead zone. The convergence condition of this 

developed algorithm was proved using the Lyapunov method. 

We have treated a numerical simulation example in order 

to test the performances and the efficiencies of the proposed 

robust self-tuning control explicit scheme; where the self-

tuning control explicit scheme on the basis of the RLS 

parametric estimation algorithm with forgetting factor was 

used to compare different simulation results. The obtained 

simulation results are satisfactory. 
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