
 

 

 

Abstract—The article is focused on state observers and their 

usage in model predictive control (MPC). The observers are used to 

track and reconstruct states of a model of a controlled system. Linear 

time-invariant (LTI) state space models are used in the article 

because this type of models is often used in different MPC techniques 

If the states of the controlled system are immeasurable a state 

observer (filter) is used to calculate current states in each control step. 

The paper is especially focused to finite impulse filters (FIR) as these 

filters do not require knowledge of initial state - contrary to infinite 

impulse response (IIR) filters. Different observers are tested and 

compared with proposed filters based on quadratic and linear 

programming. Filters were used in a very noisy environment to 

evaluate filter robustness. Then MPC using promising filters was 

applied to a three tank model Amira DTS 200. 

 

Keywords—Model predictive control, state observers, FIR filters, 

noise.  

I. INTRODUCTION 

HE model predictive control (MPC) is very popular and 

successful technique for control of technological 

processes. The control algorithm is based on model of the 

controlled system [1]. The model is used to predict future 

output courses of the controlled system on the basis of current 

state of the system and future course of the system inputs. 

There are many types of models which are implemented in 

MPC. The model can be divided to categories according to 

various criteria: linear vs. nonlinear; time invariant vs. time 

varying; state space vs. input-output, etc. 

This paper is focused on linear time invariant (LTI) state 

space models of the controlled plant. This model category can 

be used even for nonlinear or time-varying systems when 

linearizing the system in some working point. Then the LTI 

model provides good representation of the controlled system 

in a neighborhood of the working point. State space models 

can also represent biased control systems by adding a 

uncontrollable state to the model. This state represents a bias 

which is added to the output of the original system. Time-

varying processes can be model by linear systems with on-line 

identification [2], [3]. 

Usage of state space representation of the model is very 

useful and popular. One of its main advantages is general 
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approach to computation of all signals in the control circuits 

regardless of the type of the model – the same approach is 

valid for multi-input multi-output systems, single-input single-

output systems, systems with measurable disturbance, systems 

without measurable disturbances, etc. 

In case of state space MPC is used, computation of future 

courses of control signals is based on knowledge of current 

state of the controlled plant. The current states are used as 

parameters of a criterion which is to be minimized by future 

course of the control signals. Thus, knowledge of the current 

states is crucial for computation of the control signal. In 

general, the states are not measurable and must be computed 

using input-output data of the controlled system. A control 

circuit block, which is used to compute current state, is 

referred to as state observer or state filter. The term “observer” 

is more common in the control systems area while the term 

“filter” is more used in the signal processing. The aim of the 

state observer is to reconstruct current state on the basis of 

previous inputs and outputs. The observers can be divided into 

two classes: IIR (Infinite Impulse Response) and FIR (Finite 

Impulse Response). The IIR observers require knowledge of 

the system states at the beginning of the observer horizon 

while FIR observers don’t require initial state. Well-known 

IIR state observers are Kalman filter for stochastic systems [4] 

and Luenberger observer for deterministic systems [5]. The 

IIR filters in their recursive form are popular in the area of 

control systems but their convergence is often not guaranteed 

by design. In this case the convergence has to be verified for 

each application. 

Non-recursive FIR filters are popular in signal processing 

[6], [7], [8]. They are characterized by guarantee of stability, 

robustness to temporary changes of system parameters, etc. 

The FIR filters are using, as well as predictive control itself, 

the receding horizon principle. The current state estimates are 

computed from previous inputs and outputs of the system on a 

finite horizon. This horizon is moved forward each sample 

step. Moreover, linearity, filter error minimization and 

independence of the system state at the beginning of the 

horizon are incorporated into filter by design [9]. 

 This paper continues in the work presented in previous 

paper which is focused mainly to comparison of individual 

observers [10]. Several observers with a good performance 

[11] are compared with proposed observers based on H1, H2 

and H∞ norms. 

The paper is organized as follows. Section 2 presents the 

observers which were used in MPC. General principles of 

MPC are shortly recalled in Section 3. Section 4 presents 

controlled system which was used to test the observers – 

Amira DTS200 Three Tank System [12]. Several control 

State space MPC Using State Observers 

P. Chaupa, J. Novák, P. Januška 

T 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 9



 

 

setting is compared in Section 5 and results are summarized in 

Conclusion.  

II.  OBSERVERS 

The observers studied in this paper are designed for discrete 

LTI state space system without direct feed-through. The 

system is described by the following equation: 

 

1k k k k

k k k

x A x B u G w

y C x v
 (1) 

 

where xk is the state vector, uk is the vector of inputs, yk is the 

vector of outputs of the system. Symbols wk and vk represents 

disturbances which are assumed to be a white noise. Finally, 

the symbol k represents current time sample. 

Most of FIR observers, which will be described in 

following sections, use matrix equation expressing relation of 

recent inputs, recent outputs and current states. If the system 

matrix A is nonsingular, it can be derived from (1): 

 
1 1 1
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1 1 1

1 1 1 1 1 1

k k k k

k k k k k k k
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y C x v C A x C A B u C A G w v

 (2) 

 

Recursive application of equation (2) over horizon of N 

previous samples leads to the following equation:  

 

1 1 1 1k N k N k N k k
Y C x B U G W V  (3) 

 

where 
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and matrices 
N

C , 
N

B  and 
N

G  are defined as: 
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 (5) 

 

The aim of the observer is to compute current state xk. This 

is usually done by minimizing a criterion. If some of the states 

are measurable and some have to be determined by observer, 

this notation can be easily used. State (and subsequently 

matrices A, B, and C) can be reordered to the following form: 

 

,

,

k im m

k

k m

x
x

x
 (6) 

 

where xk,imm are immeasurable states and xk,m are measurable 

states. The matrix 
N

C is divided into two parts corresponding 

to the two parts of xk. The term 
N

C in the equation (3) is 

superseded by:  

 

,

, , , , , ,

,

k im m

N k N im m N m N im m k im m N m k m

k m

x
C x C C C x C x

x
 (7) 

 

The second term 
, ,N m k m

C x is known and thus only xk,imm states 

are to be determined. 

The following subsections deal with observers which were 

successfully tested in [10] and therefore are used in MPC in 

the framework of this paper. 

A. Dual IIR Observer 

A standard Kalman filter [11] of the system (1) can be 

written as  

 
1

1
ˆ ˆ ˆ

T T

k k k k v k k
x A x A P C C P C R y C x  (8) 

 

with Riccati equation 

 
1

1

1

T T T

k k v k w
P A I P C R C P A G Q G  (9) 

 

where I is identity matrix and Qw is a diagonal covariance 

matrix of noise signal wk  in equation (1) and (2). The structure 

of the observer is similar to computation of control signal in 

LQ control design. Due to this duality, the observer is referred 

to as “dual IIR observer”.  

B. 2.2 FIR H2 Observer 

The FIR H2 observer is proposed for systems whose noise 

input matrix G is unknown or zero. Then the model of the 

system has the form 

 

1k k k

k k k

x A x B u

y C x v
 (10) 

 

Recursive application of equation (2) over horizon of N 

previous samples leads to the following equation:  

 

1 1 1k N k N k k
Y C x B U V  (11)  
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where vectors and matrices are defined by (4) and (5). 

The objective is to minimize sum of squares of differences 

between measured output and estimated output:  

 
T

1 1 1 1
ˆ

1 1

ˆ ˆm in - -

ˆ ˆ

k

k k k k k k
x

k N k N k

J J Y Y Y Y

Y C x B U

 (12) 

 

This optimization problem can be solved directly by matrix 

inversion where gain matrix is obtained. It is also possible to 

consider (12) as a quadratic programming problem. This 

approach allows application of known restrictions of the states 

directly to their computation (e.g. the state known to be non-

negative) [13], [14]. 

III. MODEL PREDICTIVE CONTROL 

The basic idea of MPC is to use a model of a controlled 

process to predict N future outputs of the process. A trajectory 

of future manipulated variables is given by solving an 

optimization problem incorporating a suitable cost function 

and constraints. Only the first element of the obtained control 

sequence is applied. The whole procedure is repeated in 

following sampling period. The computation of a control law 

of MPC is based on minimization of the following criterion 

 

2 2

1 1

u
NN

e d u

j j

J k e k j k ju  (13) 

 

where e(k+j) is a predicted control error, Δu(k+j) is a vector 

of future control increments (for the system with two inputs it 

has two elements), N is length of the prediction horizon, Nu is 

length of the control horizon and λ is a weighting factor of 

control increments. A usage of model without integral 

behaviour and subsequent application of quadratic criterion 

(13) in the MPC control scheme (i.e. u instead of Δu) could 

lead to non-zero steady state control error. 

The optimization problem (13) van be solved either directly 

by matrix inversion or can be easily reformulated to quadratic 

programming problem. The latter bring an advantage of 

coping with constrains directly inside optimization algorithm.  

IV. DTS200 SYSTEM 

The Amira DTS200 system consists of three interconnected 

cylindrical tanks, two pumps, six valves, pipes, water reservoir 

in the bottom, measurement of liquid levels and other 

elements.  The pumps pump water from the bottom reservoir 

to the top of the left and right tanks. Valve positions are 

controlled and measured by electrical signals, which allow 

precise positioning.  

 

Fig. 1. Scheme of three tank system Amira DTS200 

A simplified scheme of the system is shown in Fig. 1. The 

pump P1 controls the inflow to tank T1 while the pump P2 

controls the liquid inflow to tank T3. There is no pump 

connected to the middle tank T2. The characteristic of the flow 

between tank T1 and tank T2 can be affected by valve V1, flow 

between tanks T2 and T3 can be affected by the valve V2 and 

the outflow of the tank T3 can be affected by valve V3. The 

system also provides the capability of simulating leakage from 

individual tanks by opening the valves V4, V5 and V6.  

Pumps are controlled by analogue signals in range from -

10V to 10V. Heights of water level are measured by pressure 

sensors. Each valve is operated by two digital signals which 

control motor of particular valve. First signal orders to start 

closing of the valve while the second signal is used for 

opening of the valve. If none of the signals is activated the 

valve remains in its current position. Each valve also provides 

three output signals: analogue voltage signal corresponds to 

the current position of the valve and two informative logical 

signals which states that the valve is fully opened or fully 

closed respectively. 

The overall number of inputs to the modeled plant DTS200 

is 14: 

 2 analogues signals controlling the pumps, 

 12 digital signals (2 for each of the 6 valves) for 

opening / closing of the valves. 

The plant provides 21 measurable outputs which can be 

used as a control feedback or for measurements of plant 

characteristics: 

 3 analogue signals representing level heights in the 

three tanks, 

 6 analogues signals representing position of the 

valves, 

 12 logical signals (2 for each of the 6 valves) 

stating that corresponding valve is fully opened / 

closed. 

For the MPC control purposes, the plant was configured as 

a single input single output (SISO) system. The pump P1 

served as an actuator for controlling water level in the third 

tank (T3). Control voltage of the pump was transformed to the 

range 0-100%. Valves V1 and V2 were fully opened during all 

experiments, valve V3 was partially opened and valves V4, V5 

and V6 were fully closed. Pump P2 was not used during 

experiments. 

 

 P1  P2 

T2 T3 T1 

V2 V3 V1 

leakage (V4) leakage (V5) leakage (V6) 

h1 h2 h3 
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A. Static Characteristic 

Static characteristic of the system is depicted in Fig. 2. 

Control signal outside the range presented in Fig. 2 lead to 

saturation. If control signal is smaller than approx. 22% the 

tank T3 remains empty. If the control signal is higher than 

approx. 42%, the tank T1 is entirely filled by water after some 

time and thus the water level in tank T3 cannot be above 

approx. 390 mm. 

The gain of the system increases as the output increases and 

represent one of nonlinearities of the DTS200 system. The 

gain changes from 16 mm/% to 26mm/%.  

 

 

Fig. 2. Static characteristic of the controlled system 

 

 

B. Identification 

As the MPC and state observers presented in this paper 

cope with linear model of a system, an LTI (linear time 

invariant) model had to be created. Based on first principle 

analysis the system is at least of 3
rd

 order because each 

cylindrical tank represents one state. But the characteristics of 

the system can be represented by lower order model as well. 

The system was modeled by first and second order model 

and comparison of responses to pseudo-random signal are 

presented in Fig. 3 and Fig. 4. It can be seen that accuracy of 

the second order model is significantly better then accuracy of 

the first order system. Increasing of the model order further 

did not led to markedly better results and therefore second 

order model was used. 

 

Fig. 3. Output of first order LTI model 

 

Fig. 4. Output of second order LTI model 

 

 

V. MODEL PREDICTIVE CONTROL OF THE DTS200 

The DTS 200 was controlled by a MPC controller described 

in Section 3 using two types of state observer: dual IIR and 

FIR_H2; as described in Section 2. 

The control scheme is presented in Fig. 5 
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The scheme presented in Fig. 5 is used to test whether 

individual observers are able to cope with a noise which was 

added to a not-noisy output of the system. This can represent 

sensor noise or noise which affects communication line 

between sensor and controller. 

The following figures present time courses obtained using 

both observers with short and long horizon. The real output of 

the system without noise is also presented but this signal is 

just recorded and stays hidden to the controller and observer. 

 

Fig. 6. Dual IIR observer, short horizon (N=2) 

 

 

Fig. 7. FIR H2 observer, short horizon (N=2) 
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Fig. 8. Dual IIR observer, long horizon (N=10) 

 Fig. 9. FIR H2 observer, long horizon (N=10) 

Values of quadratic criterion (13) calculated for whole 

control range are summarized in Table 1. 

 

Table 1. Comparison of observers 

 

Observer J 

Dual IIR, short horizon (Fig. 6) 158 278 

FIR H2, short horizon (Fig. 7) 318 724 

Dual IIR, long horizon (Fig. 8) 111 085 

FIR H2, long horizon (Fig. 9) 51 665 

 

VI. CONCLUSION 

The paper was focused on comparison of FIR state 

observers with more commonly used IIR observers. Presented 

courses confirmed that the FIR filters can be used as state 

observers in MPC. The control quality was better for longer 

horizons for both FIR and IIR state observers – as expected. 

When using short horizon, the control performance was better 

for Dual IIR observer, while for longer horizons, the FIR H2 

observer reached better results. 
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