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Abstract—Time-delay (dead time) is very often encountered in 

various technical systems, such as electric, pneumatic and hydraulic 

networks, chemical processes, long transmission lines, robotics, etc. 

Time-delays are mainly caused by the time required to transport 

mass, energy or information, but they can also be caused by 

processing time or accumulation. A part of time-delay systems can be 

unstable or have integrating properties. Typical examples of such 

processes are e.g. pumps, liquid storing tanks, distillation columns or 

some types of chemical reactors.  

This paper deals with a design of algorithms for digital control of 

the unstable and integrating time-delay processes using one suitable 

modification of the Smith Predictor (SP). This digital modification of 

the Smith Predictor is based on Linear Quadratic (LQ) method. A 

minimization of the quadratic criterion is realized using spectral 

factorization. The designed algorithms have universal usage; they are 

suitable for control of stable, non-minimum phase, unstable and 

integrating time-delay processes. The main contribution of this paper 

is design and simulation verification of this Smith Predictor for 

control of the unstable and integrating processes, because classical 

continuous-time Smith Predictors are not suitable for control of such 

processes. The designed algorithms for control of individual 

processes influenced by external disturbance were verified. The 

program system MATLAB/SIMULINK was used for simulation 

verification of designed algorithms. 

 

Keywords—Digital control, Integrating process, LQ control, 

Polynomial approach, Simulation of control loops, Smith predictor, 

Time-delay, Unstable process.  

I. INTRODUCTION 

IME-delay appear in many processes in industry and other 

fields, including economical and biological systems They 

are caused by some of the following phenomena [1]: 

 the time needed to transport mass, energy or information, 

 the accumulation of time lags in a great numbers of low 

order systems connected in series, 

 the required processing time for sensors, such as 

analyzers; controllers that need some time to implement a 

complicated control algorithms or process. 

The existence of pure time lag, regardless if it is present in 

the control or/and the state, may cause undesirable system 

transient response, or even instability. Consequently, the 
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problem of controllability, observability, robustness, 

optimization, adaptive control, pole placement and particularly 

stability and robust stabilization for this class of systems, has 

been one of the main interests for many scientists and 

researchers during the last five decades. 

A part of time-delay systems can be unstable or have 

integrating properties. Most authors are designing continuous-

time algorithms for control of such processes. Integrating and 

unstable processes with a time-delay often cannot be 

controlled by usual controllers designed without consideration 

of the dead-time. There are various ways to control such 

systems. Several tuning rules for PI or PID controllers in the 

classical feedback closed-loop continuous-time structure have 

been presented in literature for these systems, see e.g. [2] – 

[7]. But when processes include long time-delay, the 

performances of these classical controllers become worsen [8]. 

In these cases, the use of a time-delay compensator in the 

structure of the closed-loop control system can be available 

[9]. 

The first time-delay compensation algorithm was proposed 

by Smith [10] in 1957. This time-delay compensator (TDC) 

known as the Smith predictor (SP) contained a dynamic model 

of the time-delay process and it can be considered as the first 

model predictive algorithm. Control results of a good quality 

can be achieved by modified Smith predictor methods, see e.g. 

in [11] – [17]. The control scheme 2DOF (Two Degrees Of 

Freedom) is used in [18] - [20]. The design of controllers 

using polynomial approach [21], [22] can be found in [23] and 

the control system structure with two feedback controllers is 

proposed in [24]. The idea of the IMC (Internal Model 

Control) is employed in [25]. 

The problems of continuous-time control of integrating or 

unstable time-delay systems including the robustness, 

disturbance rejection and the extension of suitable 

compensators have been analyzed in other articles, see e.g. 

[26] - [34]. 

Historically first modifications of time-delay algorithms 

were proposed for continuous-time (analog) controllers. In 

industrial practice the implementation of the time-delay 

compensators on analog technique was difficult. Therefore the 

Smith Predictors and its modified versions can be 

implemented since 1980s together with the use of 

microprocessors in the industrial controllers. In spite of the 

fact that all these algorithms are implemented in digital 

platforms, most of the literature analyzes, as mentioned above, 
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only the continuous-time version. 

The first digital time-delay compensators are presented e.g. 

in [35] – [38]. Some Self-tuning Controller (STC) 

modifications of the digital Smith Predictors (STCSP) are 

designed in [39] – [41]. Two versions of the STCSP were 

implemented into MATLAB/SIMULINK Toolbox [42], [43]. 

The scope of paper [44] is a design and an analysis of 2DOF 

discrete time-delay compensators for stable and integrating 

processes, the simple robust discrete time-delay compensator 

for unstable processes is proposed in [45]. 

It is well known that classical analog Smith Predictor is not 

suitable for control of unstable and integrating time-delay 

processes. The designed digital LQ Smith Predictor eliminates 

this drawback. 

The paper is organized in the following way. The general 

problem of a control of the time-delay systems is described in 

Section 1. Nine types of the continuous-time unstable and 

integrating processes with time-delay, that were analyzed and 

simulated in the control-loop systems are introduced in Section 

2. The principle of the digital Smith Predictor is described in 

Section 3. The primary LQ controller of the digital Smith 

Predictor is proposed in Section 4. The simulation verification 

of individual control-loops with their results are presented in 

Section 5. Section 6 concludes this paper.  

II. PROCESS MODELS 

Consider a continuous-time dynamical linear SISO (single 

input  u t  – single output  y t ) system with time-delay L. 

    Ls

LG s G s e  (1)   

where  G s  is an unstable or an integrating time-delay free 

part of the process and the transfer function of a pure 

transportation lag is Lse , where s is complex variable. A more 

complete description of the process must include external 

disturbances, which are normally represented in the linear 

model as an additive signal at process output.  

This paper presents digital control of the unstable second 

order systems and the integrating systems with time-delay 

which can be described by the following continuous-time 

transfer function: 

1) System with one unstable pole: 

 
  

1

1 21 1

LsK
G s e

T s T s


 

 (2) 

2) System with two unstable poles: 

 
  

2

1 21 1

LsK
G s e

T s T s


 

 (3) 

3) Oscillatory unstable system:  

 3 2 2
; 0 1

2 1

LsK
G s e

T s Ts




  
 

 (4) 

4) Non-minimum phase unstable system with one unstable 

pole: 

 
 

  
3
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

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 (5) 

5) Non-minimum phase unstable system with two unstable 

poles: 

 
 

  
3
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1

1 1

Ls
K T s

G s e
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



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 (6) 

6) Oscillatory non-minimum phase unstable system: 

 
 3

6 2 2

1

2 1

Ls
K T s

G s e
T s Ts





 

 (7) 

where K is static gain, T, T1, T2 are time constants. Parameter .  

T3 is the derivative component and ξ is damping factor. 

 The following integrating systems were chosen for 

verification of the proposed digital SP algorithm: 

 

7) Integrating system with one stable pole: 

 
 

7

1 1

LsK
G s e

s T s




 (8) 

8) Integrating system with one unstable pole: 

 
 

8

1 1

LsK
G s e

s T s




 (9) 

9) Double integrating system: 

 9 2

LsK
G s e

s

  (10) 

III. DIGITAL SMITH PREDICTOR 

The discrete versions of the SP and its modifications are 

more suitable for time-delay compensation in industrial 

practice. The block diagram of a digital SP (see [39], [40]) is 

shown in Fig. 1. The function of the digital version is similar 

to the classical analog version. 

 
Fig. 1 Block diagram of a digital Smith Predictor 

 

Number of higher order industrial processes can be 

approximated by a reduced order model with a pure time-

delay. In this paper the following second-order linear model 

with a time-delay is considered 

 
 
 

1 1 2
1 1 2

1 21
1 21

d d

L

B z b z b z
G z z z

a z a zA z

  
  

 


 

 
 (11) 

The term z-d represents the pure discrete time-delay. The 
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time-delay is equal to 0dT  where 0T is the sampling period. 

The block Gm(z-1) represents process dynamics without the 

time-delay and is used to compute an open-loop prediction. 

The numerator in transfer function (11) is replaced by its static 

gain B(1), i.e. for z = 1. This is to avoid problem of controlling 

a model with a B(z-1), which has non-minimum phase zeros 

caused by a high sampling period or fractional delay. Since 

B(z-1) is not controllable as in the case of a time-delay, it is 

moved out of the prediction model Gm(z-1) and is treated 

together with the time-delay block, as shown in Fig. 1. The 

difference between the output of the process y and the model 

including time-delay ŷ is the predicted error êp as shown in 

Fig. 1, whereas e and v are the error and the measured 

disturbance, w is the reference signal. The primary (main) 

controller Gc(z-1) can be designed by different approaches (for 

example digital PID control or methods based on polynomial 

approach). The outward feedback-loop through the block in 

Fig. 1 is used to compensate load disturbances and modelling 

errors. 

For the second order model (11) first compensator has the 

form 

 
  1 1

1 21

1 21 2 1 2

1 2 1 2

;
1 1

r
m r

b b z b z
G z b b b

a z a z a z a z

 


   


   

   
(12) 

and second compensator is given by the transfer function 

  
1 2

1 1 2

1

d

d

r

b z b z
G z z

b z

 
 




   (13)  

A. Design of Primary Polynomial 2DOF Controller  

 

  
 

Fig. 2 Block diagram of a closed loop 2DOF control system 

 

Polynomial control theory is based on the apparatus and 

methods of a linear algebra (see e.g. [21], [22], [46], [47]). 

The design of the controller algorithm is based on the general 

block scheme of a closed-loop with two degrees of freedom 

(2DOF) according to Fig. 2. 

The controlled process is given by the transfer function in 

the form 

1
1

1

( ) ( )
( )

( ) ( )
p

Y z B z
G z

U z A z





   (14) 

where A and B are the second order polynomials. The 

controller contains the feedback part Gq and the feedforward 

part Gr. Then the digital controllers can be expressed in the 

form of a discrete transfer functions 

 
 
    

1

1 0

1 1 1

11 1
r

R z r
G z

P z p z z





  
 

 
 (15) 

 
 
    

1 1 2
1 0 1 2

1 1 1

11 1
q

Q z q q z q z
G z

P z p z z

  


  

 
 

 
 (16) 

According to the scheme presented in Fig. 2 and equations 

(11) and (14) – (16), it is possible to derive the characteristic 

polynomial  

1 1 1 1 1

4( ) ( ) ( ) ( ) ( )rA z P z B z Q z D z       (17)  

where  Br(z-1) = brz-1  and 

 1 1 2 3 4

4 1 2 3 41D z d z d z d z d z          (18) 

is the fourth degree characteristic polynomial. 

The procedure leading to determination of polynomials Q, 

R and P in (15) and (16) can be briefly described as follows 

(see [48]). A feedback part of the controller is given by a 

solution of the polynomial Diophantine equation (17). A 

feedback controller to control a second-order system with 

time-delay will be derived from equation (17). A system of 

linear equations can be obtained using the uncertain 

coefficients method 

0 1 1

1 1 2 1 2

2 1 2 3 2

2 1 4

0 0 1 1

0 0 1

0 0

0 0 0

r

r

r

b q d a

b a q d a a

b a a q d a

a p d

      
     

  
     
      
     

          

 (19)  

An asymptotic tracking is provided by a feedforward part 

of the controller given by a solution of the polynomial 

Diophantine equation 

 1 1 1 1 1

4( ) ( ) ( ) ( )w rS z D z B z R z D z       (20) 

 For a step-changing reference signal value, polynomial 

Dw (z-1) = 1 - z-1 and S is an auxiliary polynomial which does 

not enter into controller design.  

For a step-changing reference signal value it is possible to 

solve equation (20) by substituting z = 1 

1 2 3 4
0

1(1)

(1) r

d d d dD
R r

B b

   
    (21) 

The 2DOF controller output is given by 

         

     

0 0 1 2

1 1

1 2

1 1 2

u k r w k q y k q y k q y k

p u k p u k

      

    
 (22) 

B. Minimization of LQ Criterion 

The linear quadratic control methods try to minimize the 

quadratic criterion by penalization the controller output 

    2 2

0

( ) ( ) ( )u

k

J w k y k q u k




    (23) 

where qu is the so-called penalization constant, which gives the 

rate of the controller output on the value of the criterion 

(where the constant at the first element of the criterion is 

considered equal to one). In this paper, criterion minimization 

w 

u y Gp Gq 

Gr 

uq 
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will be realized through the spectral factorization for an input-

output description of the system.  

For the coefficients of the second order characteristic 

polynomial  

 1 1 2

2 1 21D z d z d z      (24)  

of the closed loop the following expressions were derived [48]  

1 2
1 2

2

;
m m

d d
m 

 


 (25) 

The parameters m1, m2 and δ are computed as follows: 

22 2

2 20 0
2 2 1

2 2 2

0 1 2 1 1 1 2 2 2

4
;

2 2 2

(1 ) ; ( );u r u u

m m m
m m m

m q a a b m q a a a m q a

 
 

   
      

 

      

 (26) 

IV. PRIMARY LQ CONTROLLER OF DIGITAL SP  

From the previous paragraph, it is obvious that using 

analytical spectral factorization, only two parameters d1 and d2 

of the second degree polynomial D2(z-1) can be computed. This 

approach is applicable only for control of processes without 

time-delay (out of Smith Predictor). The primary controller in 

the digital Smith Predictor structure requires usage of the 

fourth degree polynomial D4(z-1) (18) in equations (17) and 

(20). The polynomial D2(z-1) has two different real poles α, β 

or one complex conjugated pole 1,2z j   (in the case of 

oscillatory systems). These poles must be included into 

polynomial D4(z-1) (18). A suitable pole assignment was 

designed for both types of the processes:  

 

1st possibility: 

Polynomial (18) has two different real poles α, β (computed 

from (24)) and user-defined real poles γ, δ. Then it is possible 

to write polynomial (18) as a product root of factor 

      4D z z z z z          (27) 

and its individual parameters can be expressed as 

 

   

1

2

3

4

( )

( )

d

d

d

d

   

     

     



    

    

      



 (28) 

 

2nd possibility: 

Polynomial (18) has the complex conjugate 

pole 1,2z j   (computed from (24)) and user-defined real 

poles γ, δ. Then polynomial (18) has the form 

      4D z z j z j z z             (29) 

and its individual parameters can be expressed as 

 

  

 

1

2 2

2

2 2

3

2 2

4

(2 )

2

2

d

d

d

d

  

     

    

  

   

    

     
 

 

 (30) 

The control algorithm based on the LQ control method 

contains the following steps: 

The parameters of the polynomial D2(z-1) are computed 

according to equations (25) and (26). 

If the polynomial (24) has the real poles α, β, its parameters 

are computed according to equations (28), otherwise, they are 

computed according to equations (30). 

The controller parameters are computed using matrix 

equation (19) and equation (21). 

The controller output is given by equation (22). 

Penalization of the controller output is performed by setting 

0uq  .  

With increased penalization constant, the amplitude of the 

controller output decreases and thereby, the flow of the 

process output is smoothened and any possible oscillations or 

instability are damped. 

V. SIMULATION VERIFICATION AND RESULTS 

Simulation is useful tool for the synthesis of control 

systems, allowing us not only to create mathematical models of 

a process but also to design virtual controllers in a computer. 

The mathematical models provided are sufficiently close to a 

real object that simulation can be used to verify the dynamic 

characteristics of control loops when the structure or 

parameters of the controller change. The models of the 

processes may also be excited by various random noise 

generators which can simulate the stochastic characteristics of 

the processes noise signals with similar properties to 

disturbance signals measured in the machinery.   A simulation 

verification of the designed predictive algorithm was 

performed in MATLAB/SIMULINK environment. It is 

possible to influence the output of the process with the non-

measurable disturbance d. The designed digital Smith 

Predictor has universal usage for control of a large group of 

processes with time-delay.  

The following models with an exacting dynamic behavior 

were used for simulation experiments:  

 

System with one unstable pole – (2) 

 
  

8

1

2

5 1 2 1

sG s e
s s


 

 (31)  

System with two unstable poles – (3)  

 
  

8

2

2

5 1 3 1

sG s e
s s


 

 (32) 

 Oscillatory unstable system – (4)  

  8

3 2

2
; 2; 0.5

4 2 1

sG s e T
s s

  
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 (33) 
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Fig. 3: Simulink control scheme 

 

 Non-minimum phase unstable system with one unstable pole 

– (5) 

 
 

  
8

4

2 1 4

5 1 2 1

s
s

G s e
s s





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 (34) 

 Non-minimum phase unstable system with two unstable 

poles – (6) 

 
 

  
8

5

2 1 4

5 1 3 1

s
s

G s e
s s





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 (35) 

 Oscillatory unstable non-minimum phase system – (7) 

 
  8

6 2

2 1 4

4 2 1

s
s

G s e
s s





 

 (36) 

Integrating system with one unstable pole – (8) 

 
 

8

7

2

5 1

sG s e
s s




 (37)

  

Integrating system with one unstable pole – (9) 

 
 

8

8

2

5 1

sG s e
s s




 (38)

 (33) 

 Double integrating system – (10) 

  8

9 2

2 sG s e
s

  (39) 

Let us now discretize (31) - (39) using a sampling 

period 0 2 sT  . The discrete forms of these transfer functions 

are (see (11))  
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. z . z
G z z

. z . z
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 (40) 

 
1 2
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. z . z
G z z

. z . z

 
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 




 
 (41) 

 
1 2

1 4

3 1 2

0 7946 0 5768
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. z . z
G z z

. z . z

 
 

 




 
 (42) 

 
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. z . z
G z z

. z . z
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

 
 (43) 
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. z . z

 
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 
1 2

1 4
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. z . z
G z z

. z . z

 
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 
1 2

1 4

7 1 2

0 7032 0 6155

1 1 6703 0 6703

. z . z
G z z

. z . z

 
 

 




 
 (48) 

The processes which are described by the above mentioned 

transfer functions were used in the Simulink control scheme 

for the verification of the dynamical behavior of the individual 

closed control loops. In time 500 – 800 s an exponential 

external disturbance 
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   0.10.2 1 td t e   (37) 

acted on the system output. The computed poles α, β and user-

defined real poles γ, δ are introduced for individual simulation 

experiments including characteristic polynomial (18). For all 

experiments, the penalization factor was chosen qu = 1. 

A. Simulation Control of Model  1
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Fig. 4 Control of model  1

1G z  

 

The poles: , 0.3912 0.1488 ; 0.1; 0.5i        

The characteristic polynomial: 

  4 3 2

4 1.3824 0.6947 0.1442 0.0088D z z z z z      

The courses of the control variables are shown in Fig. 4.   

B. Simulation Control of Model  1
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Fig. 5 Control of model  1

2G z  

 

The poles: , 0.4737 0.1826 ; 0.1; 0.75i        

The characteristic polynomial: 

  4 3 2

4 1.5473 0.8761 0.2020 0.0129D z z z z z      

The courses of the control variables are shown in Fig. 5.  

C. Simulation Control of Model  1
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Fig. 6 Control of model  1

3G z  

 

The poles: , 0.2188 0.1137 ; 0.1; 0.5i        

The characteristic polynomial: 

  4 3 2

4 1.0375 0.3733 0.0583 0.0030D z z z z z      

The courses of the control variables are shown in Fig. 6.  

D. Simulation Control of Model  1
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Fig. 7 Control of model  1

4G z  

 

The poles: , 0.3912 0.1488 ; 0.1; 0.75i        

The characteristic polynomial: 

  4 3 2

4 1.6324 0.9153 0.2076 0.0131D z z z z z      

The courses of the control variables are shown in Fig. 7.  
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E. Simulation Control of Model  1
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Fig. 8 Control of model  1

5G z  

 

The poles: , 0.4737 0.1826 ; 0.1; 0.5i        

The characteristic polynomial: 

  4 3 2

4 1.5473 0.8761 0.2020 0.0129D z z z z z      

The courses of the control variables are shown in Fig. 8.  

F. Simulation Control of Model  1
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Fig. 9 Control of model  1

6G z  

 

The poles: , 0.2188 0.1137 ; 0.1; 0.5i        

The characteristic polynomial: 

  4 3 2

4 1.0375 0.3733 0.0583 0.0030D z z z z z      

The courses of the control variables are shown in Fig. 9.  

 

G. Simulation Control of Model  1
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Fig. 10 Control of model  1

7G z  

 

The poles: , 0.2652 0.2752 ; 0.1; 0.5i        

The characteristic polynomial: 

  4 3 2

4 1.1305 0.5144 0.1142 0.0073D z z z z z      

The courses of the control variables are shown in Fig. 10.  

H. Simulation Control of Model  1
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Fig. 11 Control of model  1

8G z  

 

The poles: , 0.2652 0.2752 ; 0.1; 0.5i        

The characteristic polynomial: 

  4 3 2

4 1.1305 0.5144 0.1142 0.0073D z z z z z      

The courses of the control variables are shown in Fig. 11.  
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I. Simulation Control of Model  1
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Fig. 12 Control of model  1

9G z  

 

The poles: , 0.2640 0.2870 ; 0.1; 0.5i        

The characteristic polynomial: 

  4 3 2

4 1.1281 0.5190 0.1177 0.0076D z z z z z      

The courses of the control variables are shown in Fig. 12.  

 It is obvious from Figs. 4 to 12 that the courses of the 

control variables have very good time behavior, the control 

quality is also very good in all cases. The designed controllers 

eliminate satisfactorily an influence of the non-measurable 

disturbance d.          

VI. CONCLUSION 

The paper presents a new unified approach for design of the 

digital LQ Smith Predictor for control of unstable and 

integrating systems with time-delay. The primary controller is 

based on minimization of the linear quadratic criterion. 

Minimization of the criterion is realized through spectral 

factorization. This controller was derived purposely by 

analytical way (without utilization of numerical methods) to 

obtain algorithms with easy implementability in industrial 

practice. Nine models (six unstable and three integrating) were 

used for simulation verification. Main contribution of the 

designed method is the universal applicability of this Smith 

Predictor for digital control of a large spectrum of processes 

(stable, unstable, non-minimum phase, integrating) with time-

delay.  
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