
 

 

  
Abstract—The restricted isometry constants (RIC) play an 

important role in compressed sensing since if RIC satisfy some bounds 
then sparse signals can be recovered exactly in the noiseless case and 
estimated stably in the noisy case. During the last few years, some 
bounds of RIC have obtained. The bounds of RIC 2kδ  among them 
were introduced by Candes (2008), Foucart and Lai (2009), Foucart 
(2010), Cai et al (2010), Mo and Li (2011). In the paper, we obtain a 
hyperbolic region on 2kδ and kδ . It completely includes the regions of 

the bounds on 2kδ  obtained by the authors above, and if 2kδ  and kδ  
belong to the hyperbolic region then sparse signals can be recovered 
exactly in the noiseless case. 
 

Keywords—Compressed sensing, 1L minimization, restricted 
isometry property, sparse signal recovery. 
 

I. INTRODUCTION 

Compressed sensing aims to recover high-dimensional sparse 

signals based on considerably fewer linear measurements. We 

consider y β= Φ , where the matrix n p×Φ ∈  with n p , the 

unknown signal pβ ∈ . Let 
0

β  be the number of nonzero 

elements of β  and 
1 1

p
ii

β β
=∑ . The signal β  is called 

k sparse if 0
kβ ≤ . Our goal is to reconstruct β  based on y  

and Φ . 
A naive approach for solving this problem is to consider 

0L minimization where the goal is to find the sparsest solution in 
the feasible set of possible solutions. However, this is NP hard 
and thus is computationally infeasible. It is then natural to 
consider the method of 1L minimization which can be viewed as 
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a convex relaxation of 0L minimization. The 1L  minimization 
method in this context is 

 
 { }1

ˆ arg min subject to 
p

y
γ

β γ γ
∈

= = Φ


.  (1) 

 
This method has been successfully used as an effective way 

for reconstructing a sparse signal in many settings. See, e. g., 
Donoho and Huo [14], Donoho [13], Candes et al [8-11] and 
Cai et al [2, 3].  

Recovery of high dimensional sparse signals is closely 
connected with Lasso and Dantzig selectors, e. g., see, Candes 
et al [11], Bickel et al [1], Wang and Su [19-22]. One of the 
most commonly used frameworks for sparse recovery via 

1L minimization is the restricted isometry property with a RIC 
introduced by Candes and Tao [9]. For an n p× matrix Φ  and 
an integer k , 1 k p≤ ≤ , the k  restricted isometry constant 

( )kδ Φ is the smallest constant such that 
 

2 2 2
1 ( ) 1 ( )k ku u uδ δ− Φ ≤ Φ ≤ + Φ  

 
for every k  sparse vector u . If 'k k p+ ≤ , the k , 'k  restricted 
orthogonality constant , ' ( )k kθ Φ  is the smallest number that 
satisfies 
 

, ' 2 2
, ' ( ) 'k ku u u uθΦ Φ ≤ Φ  

 
for all u and 'u such that u and 'u are k sparse and 'k  sparse 
respectively, and have disjoint supports. For notational 
simplicity, we shall write kδ for ( )kδ Φ and , 'k kθ for , ' ( )k kθ Φ  
hereafter.  

It has been shown that 1L minimization can recover a sparse 
signal with a small or zero error under various conditions on kδ  
and , 'k kθ . So, a great deal of attention has been focused here 
during the last few year, for example, the conditions involving 

akδ  and ,k bkθ , where 1,2,3,4,1.25,1.5a = and 

1,1.25,1.5,2b = , see Candes et al [8-10] and Cai et al [2, 5]; the 
conditions involving only 2kδ , see Candes [7], Foucart and Lai 
[16], Foucart [15], Cai et al [2], Mo and Li [18], and only kδ , 
see Cai et al [4], Ji and Peng [17], Cai and zhang [6]. 
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It is obvious that 2kδ  and kδ  are two of the most important 
and basic parameters. In this paper, we obtain the sufficient 
conditions involving only 2kδ and kδ . It is a hyperbolic region. 
This hyperbolic region completely includes the regions of the 
bounds on 2kδ  in the literature [2, 7, 15, 16, 18], and if 

2kδ and kδ  belong to the hyperbolic region then sparse signals 
can be recovered exactly in the noiseless case. 

The rest of the paper is organized as follows. In Section 2, 
some basic notations are introduced and the functions 
on 2kδ and kδ  are given. Our hyperbolic region on 2kδ and kδ  is 
presented in Section 3. In Section 4, we discuss the problem that 
the hyperbolic region completely includes the regions of the 
bounds on 2kδ  in the literature [2, 7, 15, 16, 18]. Other 
meaningful problems are also discussed. 

 

II. THE FUNCTIONS OF THE RESTRICTED ISOMETRY CONSTANTS 
We consider the simple setting where no noise is present. In 

this case the goal is to recover the signal β exactly when it is 
sparse. This case is of significant interest in its own right as it is 
also closely connected to the problem of decoding of linear 
codes. See, for example, Candes and Tao [9]. The ideas used in 
treating this special case can be easily extended to treat the 
general case where noise is present.  

Let β̂  be the minimizer to the problem (1). Let ˆh β β= − . 
For any subset {1, 2, , }Q p⊂  , we define Q Qh hI= , where QI  

denotes the indicator function of the set Q , i.e., ( ) 1QI j =  if 

j Q∈  and 0 if j Q∉ . Let 0S  be the index set of the k  largest 

elements (in absolute value). Rearrange the indices of 0
cS  if 

necessary according to the descending order of ih , 0
ci S∈ . 

Partition 0
cS  in order into 0 1

lc
ii

S S
=

= ∑ , where iS k= , the last 

iS satisfies iS k≤ . For simplicity, when there is no ambiguity 

we write 
ii Sh h= , 1, 2, ,i l=  .  

Let  
 

 1 1 1
1

i
i

h t h
≥

= ∑ ,  (2) 

 
then there must be [1/ ,1]t l∈ . In fact by the definition of iS , we 
have 
 
 11 1 1

1 1
i i

i i
h l h tl h

≥ ≥

≤ =∑ ∑ .  (3) 

 
If 

1
1

0i
i

h
≥

≠∑  then 1/t l≥ , if 
1

1
0i

i
h

≥

=∑ , then the elements 

of 0
cS  are all zero. The following we suppose that 1l ≠ since 

1t =  when 1l = . 
From (2) we have 

 
 

1 1
2 1

(1 )i i
i i

h t h
≥ ≥

= −∑ ∑ .  (4) 

 
It is obvious from (2) and (4) that 
 

2
22 1

2 2
i i

i i
h h h

∞
≥ ≥

≤∑ ∑  

 
2

1 1
1 1

2 1
(1 )i i

i i

h th t h
k k≥ ≥

 ≤ ≤ −  
 

∑ ∑ .  (5) 

 
Further 
 

 
2 1

2 1

1 3 / 4
i i

i i

th h
k≥ ≥

−
≤∑ ∑ . (6) 

 
In fact from Cai et al [4], (2) and (4)  
 

22 1
2 2

1
4i i

i i

kh h h
k ∞

≥ ≥

≤ +∑ ∑  

1 1
1 1

2 1

1 1 3 / 4
4i i

i i

hk th h
kk k≥ ≥

−
≤ + =∑ ∑ . 

 
Let 0hΦ = , then 
 

0 1
2

( ) i
i

h h h
≥

 Φ + = −Φ  
 
∑ . 

 
Thus 
 

2
2

0 1 2
2 2

( ) i
i

h h h
≥

 Φ + = Φ  
 
∑ . 

 
The following need to use some basic facts:  
 

20 1k kδ δ< ≤ < , , 20 1k k kθ δ< ≤ < , 
 
see Candes et al [7, 9]. It is easy to see by Candes and Tao [9] 
that  
 

( )2 2
0 1 2 0 12 2

( ) 1 kh h h hδΦ + ≥ − +  
  

( )( ) ( )( )2 2 2 2
2 0 1 2 0 12 2 1 1

1 1 /k kh h h h kδ δ= − + ≥ − +

  (7) 
 
By the definition of kδ and 2kδ , (5) and (6), we have 
 

2

2 , 22

,i i j
i i j

h h h
≥ ≥

 Φ = Φ Φ 
 
∑ ∑  
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2

2
2 2

2 ,i i j
i j i

h h h
≥ > ≥

= Φ + Φ Φ∑ ∑  

( ) 2
22 2 2

2 2
1 2k i k i j

i j i
h h hδ δ

≥ > ≥

≤ + +∑ ∑  

( ) ( )
2

2
2 1

1

1 1 (1 ) 1 5 4k k i
i

t t t h
k

δ δ
≥

  ≤ + − + −     
∑ . 

 
From (7), 
 

( )( )2 2
2 0 11 1

1 k h hδ− +  

( ) ( )
2

2
2 1

1
1 (1 ) 1 5 4k k i

i
t t t hδ δ

≥

  ≤ + − + −     
∑ . 

 
From (2), 
 
 2

0 1
h ≤  

( )2 2 2
2

1
12

(1 ) 1 5 2 41 16 2

1
k k

i
ik

t t t t t t
h

δ δ

δ ≥

− + − + + −  
 −  
∑  (8) 

( ) ( )
( )

22
2 2 2

1
12

16 8 2 2 5 32 16 41
16 1

k k k k k
i

ik

t t
h

δ δ δ δ δ
δ ≥

+ + − − + −  =  −  
∑

. 
Theorem 1. If 25 2 2k kδ δ− < , then 

 

0 1 1
1

k i
i

h hξ
≥

≤ ∑ , 

 
where 
 

( )
( )( )

2 2
2 2 2

2 2

4 1 2 3 4

1 32 16 41
k k k k k k

k
k k k

δ δ δ δ δ δ
ξ

δ δ δ

+ + + − −

− + −
 . 

 
Proof Consider the function 

 
( ) ( ) 2

2 2 2( ) 16 8 2 2 5 32 16 41k k k k kf t t tδ δ δ δ δ+ + − − + − , 
 
where ( , )t ∈ −∞ +∞ . We firstly show that 
 

232 16 41 0k kδ δ+ − > . 
 
Davies and Gribonval [10] constructed examples which 

showed that if 2 1 2kδ ≥ , exact recovery of certain k-sparse 
signal can fail in the noiseless case. This implies that there must 
be 2 1 2kδ < in order to guarantee stable recovery of k-sparse 
signals. So,  

 

241 41 2 32 32 16k kδ δ< < < + . 
 

Deriving ( )f t  with respect to t , then have 
 

( ) ( )2 2'( ) 8 2 2 5 2 32 16 41k k k kf t tδ δ δ δ= + − − + − . 
 
The stationary point is  
 

2
0

2

2 2 5
4

32 16 41
k k

k k

t
δ δ
δ δ

+ −
=

+ −
. 

 
If 25 2 2k kδ δ− < , then 0 0t > . The function ( )f t  is 

monotone increasing when 0t t≤  and monotone decreasing 
when 0t t≥ . So ( )f t  reaches the maximum when 0t t= , and the 
maximum is 

 
2 2

2 2 2
0

2

1 2 3 4
( ) 64

32 16 41
k k k k k k

k k

f t
δ δ δ δ δ δ

δ δ
+ + + − −

=
+ −

. 

 
Hence 
 

( )

2
2 0

0 1 1
12

( )
16 1 i

ik

f t
h h

δ ≥

 ≤  −  
∑ . 

 
That is 

0 1 1
1

k i
i

h hξ
≥

≤ ∑ .□ 

 
Remark 1. It is obvious that 00 1t< < since 
 

( )2 24 2 2 5 32 16 41k k k kδ δ δ δ+ − < + − . 
 
The inequality in Theorem 1 is equality when 0t t=  if 

01/ 1l t≤ < , but the strict inequality in Theorem 1 holds if 

00 1/t l< < . 
Similar to the proof of Theorem 1, it follows that Theorem 

3.1 by Mo and Li [18] is a special case of Theorem 1.  
Corollary 1. If 2 2 3kδ < , then 
 

0 1 1
1

k i
i

h hη
≥

≤ ∑ , 

 
where 
 

( )
( )( )

2
2 2

2 2

4 1 5 4

1 32 25
k k

k
k k

δ δ
η

δ δ

+ −

− −
 . □ 

 

III. THE HYPERBOLIC REGION OF THE RESTRICTED ISOMETRY 
CONSTANTS 

Lemma 1. If 1/ 4kδ < and 2 1/ 2kδ < , then 
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0 1 1
1

i
i

h h
≥

< ∑ . 

 
Proof From 1/ 4kδ <  and (8), have 

 

( )2 2 2
22

0 1 1
12

(1 ) 4 1 5 2 41 16 2

1
k

i
ik

t t t t t t
h h

δ

δ ≥

− + − + + −  ≤  −  
∑  

( ) ( )
( )

22
2 2 2

1
12

16 20 1 2 36 41
16 1

k k k
i

ik

t t
h

δ δ δ
δ ≥

+ − − −  =  −  
∑ . 

 
Let 
 

( ) ( ) 2
2 2 2( ) 16 20 1 2 36 41k k kg t t tδ δ δ+ − − − , 

 
where ( , )t ∈ −∞ +∞ . Similar to the proof of Theorem 1, the 
stationary point is  
 

2
0

2

1 2
10

36 41
k

k

t
δ

δ
−

=
−

. 

 
If 2 1/ 2kδ < , then 0 0t > . The function ( )g t  is monotone 

increasing when 0t t≤  and monotone decreasing when 0t t≥ . 
So ( )g t  reaches the maximum when 0t t= , and the maximum is 

 
2

2 2
0

2

25 44 64
( ) 4

36 41
k k

k

g t
δ δ

δ
+ −

=
−

. 

 
Hence 
 

( )

2
2 0

0 1 1
12

( )
16 1 i

ik

g t
h h

δ ≥

 ≤  −  
∑ . 

 
That is 

0 1 1
1

k i
i

h hζ
≥

≤ ∑ , 

 
where  
 

( )( )
2

2 2

2 2

25 44 64
4 1 36 41

k k
k

k k

δ δ
ζ

δ δ
+ −

=
− −

. 

 
It is obvious that 1kζ <  if and only if 2 1/ 2kδ < . □ 
Lemma 2. If 25 2 2k kδ δ− <  and 
 

2 2
2 2 24 57 12 8 85 28k k k k k kδ δ δ δ δ δ− + − + < , 

 
then  
 

0 1 1
1

i
i

h h
≥

< ∑ , 

 
where  
 

2 2
2 2 24 57 12 8 85 28k k k k k kδ δ δ δ δ δ− + − + <  

 
is a hyperbolic region  
 

( ) ( )2 2
0 0

1 2

1
v v u u

c c
− +

− >  

 
of the origin at ( )0 0,u v− . 0 0 1 2, , ,u v c c  see Appendix. 

Proof. Rewrite kx δ=  and 2ky δ= for the sake of convenience. 
From Theorem 1 we only need to prove 1kξ < . It is obvious that 

1kξ <  if and only if 
 
 2 24 57 12 8 85 28x y xy x y− + − + < . (9) 
 
That is 
 

( ) ( )
4 6

, 8,85 28
6 57

x x
x y

y y
    

+ − <    −    
. 

 
Write 
 

4 6
6 57

A  
 − 

 , 11 22

12

cot 2
2

a a
a

θ
−

 , 

 
where 0 / 2θ π< < . Then 
 

2

1cos
1a

θ =
+

,
2

sin
1

a
a

θ =
+

, 

 
where tana θ= . By trigonometric identity  
 

 26 61 6 0a a+ − = , (10) 
 
we have 
 

 3865 61
12

a −
= . (11) 

 
Let 
 

 
cos sin

=
sin cos

x u
y v

θ θ
θ θ

−    
    
    

. (12) 

 
Then 
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2 24 57 12 8 85 28x y xy x y− + − + <  
 
if and only if 
 

( ) ( )2 2
0 0

1 2

1
v v u u

c c
− +

− > . 

 
It is a hyperbolic region of the origin at ( )0 0,u v− . The 

specific calculations see Appendix. □ 
Write sets 
 

( )1 2 2 2
1 1, : 0 , ,
4 2k k k k k kU δ δ δ δ δ δ < < < ≤ 

 
 . 

( ) ( )2 2 2 2
1 1, : , , 28,
4 2k k k k k k kU gδ δ δ δ δ δ δ ≤ < < ≤ 

 
 . 

where 
( ) 2 2

2 2 2 2, 4 57 12 8 85k k k k k k k kg δ δ δ δ δ δ δ δ− + − + . 

( ) ( ){ }3 2 2 2 2, : 5 2 2, , 28,k k k k k k k kU gδ δ δ δ δ δ δ δ− < < ≤ . 

( )4 2 2 2
1, : 0 ,5 2 2,
4k k k k k k kU δ δ δ δ δ δ δ < < − < ≤ 

 
 . 

 
Theorem 2. If ( )2 1 2,k k U Uδ δ ∈ + , then 
 

0 1 1
1

i
i

h h
≥

< ∑ . 

 
Proof. From Lemma 1 and Lemma 2, if ( )2 1 3,k k U Uδ δ ∈ +  

then 0 1 1
1

i
i

h h
≥

< ∑ . Note that sets 

 
{ } ( ){ } { }2 2 25 2 2 , 28 1/ 2k k k k kgδ δ δ δ δ− < ⊂ < ⊂ <  

 
when 0 1/ 4kδ< <  and 
 

{ } ( ){ }2 25 2 2 , 28k k k kgδ δ δ δ− < ⊃ <  

 
when 1/ 4 1/ 2kδ≤ < . So 
 

3 4 2 1 2U U U U U= + ⊂ + . 
 
This implies that 
 

1 3 1 4 2 1 2U U U U U U U+ = + + = + .□ 
 
Remark 2. Theorem 2 is intuitive. 1 2U U+  is the open region 
enclosed by straight lines 0x = , x y= , 1/ 2y =  and 

hyperbola 2 24 57 12 8 85 28x y xy x y− + − + = . 
 

IV. DISCUSSION AND CONCLUSION 
Candes [7], Foucart and Lai [16], Foucart [15], Cai et al [2], 

Mo and Li [18] gave the conditions involving only 2kδ . Mo and 

Li [18] showed that if 2 0.4931kδ < , then 0 1 1
1

i
i

h h
≥

< ∑ . This 

is the best result on 2kδ  so far. We illustrate that Theorem 2 
completely improves the result by Mo and Li [18] below. 

2 0.4931kδ <  in fact corresponds to set 

( ){ }5 2 2 2, : 0.4931,0k k k k kU δ δ δ δ δ= < < ≤ . We only need to 

show 5 1 2U U U⊂ + . In order to precision, we take the exact 

value ( )2 77 1337 82kδ < −  instead of approximate value 

2 0.4931kδ < . We will prove the intersection between straight 

line ( )77 1337 82y = − and hyperbola  

 
2 24 57 12 8 85 28x y xy x y− + − + =  

 
 is  
 

( )0 0
77 1337 77 1337, ,

82 82
x y

 − −
=   

 
. 

 
If use  
 

( ) ( )282 123 123 82 161 226 112
82

y y y
x

− − − + −
=  

( )82 123 41 1105 536
82

y y− − −
= , 

 
can't get exact value. We use another method. Note that  

( )77 1337 82y = −  if and only if 241 77 28 0y y− + =  since 

1y < . So if ( )77 1337 82y = − , then 

 
2 24 57 12 8 85 28x y xy x y− + − + −  

( )( )4 4 2 0x y x y= − + − = . 
 
That is ( )77 1337 82x y= = −  since 1/ 4x ≥ . 

Note that 5U  is proper subset of 1 2U U+ . In fact 

1 2 5U U U+ −  is the region enclosed by straight lines 0x = , 

( )77 1337 82y = − , 1/ 2y =  and hyperbola 

 
2 24 57 12 8 85 28x y xy x y− + − + = . 

 
Davies and Gribonval [12] constructed examples which 

showed that if 2 1 2kδ ≥ , exact recovery of certain k-sparse 
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signal can fail in the noiseless case. Cai et al [4] constructed an 
example which showed that if 1/ 2kδ ≥ , it is impossible to 
recover certain k-sparse signals. These imply that there must be 

2 1 2kδ < and 1/ 2kδ <  in order to guarantee stable recovery 
of k-sparse signals. In addition, Cai and Zhang [6] showed that 
if 1/ 3kδ <  then k-sparse signals can be recovered exactly in 
the noiseless case. Therefore, the remaining work are to 
research recovery of k-sparse signals in region 

 

( ) ( ){ }6 2 2 2, :1 3 1 2, 1 2 , , 28k k k k k kU gδ δ δ δ δ δ≤ < < ≥ . 

 
By the way, the result “if 4p k≤  and 0.6569kδ < , then 

0 1 1
1

i
i

h h
≥

< ∑ ” (see Corollary 3.4 in Mo and Li [18]) is 

incorrect. In fact, the right side of the equation (3) in Mo and Li 
[18] is equal to zero when 1l =  since [1/ ,1]t l∈ . In the proof of 

Theorem 3.3 in Mo and Li [18], 2
2 2(1 2 ) (1 ) / 8k kt tδ δ+ − ≤ +  if 

and only if 2(1 ) / 4 1/k lδ+ ≥  since [1/ ,1]t l∈ . This implies that 

2 1kδ ≥  when 2l =  and 2 1/ 3kδ ≥  when 3l = . 
We discuss second problem. Why the demarcation point is 

1/ 4kδ <  in Lemma 1? As we will see below, this discussion is 
meaningful. If k dδ < , from (8), similar to the proofs of 
Theorem 1 and Lemma 1, then have 

 
2

0 1
h ≤  

( ) ( )
( )

22
2 2 2

1
12

16 8 2 2 5 32 16 41
16 1

k k k
i

ik

d t d t
h

δ δ δ
δ ≥

+ + − − + −  
 −  
∑  

( )( )

22 2
2 2 2

1
12 2

1 2 3 4
4

1 32 16 41
k k k

i
ik k

d d d
h

d
δ δ δ

δ δ ≥

+ + + − −  ≤  − + −  
∑  

( )
2

2 1
1

, k i
i

l d hδ
≥

 
 
 
∑ . 

 
Our goal is 2kδ  to achieve maximum when ( )2, 1kl d δ < . By 

specific calculating, ( )2, 1kl d δ <  if and only if 2 1/ 2kδ <  

since 2 1kδ < , and 2 1/ 2kδ < when 1/ 4kδ < . So the 
demarcation point is 1/ 4kδ <  in Lemma 1. This imply that 
using the method of Theorem 1 and Lemma 1 cannot have 

2 1/ 2kδ ≥ . Therefore, to research recovery of k-sparse signals 
in region 6U  must use new methods. 

V. APPENDIX: COMPLETION OF THE PROOF OF LEMMA 2 
We give specific calculation in order to get the precise 

hyperbolic equation as follows. By (10) and (12), we have 
 

2 24 57 12 8 85x y xy x y− + − +  

( )
( )

2
22

2 2

85 8 14 12 57
1 2 4 12 57
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Thus 
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if and only if 
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By (10) and (11), then have 
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where 3865b = . Thus 
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Based on the above results, by direct calculation, we have 
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Similarly, have  
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The approximate values are 1 0.0646c = , 2 0.7872c = , 

0 0.7413v = and 0 0.0305u = , respectively. 
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