

Abstract— Signal processing plays an important role in the work

of pathologists; it is especially true for image processing software
products. High-resolution digital images have taken over the role of
traditional tissue slides on a glass plate. In addition to the direct
effects of this advancement (sharing images, remote access, etc.), a
new option appeared: the possibility of using image processing
software for automatic (or semi-automatic) diagnostics. One of the
most important tasks in this procedure is the segmentation of the
tissue images; we have to identify the main components (in the case
of colon tissue samples, these are the cell nuclei, glands and surface
epithelium). There are several traditional image segmentation
methods for this purpose, but none of them provides both acceptable
accuracy and runtime. This paper presents a distributed region
growing method implemented on CPUs and GPGPUs.

Keywords—distributed algorithm, GPGPU, medical image
segmentation, parallel algorithm

I. INTRODUCTION
OWADAYS the digital microscope is becoming a more
and more common device. In addition to several

advantages of these devices, it is worth to mention that besides
the suitable IT background the images (see Figure 1) gained
this way can be subjected to numerous other processes:
archivation, categorization [1], remote access, further post-
processing [2,3,4,5], etc. One of the most promising
improvements is the semi-automatic diagnosis based on the
segmentation of the image [6,7,8,9,10].

Segmentation of Haematoxilin and Eosing stained colon
tissue images means the detection of the following main
components: cell nuclei, glands, and epithelium (see Figure 2).
Cell nuclei detection is a crucial step in this process, because
there are several gland and epithelium segmentation
techniques based on the identified nuclei [11,12,13].
Therefore, we need an accurate and fast cell nuclei detection
method, and fortunately there are several already existing
implementations. One of the promising alternatives is the
region growing approach [14], which consists of the following
steps: 1) selection of some seed points; 2) examination of the

This work makes use of results produced by the Hungarian National

Technology Programme, A1, Life sciences, the “Development of integrated
virtual microscopy technologies and reagents for diagnosing, therapeutical
prediction and preventive screening of colon cancer “Hungarian National
Technology Programme, A1, Life sciences, (3dhist08) project and the ÓE-RH
1104/2-2011 project.

S. Szénási is with the Óbuda University, Budapest, Hungary, (phone: 36-1-
666-5579; fax: 36-1-666-5579; e-mail: szenasi.sandor@nik.uni-obuda.hu).

neighbouring pixels of the actual region; and 3) selection of
the next pixel (based on some fitness functions) to be added to
the region. We have to iterate this process until some exit
condition is met.

The region growing method has some limitations, which are
mainly the high time and memory requirements. We have
partially solved the speed problem by implementing a new
data-parallel region growing algorithm [15]. This method
already uses two levels of parallelization: 1) the region
growing itself use hundreds of threads, each thread is
responsible for the processing of one contour point, and 2)
starting more than one region growing at the same time to
utilize the full processing power of the devices. Region
growing needs several parameters therefore we have to
optimize these too [16,17].

II. GPGPU BASED REGION GROWING

A. Nvidia CUDA environment
GPGPU development has drastically evolved in the last few

years. As GPUs became more powerful, software developers
began enabling their applications to take advantage of this new
massively parallel architecture [18,19]. The task of using the
old standard graphics APIs (DirectX, OpenGL) for general-
purpose computations poses several challenges. The use of
these environments requires the mapping of all data and
variables into graphics objects, while algorithms must be
implemented as shared programs, pretending to perform
transformations of graphical objects. These limitations make
this kind of development hard and not widely spread.

The CUDA 1.0 software development environment
(Compute Unified Device Architecture) introduced by Nvidia
was a significant step forward, exposing a lot of hardware

Distributed Region Growing Algorithm for
Medical Image Segmentation

Sándor Szénási

N

Fig. 1: Haematoxilin&Eosin stained colon tissue.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 173

Fig. 2: Main components of a colon tissue. A – cell nucleus, B – gland, C – surface epithelium.

Alg. 1: Region growing algorithm.

Function RegionGrowing(image)
 result ← Ø
 While (NextSeedPoint(image) ≠ Ø)
 region ← { NextSeedPoint(image) }
 While ¬StoppingCondition(region)
 contour ← GenerateContour(region)
 For all pnt in contour
 fitness[pnt] ← FitnessFunction(pnt)
 End for
 maxindex ← MAX(fitness)
 region ← region ∪ contour[maxindex]
 End while
 If Acceptable(region)
 result ← result ∪ region
 End if
 End while
 return result
End function

features that are not available via the original graphics-based
application programming interfaces (DirectX, OpenGL). It has
been widely deployed through thousands of applications and
research papers.

It consists of some extensions to the C and C++ languages to
control the graphics card from the CPU code, and to start GPU
kernels with thousands of threads.

A CUDA program consists of two main parts:
• A sequential program running on the CPU
• A data parallel program running on the GPU (called

a kernel)
Each kernel is executed on the graphics card in one thread,

and these threads are organized into blocks. These blocks are
executed by the separate multiprocessors in parallel. Each
multiprocessor consists of stream processors, operated in a
SIMT (Single Instruction Multiple Threads) fashion.

CUDA provides additional functions for data exchange
between the memory and the device memory. This means
memory allocation, de-allocation, and data transfer between

memory areas. Memory operations are performed through
DMA (Direct Memory Access) to decrease the load of the
CPU. However, this means data transfer over the PCI Express
bus; therefore, it is significantly slower than the memory
access of the CPU or the GPU.

We have used CUDA 6.0 environment and Fermi based
graphics cards (NVIDIA GeForce GTX 570). This allows us
to start 1024 threads in one block, which is a big improvement
based on the earlier generations with a maximum number of
512 threads in a block.

B. Region growing approach
There are several methods for cell nuclei detection, for

example K-means based, or edge-detection based techniques
[20,21]. One of the most promising methods is the region
growing approach. This is a classical image segmentation
method.

Seeded region growing performs a segmentation of an image
with respect to a set of points, called seed points [22]. Initially,
this point is the region candidate.

An iteration of the main loop means the addition of one pixel
to the already existing region. For this, we have to generate the
contour of the region candidate, and select the most promising
point to extend the region.

We have to repeat this iteration until one of the exit
conditions occur. There are several conditions; the most
important for us is the maximum size of the region.

Algorithm 1 presents the sequential version of the region
growing algorithm, using the following external functions:

• NextSeedPoint(image): The result of this function is
the next available seed point from the image (in case
of cell nuclei detection, this is the darkest pixel).
The result is Ø if there are no available seed points.

• GenerateContour(region): Generates the contour of
the given region. The result of the function is a list
of the contour pixels.

• FitnessFunction(point): The result is the fitness
value of the given contour point. This score value is
as high as the pixel corresponds to the already
existing cell nuclei candidate.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 174

Fig. 3: Parallel parts of region growing algorithm.

• Acceptable(region): This function creates a post-
checking using the size and colour of the built
region candidate.

C. Data parallel region growing
Region growing has several advantages (it is one of the most

accurate methods), but it has some disadvantages too. First, it
is too slow. The processing of a full sized tissue image
(8192x8192 pixels) requires about half an hour, which is
unacceptable for practical usage.

Region growing is not a well parallelizable algorithm, but
we can substitute some of its steps with a parallel one.

These steps are (see Figure 3):
• After the region expansion, we have to check all

possible directions in which the contour can be
expanded. Our implementation uses four
neighbourhoods; therefore, we have to check the
four neighbouring pixels. A data parallel
implementation can use four threads parallel to
check these directions.

• One of the most time consuming parts is the score
value calculation. We have to calculate the fitness
function for all contour pixels after every iteration.
We cannot speed up this calculation with cache
memory usage, because the fitness function uses
some values changing after every iteration (the
mass-centre and the average intensity of the region
candidate, etc.). However, with using GPUs, we can
create a kernel to calculate this fitness value for one
pixel, and we can run as many kernels parallel as
many contour points as we have (see Figure 4). This
technique can significantly speed-up the fitness
value calculation; and it is ideal for GPU
implementation.

• We can use the GPGPU implementation of the
different filters [23] in the pre-processing and in the
post-processing phases.

III. DISTRIBUTED IMPLEMENTATIONS

A. Naive implementation
To gain maximum speed, it would be better to create a third

level of parallelization, and use more than one device at the
same time. We have developed three protocols for this
purpose. The advantage of the naive implementation and the
synchronized compatible version is that these give exactly the
same result as the original region growing algorithm. This is
possible because the main process itself remains unchanged;
only the independent region growings are randomly [24]
distributed between the execution units; therefore, we can
process these at the same time using several devices.

The main problem is that all devices (CPUs and GPGPUs)
own independent memory areas. In the naive method, we have
to keep syncing all data between these devices after all region
growing. This technique is easy to implement, but the
effectiveness raises a number of questions. The biggest
problem is that quite a large amount of data exchange is
necessary. This is because all devices have to store the whole
image, so that during the update process, all of them have to
transfer all data from the others.

B. Compatible, synchronized solution
Instead of the above, it would probably be a better solution

if the GPGPUs do not contain the entire image. Consequently,

Fig. 4: Data parallel score calculation. Red circles represent the
individual threads.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 175

it is not necessary to move the total amount of data between
all devices. It would be better to split the complete picture into
smaller regions, and distribute these between the available
devices. Therefore, they are able to operate independently
from each other.

As usual, in case of similar distribution tasks, problems
arise near the borders. It is possible that a nucleus is divided
into two or more parts by the borders, and this can cause
several problems. One of the GPGPUs may find the nucleus
candidate, but the region cannot grow across the border;
therefore, the algorithm will not be able to find the full shape.
Two GPGPUs may find the same nucleus (two distinct parts
of the same one). Therefore, in the result list, two nucleus
candidates will appear instead of the correct one. The worst
case is that due to the splitting method, too small parts have
been placed in the memory regions of the two GPGPUs;
therefore, none of them will identify it as a nucleus.

It would be good if the result of the multi-GPGPU process
is exactly identical to the non-parallel version. It is important
for the authorization process (the non-parallel version is
already used in practice, and it is easier to obtain a permit for
the new version, if the results of this are as similar as
possible), and it is beneficial from the aspect of programming
too (testing the application, etc.). Unfortunately, using
completely individual GPGPU kernels for processing the
image slices (which would be ideal for maximum
performance) may cause several side effects as well. During
the region growing, it was an important consideration that the
processing order of the seed points was based on their score
values (which is an integer value between 0 and 255). We
have to process all seed points with higher score values, than
the others with worse fitness value. It is possible that two or

more seed points have the same score value, in fact the whole
parallelization is based on this state. Because in this case, we
can run these region growings in any order. Therefore, we can
process these points parallel (if they are far enough from each
other).

However, when there are several independent GPGPUs, we
cannot guarantee this condition. It is possible that one of the
GPGPUs have completed the processing of all seed points
with a given score value and it starts processing points with
lower fitness value, while at the same time the other GPGPUs
work with a higher score value. It does not cause any
problems inside the image slide, but it can be problematic in
the overlapping areas. It is not acceptable that one of the
GPGPUs finalizes a nuclei candidate with a lower score value,
and because of this, another GPGPU cannot accept another
(later found) overlapping nucleus candidate with a higher
score value. Considering the above problems, the following
algorithm should be used.

Before starting the algorithm, we have to split the tissue
image into smaller parts. The following three areas are
distinguishable:

• Area A: The GPGPU uses these areas for the region
growing. The maximum size of these areas is based
on the size the of the GPGPU memory. Another
consideration is that these areas should be as large
as possible, because this leads to higher parallelism
(see Figure 5/a).

• Area B: Areas processed by the different GPGPUs
are adjacent to each other; therefore, we cannot use
all pixels of the regions as seed points. We should
ensure that the region growings started at the edge
of the picture tiles do not affect the results of the

a) b)
Fig. 5: a) Image splitted into four Region A type areas. All areas are processed by different devices.
b) Red area: Region A; Blue area: Region C; Dark blue area: Region C2; Light blue area: Region C1.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 176

region growings started in different GPGPUs.
Fortunately, this is easily met because we know the
maximum radius of any cell nucleus (R). Hence, any
two region growings can be started in parallel if the
distance between the seed points is at least 4*R. We
can ensure this constraint with the following
technique: region growings can use the entire region
A, but the seed points must be in the A-B region.
The B region refers to all pixels that are farther from
the nearest neighbour image tile than 2*R pixels
(see Figure 5/a).

• Area C: There can be several seed points in the
previously mentioned type B areas, which we have
to include in the search process. These areas will be
processed in a further step to simplify the
parallelization. In summary, area C contains the
pixels of A, where the distance from the nearest
image tile being more than 2*R but less than 6*R. It
is obvious that we can start region growing
simultaneously from the B and A-B-C regions,
because the minimum distance of the seed points
will be at least 4*R. Therefore, the region growings
will not meet (see Figure 5/b).

• Areas C1 and C2: The previously defined C area is
further divided into two parts. C1 is the set of pixels,
which has a distance from the nearest neighbour tile
of more than 4*R and less than 6*R. C2 is the set of
pixels with a distance from the nearest neighbour
tile of more than 2*R and no less than 4*R (see
Figure 5/b).

We have to take into account some additional parameters.
At the edges of the original tissue sample, some neighbouring

tiles can be found missing. Therefore, the B and C regions do
not exist. We can simply handle these areas as type A.

Theoretically, the size of the tiles can be different. But, for
simplicity (and faster memory transfers), we use unified
resolutions. It would be worth not using square, but instead
long rectangular areas, whose width equals the full image
tissue width. In this case, all image parts have only one or two
neighbours (on the top and the bottom). This can reduce the
dependences, and increase the data transfer rate (rows one
above the other can be moved by one sequential memory
copy).

The algorithm is based on the followings:
1. Choosing the actual seed point limit and selecting

all seed points with this fitness value.
2. Selecting seed points in the A-B areas in all

GPGPUs, where the distance between these are
more than 4*R (see Figure 6/a).

3. Starting region growings parallel in all GPGPUs
from the previously selected seed points.

4. After region growings, all GPGPUs copy the B
memory area into the host memory. The region
growings and the memory copies are all
independent. Therefore, we can run these
procedures parallel.

5. Synchronization. All devices have to wait for the
last one to complete the previous tasks.

6. Selecting seed points from the B or from the A-B-C
area, where the fitness limit is equal to the
previously selected value. Sending seed points
positioned in the A-B-C area to the appropriate
GPGPUs. Seed points in B area can be processed by
the CPU (see Figure 6/b). We can use one of the

a) b)
Fig. 6: a) Green area: independent region growings started from A-B area. Yellow circles: maximum sized cell nuclei candidates.

b) Green area: independent region growings started from A-B-C and B areas. Yellow circles: maximum sized cell nuclei candidates.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 177

GPGPUs to process these starting points, but it
needs too much memory copies, it is worth to do
this directly in the host memory.

7. Starting region growings parallel in all GPGPUs and
CPUs. These procedures can run parallel.

8. There may be changes in area C1 in the GPGPUs,
because the region growings from A-B-C can reach
these pixels. There may also be changes in area C2 in
the CPU, because region growings from Area B can
reach these pixels. Accordingly, after the previously
mentioned region growings, the GPGPUs have to
start the memory copies: the C1 areas from GPGPUs
to the host memory, and the C2 areas from the host
memory to the corresponding GPGPUs. Of course,
this can be optimized based on whether there were
any changes in these areas.
The region growings and the memory copies are all
independent. Therefore, we can run these
procedures parallel.

9. Synchronization. All devices have to wait for the
last one to complete the previous tasks.

10. If there are more seed points with the selected
fitness limit, restart the iteration from step 2.

11. If there are not any more seed points with the
selected fitness limit, restart the iteration from the

first step.
After each iteration, we have to decrease the fitness limit

until it reaches a minimum value. Seed points with fitness
values less than this limit are not acceptable.

The biggest advantage of this method is that the results will
be the same as the single GPGPU execution (which is the
same as the traditional sequential results). In some cases, this
can be critical (although in practice it turned out that there are
several valid solutions with the same precision).

The drawback of this method is the synchronization
requirements and the large data movement (although, it is still
more manageable than the naive implementation).

C. Split-and-merge method
To achieve maximum performance, we have to develop an

algorithm that permits as much independence for the devices
as possible. Our third option is to simply divide the image into
smaller tiles and process these separately. After this, we have
to concatenate these results (this is the well-known split-and-
merge method [25]). At the edges of these tiles, there may be
several problems we have to handle.

In the split part, we have to split the entire image into
smaller subimages (as large as acceptable for all devices). We
use some overlapping using OVERsize pixels width, where
OVERsize is a constant parameter. We can calculate the value

Fig. 7: Result of cell nuclei detection. The yellow lines show the border of the overlapping areas.
The green objects are the detected cell nuclei (different color represents individual cell nuclei candidates).

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 178

of this parameter since we know the maximum radius of any
cell nucleus (R pixels). We use 4*R pixel width overlapping
areas; therefore, there cannot be any two or more region
growings started from the non-overlapping areas of different
devices, which have shared pixels.

In the merging section, we concatenate the results. There
may be several overlapping cells in these overlapping areas,
and we have to select a non-overlapping subset of them (using
some scoring function or a fuzzy approach [26,27,28]). We
have developed a backtracking based [29] algorithm to solve
this problem efficiently. The details of this method are in our
previous paper [30].

IV. RESULTS

A. Accuracy
This chapter contains the evaluation of the split and merge

method, because this is the most promising of the presented
three alternatives.

Our implementation uses the CPU for the split and for the
merge phases, and uses the CPU and the available GPUs for
the region growing section. The split and merge methods are
implemented using C# (Visual Studio 2008), while the region
growing methods are implemented using C++ and CUDA 6.0
(Visual Studio 2008). For testing purposes, we use the
following hardware configuration: AMD64 Family 16 Model
4 CPU, 8 Gb RAM, Nvidia GeForce GTX 570 graphics card.

We used 15 pieces of 2048x2048 pixel-sized HE stained
colon tissue images to analyse the application. In the first
phase, we ran the original sequential CPU-based region
growing algorithm on these images, and after that, we ran the
new split-and-merge based application. As it is visible from
the results, the new technique does not cause significant
degradation of the accuracy. The average difference between
the original one-step processing and the new split-and-merge
method is less than 1%. In the case of larger images (full
tissue image size is 8192x8192 pixels), the ratio of the
overlapping and non-overlapping areas is more ideal;
therefore, we could expect better results. Unfortunately, we
cannot try this out, because the original sequential one-step
CPU based region growing cannot process such large images
due to its high memory requirements.

Table I contains the details about the accuracy test. As it is
visible, the accuracy of the new method is usually the same as
the original one.

We use the common definition for accuracy [31], as

Accuracy = (TP+TN) / (TP+TN+FP+FN)). (1)

Where

• TP: Number of True Positive pixels
• TN: Number of True Negative pixels
• FP: Number of False Positive pixels
• FN: Number of False Negative pixels

Table I: Accuracy test results. Where SlideID is the name of the
processed tissue image. TP: number of True Positive pixels, TN:

number of True Negative pixels, FP: number of False Positive pixels,
FN: number of False Negative Pixels, Acc: Accuracy

Slide ID
Pixel count (pixel)

Acc. TP TN FP FN
10359-04ep 1082553 3080466 31285 0 0.9925
10393-04_ep 866131 3279280 48893 0 0.9883
1050-04IIade.. 407115 3771061 16128 0 0.9962
1160-05CRCA-B 1022119 3130233 41952 0 0.9900
11700-04CRCA-B 945042 3218642 30620 0 0.9927
12138-03Aden.. 766437 3390233 37634 0 0.9910
12532-04CRCA-B 842072 3321478 30754 0 0.9927
2877-04IHyperpl 817697 3349391 27216 0 0.9935
6134-04p 807429 3358960 27915 0 0.9933
8658-04IHyperpl 895711 3267490 31103 0 0.9926
986604Chron 761663 3412256 20385 0 0.9951
986604Crohn 981186 3180491 32627 0 0.9922
9872-04_I_ep 842033 3308238 44033 0 0.9895

Average 0.9923

B. Speed-up
The main improvement of this method is that it makes it

possible to run more than one region growings parallel.
Generating the picture tiles (split part) and the merge of the
nuclei candidates (merge part) are both very resource-
demanding procedures. We have implemented a well
parallelizable method for both; therefore, we can run these
methods in multi-core environments.

Processing of the picture tiles (the region growing operation
itself) is obviously parallelizable. We can run the region
growing method in the different hardware devices (CPU cores
and GPUs) at the same time. This can speed up the processing;
the execution time is significantly less using more devices.

Table II contains the details about the speed test.
We have also examined the speed loss caused by the

additional split and the merge procedures. Where the split
section means the following steps: loading the image, splitting
it into smaller parts, and saving these images into files (most
of the time is required by file load/store operations). The
region growing section refers to the following steps: find
available seed points, run region growings from these seed
points, and finally segment the cell nuclei candidates. The
merge section consists of the following steps: collecting cell
nuclei candidates from each device, and finding the optimal
non-overlapping subset of them.

Table III contains the details about these processing time
values. As it is clearly visible, the split and merge runtime is
not a significant drawback.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 179

Table II: Speed test results

Slide ID
Processig time (ms)

Original Split&merge S&M/O
10359-04ep 257073 63713 0.25
10393-04_ep 259569 63221 0.24
1050-04IIade.. 197715 47028 0.24
1160-05CRCA-B 365415 78265 0.21
11700-04CRCA-B 244016 59592 0.24
12138-03Aden.. 163098 61745 0.38
12532-04CRCA-B 284529 74225 0.26
2877-04IHyperpl 276495 69985 0.25
6134-04p 248493 57686 0.23
8658-04IHyperpl 316088 71857 0.23
986604Chron 301767 64575 0.21
986604Crohn 263500 69523 0.26
9872-04_I_ep 270224 66138 0.24

Average 0.25

Table III: Processing time of substeps

Slide ID
Processig time (ms) S+M/

S+R+G Split R.Grow Merge
10359-04ep 492 59283 3937 0.0695
10393-04_ep 608 58403 4209 0.0762
1050-04IIade.. 437 44451 2140 0.0548
1160-05CRCA-B 296 74047 3922 0.0539
11700-04CRCA-B 406 54787 4399 0.0806
12138-03Aden.. 484 57152 4109 0.0744
12532-04CRCA-B 593 68640 4992 0.0752
2877-04IHyperpl 811 64397 4777 0.0798
6134-04p 484 52622 4580 0.0878
8658-04IHyperpl 312 68038 3507 0.0531
986604Chron 452 60937 3186 0.0563
986604Crohn 499 62996 6028 0.0939
9872-04_I_ep 530 61935 3672 0.0635

Average 0.0707

As it is visible, the processing time is significantly less than

the processing time of the original algorithm. This means
about a 4x speed up using the distributed implementation. We
can expect that using more than one GPU will give us faster
execution with similar accuracy.

V. CONCLUSIONS
We have developed a data parallel region growing

algorithm, and we are searching for the improvement to use it
on a distributed environment. This paper contains three
possible solutions. The first, the naïve method has not been
implemented, since the preliminary tests show that its memory
and runtime requirements are too high.

We have implemented and analysed the split-and-merge
method, and the results are very promising. The speed-up and
the memory requirement is acceptable; it is usually 4-5X faster
than the original algorithm. However, it has one disadvantage:
the result of this implementation is not always the same as of
the original.

VI. FUTURE PLANS
If the further decrease in the runtime is considered the main

purpose of the further developments, then it is necessary to
create a version that supports more than one GPUs. The
algorithm is already available; we need to run the test.

Another way of further development is the segmentation of
the further tissue components. Detection of cell nuclei is only
the first main step of the whole tissue segmentation procedure.
We should find the glands and the surface epithelium as well.

REFERENCES

[1] A. Bogardi-Meszoly, A. Rovid, H. Ishikawa, S. Yokoyama, and Z.

Vamossy, “Tag and topic recommendation systems,” in Acta
Polytechnica Hungarica, vol. 10, no. 6, pp. 171–191, 2013.

[2] Sz. Sergyan, “Useful and effective feature descriptors in content-based
image retrieval of thermal images,” in 4th IEEE International Sym-
posium on Logistics and Industrial Informatics, Smolenice, Slovakia,
pp. 227–231, 2012.

[3] J. Tick, Cs. Imreh, and Z. Kovacs, “Business process modeling and the
robust pns problem,” in Acta Polytechnica Hungarica, vol. 10, no. 6, pp.
193–204, 2013.

[4] Sz. Sergyan, “Precision improvement of content-based image retrieval
using dominant color histogram descriptor,” in 1st WSEAS International
Conference on Image Processing and Pattern Recognition (IPPR '13),
Budapest, Hungary, pp. 197-203, 2013.

[5] K. Lamár, Gy. Morva, “Hardware and Software Functions of Standalone
Field Data Acquisition Devices for the Low Voltage Power Distribution
Grid”, Carpathian Journal of Electronic and Computer Engineerng, vol.
6, no. 1, pp. 22-27, 2013

[6] B. Kiss, J. Sápi, L. Kovács, “Imaging method for model-based control of
tumor diseases”, in IEEE 11th International Symposium on Intelligent
Systems and Informatics, pp. 271-275, 2013

[7] G. Valcz, I. Bandi, B. Wichmann, A. Patai, D. Szabo, G. Kiszler, M.
Kozlovszky, B. Molnar, and Z. Tulassay, “Automated detection of
epithelial changes in colorectal carcinoma,” in Zeitschrift fur
Gastroenterologie, vol. 50, no. 5, 2012.

[8] M. Lascu and D. Lascu, “Graphical programming based biomedical
signal acquisition and processing,” in International Journal of Circuits,
Systems and Signal Processing, vol. 1, no. 4, pp. 317-326, 2007.

[9] T. Koga, S. Furukawa, E. Uchino, and N. Suetake, “High-speed
calculation for tissue characterization of coronary plaque by employing
parallel computing techniques,” in International Journal of Circuits,
Systems and Signal Processing, vol. 5, no. 4, pp. 435-442, 2011.

[10] J. Dong, K. Inthavong, J. Tu, “Image-based computational
hemodynamics evaluation of atherosclerotic carotid bifurcation models”,
Computers in Biology and Medicine, vol. 43, no. 10, pp. 1353-1362,
2013

[11] M. El Adawy, Z. Shehab, H. Keshk, and M. El Shourbagy, “A fast
algorithm for segmentation of microscopic cell images,” in ITI 4th

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 180

International Conference on Information&Communications Technology,
pp. 1–1, 2006.

[12] P. Kádár, M. Karacsi, “Requirements of island mode controller for
microCHP in micro grid”, in 11th International Symposium on
Intelligent Systems and Informatics, pp. 83-86, 2013

[13] J. Hukkanen, A. Hategan, E. Sabo, and I. Tabus, “Segmentation of cell
nuclei from histological images by ellipse fitting,” in 18th European
Signal Processing Conference (EUSIPCO-2010), pp. 1219–1223, 2010.

[14] S. Szenasi, Z. Vamossy, and M. Kozlovszky, “Evaluation and
comparison of cell nuclei detection algorithms,” in IEEE 16th
International Conference on Intelligent Engineering Systems(INES), pp.
469–475, 2012.

[15] S. Szenasi, Z. Vamossy, and M. Kozlovszky, “GPGPU-based data
parallel region growing algorithm for cell nuclei detection,” in IEEE
12th International Symposium on Computational Intelligence and
Informatics (CINTI), pp. 493–499, 2011.

[16] S. Szenasi, Z. Vamossy, and M. Kozlovszky, “Preparing initial
population of genetic algorithm for region growing parameter
optimization,” in 4th IEEE International Symposium on Logistics and
Industrial Informatics (LINDI), pp. 47–54, 2012.

[17] Sz. Sergyan and L. Csink, “Automatic parametrization of region finding
algorithms in gray images”, in 4th International Symposium on Applied
Computational Intelligence and Informatics, pp. 199–202, 2007.

[18] K. Kwon, E-S. Lee, B-S. Shin, “GPU-accelerated 3D mipmap for real-
time visualization of ultrasound volume data”, Computers in Biology
and Medicine, vol. 43, no. 10, pp. 1382-1389, 2013

[19] H-G. Lee, M-K. Choi, B-S. Shin, S-C. Lee, “Reducing redundancy in
wireless capsule endoscopy videos”, Computers in Biology and
Medicine, vol. 43, no. 6, pp. 670-682, 2013

[20] A. Nomura, M. Ichikawa, K. Okada, H. Miike, and T. Sakurai, “Edge
detection algorithm inspired by pattern formation processes of reaction-
diffusion systems,” in International Journal of Circuits, Systems and
Signal Processing, vol. 5, no. 2, pp. 105-115, 2011.

[21] S. Suhaila and T. Shimamura, “Image restoration based on edgemap and
wiener filter for preserving fine details and edges,” in International
Journal of Circuits, Systems and Signal Processing, vol. 5, no. 6, pp.
618-626, 2011.

[22] R. Adams, L. Bischof, “Seeded region growing,” in IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 16, no. 6, pp. 641-
647, 1994.

[23] V. Jimenez-Fernandez, D. Martinez-Navarrete, C. Ventura-Arizmendi,
Z. Hernandez-Paxtian, and J. Ramirez-Rodriguez, “Digital circuit
architecture for a median filter of grayscale images based on sorting
network,” in International Journal of Circuits, Systems and Signal
Processing, vol. 5, no. 3, pp. 297-304, 2011.

[24] Gy. Gyorok and M. Toth, “On random numbers in practice and their
generating principles and methods,” in International Symposium on
Applied Informatics and Related Areas: AIS 2010, pp. 1–6, 2010.

[25] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and
Machine Vision, Chapman & Hall, 2 edition, 1998.

[26] E. Toth-Laufer, M. Takacs, and I. J. Rudas, “Neuro-fuzzy risk
calculation model for physiological processes,” in IEEE 10th Jubilee
International Symposium on Intelligent Systems and Informatics (SISY),
pp. 255–258, 2012.

[27] T. A. Várkonyi, “Fuzzyfied Robust Fixed Point Transformations”, in
16th International Conference on Intelligent Engineering Systems, pp.
457-462, 2012

[28] C. Pozna, R-E. Precup, “Applications of signatures to expert systems
modelling”, Acta Polytechnica Hungarica, vol. 11, no 2, pp. 21-39, 2014

[29] M. L. Ginsberg, “Dynamic backtracking”, CoRR, cs.AI/9308101, 1993.
[30] S. Szenasi, “Medical image segmentation with split-and-merge method,”

in 5th IEEE International Symposium on Logistics and Industrial
Informatics (LINDI 2013), pp.137-140, 2013.

[31] R. Kohavi and F. Provost, “Glossary of terms,” in Machine Learning,
vol. 30, no. 2, pp. 271-274, 1998.

Sándor Szénási received M.Sc. degree in 2004 and Ph.D. degree in 2013
from Doctoral School of Applied Informatics (GSAI) of Óbuda University in
Budapest.

He is an associate professor in the Institute of Software Technology of the
John von Neumann Faculty of Informatics, Óbuda University, Budapest. He
specializes in problems of parallel algorithms, GPGPU programming and
medical image processing. He engages both in theoretical fundamentals and in
algorithmic issues with respect to realization of practical requirements and
given constraints.

Dr. Szénási is a member of the John von Neumann Computer Society and
IEEE. He is a reviewer of several WSEAS conferences and journals.

For more information, please visit: http://www.uni-obuda.hu/sanyo/gpgpu

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 181

