
 

 

  
Abstract— In this paper we investigate the use of the Model 

Predictive Control (MPC) technique on a low power embedded 
computing platform. The control approach uses a quadratic 
optimization problem to compute the optimal control signal. The 
problem is solved subject to a linear model of the system and the 
physical limitations of the system. The optimization problem is 
solved online using the Fast Gradient method. The proposed 
controller has been implemented on a Stellaris Launchpad board with 
ARM Cortex processor. By means of two simulation studies we 
detail the software and the hardware aspects concerning a fast real-
time MPC implementation. In the first example linear MPC is used 
for stabilization of a quadrotor model.  In the second example 
nonlinear pH neutralization plant is controlled using fuzzy MPC 
algorithm.   
 

Keywords— Embedded Systems, Fast Gradient Method, Model 
Predictive Control, Multiple Models 

I. INTRODUCTION 
ODEL predictive control (MPC) has gained a lot of 
interest of both academia and industry in the recent 
years. The main reason for the wide-scale adoption of 

MPC is its ability to handle constraints on inputs and states 
that arise in most applications. Moreover, MPC problem 
formulation enables direct inclusion of predictive information, 
allowing the controller to react to future changes in reference 
signal. MPC naturally handles processes with multiple inputs 
or outputs and its concept can be used with dynamic models of 
any dimension. MPC technology can now be found in a wide 
variety of application areas including chemicals, food 
processing, automotive, and aerospace applications [1]. With 
each new measurement the input to plant is determined by 
solving a finite horizon optimal control problem [2]. The 
problem is often in the form of a quadratic cost criterion with 
input constraints. Since the solution of the optimization 
problem is required every sample time the MPC was initially 
restricted to slow dynamics processes.  

To avoid online optimization the solution of the control 
problem for different states can be pre-computed off-line. This 
explicit solution represent a piece-wise affine map over a 
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partition of the state-space and can be stored efficiently in the 
form of a look-up table [3]. The explicit MPC offers reduction 
in online evaluation time but the primary limitation is that the 
complexity can grow quickly with the problem size, thus 
limiting the applicability of explicit MPC to small and 
medium-sized control problems.  

The increase in computational power such as ARM Cortex 
processors and advances in optimization algorithms has 
opened new trend which brings MPC capabilities also to 
complex and fast systems.  

Interior point method (IPM) and active set method (ASM) 
appear to be the most efficient approaches for online solving 
of quadratic programming problem. A fast implementation of 
Interior point method is reported in [4] and its applicability is 
demonstrated in simulation studies. The method exploits the 
particular structure of the MPC problem and considerably 
reduces the computation time of control action. The 
comparison of both methods for implementation of MPC is 
presented in [5]. Richter et al. [6] reported an online-
optimization for systems with input constraints using Fast 
Gradient Method (FGM) developed by Nesterov [7]. The 
strategy to compute an upper bound for the maximum number 
of iterations needed to ensure a predefined accuracy is 
provided in [8]. Kogel and Findeisen [9] developed a method 
for computation of the gradient in Fast Gradient method 
exploiting the problem structure, which requires less memory 
and is faster than the standard method for large horizons. In 
[10] the problem of input quantization and how it can be 
exploited in order to determine a suboptimality level is shown. 
The authors also present a real application with Segway-like 
robot controlled using a hard real-time operating system and a 
low-cost microcontroller. There are several reports of 
implementations of the MPC on a chip with reduced 
computational power and memory.  Bleris and Kothare present 
a real-time implementation of the MPC on a microcontroller 
for Glucose regulation in [11] and [12], where they used 
logarithmic number system and Newton method for 
optimization of the objective function. Due et al. demonstrated 
in [12] applications of Multi-parametric model based control 
on a chip for a slow industrial system but also for fast sampled 
active valve train engine. MATLAB framework for generating 
fast model predictive controllers for embedded targets such as 
ARM processors has been developed and tested on inverted 
pendulum in [13]. The optimization algorithm is based on the 
work by Stephen Wright [14] . With the development of cheap 
multi-core CPU in microcontrollers, the parallel computation 
might be the promising way for further decrease of 
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computation time. In this work we focus on the 
implementation aspects of MPC on embedded systems where 
the quadratic programming problem is solved with FGM. 
Criterions for stability and robustness guarantees are beyond 
the scope of this paper.  

The paper is structured as follows: Section 2 briefly repeats 
the MPC formulation. Section 3 describes the fast gradient 
algorithm. A description of the experimental setup can be 
found in Section 4. Section 5 and 6 contains the results for 
implementation of MPC on embedded system for two 
simulation studies. Finally, the main conclusions are 
summarized in Section 7. 

II. PROBLEM STATEMENT 
In the MPC the control actions which optimize the 

forecasted process behavior are recalculated each sampling 
interval. The forecasted process behavior is based on a 
dynamic model of the process to be controlled. Thus, at each 
sampling instant an optimal control problem must be solved. 
Afterwards, the optimized control action is applied to the 
process until the next sampling instant when new states are 
available. Hence, MPC is sometimes also referred to as 
receding horizon control. The optimization problem is based 
on a time-invariant discrete process model, linear constraints 
and a convex quadratic objective function: 

 
 min∆𝑢(𝑘),∆𝑢(𝑘+1),…,∆𝑢(𝑘+𝑁𝑐−1) 𝐽(𝑘) (1) 
 
 𝐽(𝑘) = ∑ �𝑦�(𝑘 + 𝑖) − 𝑦𝑟(𝑘 + 𝑖)�𝑇𝑄�𝑦�(𝑘 + 𝑖) − 𝑦𝑟(𝑘 + 𝑖)�  𝑁𝑝

𝑖=1  (2) 

+�Δ𝑢(𝑘 + 𝑖 − 1)𝑇𝑅Δ𝑢(𝑘 + 𝑖 − 1)
𝑁𝑐

𝑖=1

 

 
where  𝑦�(𝑘 + 𝑖) is the ith step output prediction,  𝑦𝑟(𝑘 + 𝑖) is 
the ith step reference trajectory,  Δ𝑢(𝑘) is difference between 
𝑢(𝑘) and 𝑢(𝑘 − 1), 𝑅, 𝑄 are positive definite matrices and 𝑁𝑝 
and 𝑁𝑐are the prediction and control horizons, respectively. 
Only the first element of the optimal predicted input sequence 
Δ𝑢(𝑘) is applied to the plant: 

 
 𝑢(𝑘) = 𝑢(𝑘 − 1) + Δ𝑢(𝑘) (3) 
 
The criterion (1) can be rewritten into a condensed quadratic 
problem  

 
 min∆𝑢(𝑘),∆𝑢(𝑘+1),…,∆𝑢(𝑘+𝑁𝑐−1) �

1
2
Δ𝒖𝑇𝑯Δ𝒖 + 𝒇(𝑥)Δ𝒖� (4) 

 𝑢(𝑘)𝜖𝑈 
 
with input u(k) constrained in each step to a closed set U . 
The Hessian matrix H and vector f(x) depend on the cost 
criterion and system dynamics. Only input constraints are 
considered so the condensed problem has 2Nc inequality 
constraints, but only Nc optimization variables. As usual in 
receding control strategy only the first input obtained by 
minimization of the quadratic criterion and satisfying the 
constraints is applied to system. The discrete linearized 

model is assumed in the form:  
 

 𝒙(𝑘 + 1) = 𝑨𝒙(𝑘) + 𝑩𝒖(𝑘) (5) 
 𝒚(𝑘) = 𝑪𝒙(𝑘) 
 
where u(k) is the vector of manipulated variables or input 
variables; y(k) is the vector of the process outputs and 
x(k) is the state variable vector. Using the linear model the 
model predictive controller would exhibit steady – state 
offset in the presence of plant/model mismatch or 
unmeasured disturbance due to lack of integral action. In 
order to introduce integral behavior, a new state variable 
vector is chosen to be: 

 
 𝒙 = [∆𝒙(𝑘)𝑇  𝒚(𝑘)]𝑇 (6) 
 
Combining (6) and (7) leads to the following state-space 
model: 

 

 �∆𝒙(𝑘 + 1)
𝒚(𝑘 + 1) � = � 𝑨 𝟎

𝑪𝑨 𝑰� �
∆𝒙(𝑘)
𝒚(𝑘) � + � 𝑩𝑪𝑩�∆𝒖(𝑘) (7) 

𝒚(𝑘) = [0 1] �∆𝒙(𝑘)
𝒚(𝑘) � 

 
The predictor for new state vector x and control increment 

sequence Δ𝑈 = [∆𝒖(𝑘), ∆𝒖(𝑘 + 1), ∆𝒖(𝑘 + 𝑁𝑐 − 1)]𝑇 for 
given horizons can be formulated in terms of vectors as: 

 
 𝒀 = 𝑲𝒙 + 𝑳∆𝑼 (8) 
 
where 

  

 𝒀 = �
𝒚(𝑘 + 1)

⋮
𝒚(𝑘 + 𝑁𝑝)

� ∆𝑼 = �
∆𝒖(𝑘)
⋮

∆𝒖(𝑘 + 𝑁𝑐 − 1)
� (9) 

 
and the relations for matrices K and L are: 
  

 𝑲 = �
𝑪𝑨
𝑪𝑨𝟐
⋮

𝑪𝑨𝑁𝑝−1
� (10) 

 

 𝑳 = �𝑳𝟏𝑳𝟐
� , 𝑳1 = �

𝑪𝑩 0 … 0
𝑪𝑨𝑩 𝑪𝑩 … 0
⋮

𝑪𝑨𝑵𝒄−𝟏𝑩
⋮

𝑪𝑨𝑵𝒄−𝟐𝑩
⋱
…

0
𝑪𝑩

� (11) 

  

 𝑳2 = �
𝑪𝑨𝑵𝒄𝑩 … 𝑪𝑨𝟐𝑩        𝑪(∑ 𝑨𝑗)𝑩1

𝑗=0

⋮ ⋮ ⋮ ⋮
𝑪𝑨𝑁𝑝−𝟏𝑩 … 𝑪𝑨𝑁𝑝−𝑁𝑐+1𝑩 𝑪(∑ 𝑨𝑗)𝑩

N𝑝−N𝑐

𝑗=0

� (12) 

The Hessian matrix H and vector f(x) from criterion can then 
be formulated as:  

 
 𝑯 = 𝑳𝑻𝑸𝑳 + 𝑹, 𝑓(𝑥) = −𝑹(𝒀𝒓 − 𝑲𝑥(𝑘))𝑇𝑳 (13) 
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where 𝒀𝒓 represents the vector of reference signals on 
prediction horizon.  

III. FAST GRADIENT ALGORITHM 
Efficient solution of the introduced quadratic programming 

problems with discrete-time linear model is a key feature for 
fast MPC control scheme.  The optimization method utilized 
here to solve (1) is based on Nesterov’s method also known as 
the Fast Gradient method, see [7]. The main benefit of the 
classical gradient schemes is that they do not rely on second 
order derivative information and take a damped steepest 
descent step in each iteration. Fast gradient method modifies 
this idea to yield faster convergence. Fast gradient method is 
easy to implement as it requires only to compute gradient and 
to perform projection operation into feasible set in each step.  
The optimization is started with an initial guess Δ𝑢0 and stops 
after 𝑖𝑚𝑎𝑥 iterations, such that 

 
 𝐽(Δ𝑢𝑖𝑚𝑎𝑥) − 𝐽(Δ𝑢∗) ≤ 𝜖 (14) 
 
where 𝐽(Δ𝑢∗)is the value of the optimal solution, 𝜖 > 0 is the 
suboptimality level, and Δ𝑢𝑖𝑚𝑎𝑥 is called a suboptimal point. 
Theoretical bound for 𝑖𝑚𝑎𝑥 can be found in [6]. We can 
describe the iterative scheme of fast gradient method by 
algorithm.   
 

Fast Gradient method algorithm  
Requirements: Initial guess  Δ𝑢0,  number of iterations 
𝑖𝑚𝑎𝑥 , maximum and minimum eigenvalues of H: L, μ 
 

1. Set 𝑢𝑜𝑙𝑑  = Δ𝑢0, w = Δ𝑢0 
2. For i=1 to  𝑖𝑚𝑎𝑥  

Compute 𝑢 = 𝑃𝑈(w, 1/L) 

Compute 𝑤 = 𝑢 + 𝑐(𝑢 − 𝑢𝑜𝑙𝑑) 
3. Return u 

 
 
 
The constant c is defined as: 

  

 𝑐 > 0, 𝑐 = √𝐿−√𝜇
√𝐿+√𝜇

 (15) 

 
Numbers L and 𝜇  are Lipschitz constant of the gradient and 
convexity parameter respectively. Both are computed from the 
eigenvalues of the Hessian matrix. L is the maximal 
eigenvalue and 𝜇   is the minimal eigenvalue. Note that, the 
projected gradient step PU(w, 1/L) is an Euclidean projection 
of w resulting from the gradient step 

 
 𝑢 = 𝑤 − 1

𝐿
∇𝐽(𝑤) (16) 

 
into the feasible set U. This projection is very easy for box 
constraints but for general constraints it gets more 
computationally demanding. The gradient of the cost 
function (5) is simply: 

 ∇𝐽(𝑢) = 𝑯∆𝒖 + 𝒇(𝑥) (17) 
 
The zero vector policy Δ𝑢(𝑘 + 𝑖) = 0, 𝑖 = 1,2, . . , 𝑁𝑐 − 1 can 
be used as an initial feasible guess (cold-starting). 
However, using the solution of the previous optimal 
control problem, called warm-starting usually decreases 
computational effort.   

IV. SELECTED HARDWARE PLATFORM 
The proposed fuzzy logic predictive controller was 

implemented on The Stellaris® LM4F120 board which is a 
low-cost evaluation platform for 32-bit ARM® Cortex™-
M4F-based microcontrollers from Texas Instruments. The 
microcontroller runs at 80 MHz. The board has 32KB of 
SRAM memory, 256KB of flash memory and 2KB EEPROM. 
The Fig. 1 shows the device. For implementation of MPC 
controller the requirements for memory and evaluation speed 
must be considered. The board has only 32KB of RAM 
however model parameters can be pre-computed offline. 
 
 

 
 

Fig. 1 Stellaris LM4F120 board 

V. EXAMPLE I – STABILIZATION OF QUADCOPTER 
In the first example the stabilization of the simulated 
quadrotor model is considered. A considerable amount of 
effort has been invested in controlling quadrotor helicopters 
and several control strategies have been tested. Classical PID 
approach, which assumed simplified dynamics of quadrotor, 
was developed in [15].  In [16] the authors proposed a 
backstepping controller using a quadrotor’s simplified model. 
In [17], a method for controlling the quadrotor using a 
combination of MPC and H -infinity control was described 
and tested in simulations. In [16] controllers for altitude and 
attitude are developed based on PID and model predictive 
control and compared through flight tests.  

The quadroter is an underactuated mechanical system with 
6 degrees of freedom and only with 4 control inputs, hence it 
is described with 12 states (see Fig. 2). The first six states 
represent the position to Earth and speeds. The other six states 
are attitude and its change. In particular, x and y are the 
coordinates in the horizontal plane, z is the vertical position, 𝜙  
is the yaw angle (rotation around the z-axis), 𝜃 is the pitch 
angle (rotation around the x-axis), and 𝜓 is the roll angle 
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(rotation around the y-axis). As described in Fig. 2, each of the 
four motors generate, respectively, four thrust forces and four 
torques. The quadcopter rotates on three axes by simply 
adjusting the angular velocity of each rotor in relation to the 
other three. If two rotors rotate at the same speed and other 
two rotate counterclockwise at the same speed the net yaw is 
zero. A difference in speeds between the two pairs of motors 
creates a net yaw. The roll or pitch rotation is caused by the 
difference in speeds between the two pairs of motors. For 
example, to pitch forward the back rotor is rotated at a greater 
velocity than the front motor.  
 

 
Fig. 2 Quadcopter model 

The dynamical model obtained through rotational 
transformation between the world frame and the quadcopter’s 
body frame is given by: 
  
 𝑥̈ = (−𝑢1𝑠𝑖𝑛𝜃 − 𝛽𝑥̇) 1

𝑚
 (18) 

 𝑦̈ = (𝑢1𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 − 𝛽𝑦̇) 1
𝑚

 (19) 

 𝑧̈ = −𝑔 + (𝑢1𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 − 𝛽𝑧̇) 1
𝑚

 (20) 
 𝜃̈ = 𝑢2

𝐼𝑥𝑥
 (21) 

 𝜙̈ = 𝑢3
𝐼𝑦𝑦

 (22) 

 𝜃̈ = 𝑢4
𝐼𝑧𝑧

 (23) 

 
in which g is the gravity acceleration, m is the mass of the 
UAV, and the damping factor  𝛽 takes into account friction 
effects that affect the real vehicle and 𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧 are the 
components of diagonal inertia matrix of the airframe at its 
center of mass. The relation between the inputs and forces is 
given by:  
  
 𝑢1 = (𝑓1 + 𝑓2 + 𝑓3 + 𝑓4), 𝑢2 = (𝑓2 − 𝑓4)𝑙  (24) 
 𝑢3 = (𝑓3 − 𝑓1)𝑙, 𝑢4 = (−𝑓1 + 𝑓2−𝑓3 + 𝑓4)𝑙  (25) 
 
where l is the distance between each motor and the center of 
gravity of the vehicle.  

The aim is to control attitude and altitude through a Linear 
Time Invariant (LTI) Model Predictive Controller, hence the 
derivation of the implicit MPC solution is based on the model 
dynamics linearized around the equilibrium point represented 
by the hovering condition: 

 
  𝑥, 𝑦, 𝜃, 𝜙, 𝜓, 𝑥̇, 𝑦̇, 𝑧̇, 𝜃̇, 𝜙̇, 𝜓̇ = 0, 𝑧 = 1  (26) 
 𝑢1 = 𝑔𝑚, 𝑢2 = 0, 𝑢3 = 0, 𝑢4 = 0  (27) 
 
The model has 4 inputs (𝑢1, 𝑢2, 𝑢3, 𝑢4) and six outputs 
(𝑥, 𝑦, 𝑧, 𝜃, 𝜙, 𝜓) and 12 states. 
 
 𝑥1 = 𝑥, 𝑥2 = 𝑥̇, 𝑥3 = 𝑦, 𝑥4 = 𝑦,̇ 𝑥5 = 𝑧, 𝑥6 = 𝑧,̇   (28) 
 𝑥7 = 𝜃, 𝑥8 = 𝜃̇, 𝑥9 = 𝜙, 𝑥10 = 𝜙̇, 𝑥11 = 𝜓, 𝑥12 = 𝜓̇ (29) 
 

While the derivation of the implicit MPC control solution is 
based on the linearised model dynamics, all simulations are 
performed taking into account the nonlinear model of the 
quadrotor (18–23). The extended discretized linear model was 
developed using (7) and (8) from linearized model. This 
operation adds 6 states to the original vector of states leading 
to the model with 4 inputs, 6 outputs and 18 states. The 
predictor matrices K, L and hessian matrix H were stored in 
the flash memory.  The memory requirements for given 
horizons are given as follows:  

 
 𝑯 ∶    𝑛𝑖 ∗  𝑛𝑖 ∗  𝑁𝑐 ∗  𝑁𝑐 ∗  𝑛𝑏 (30) 
 K∶    𝑛𝑠 ∗  𝑛𝑜 ∗  𝑁𝑝 ∗  𝑛𝑏 (31) 
 𝑳 ∶    𝑛𝑖 ∗  𝑛𝑜 ∗  𝑁𝑝 ∗  𝑁𝑐 ∗  𝑛𝑏 (32) 
 
where nb is the number of bytes required to store a number. 
The 4 bytes are used in the example. The position and attitude 
information is assumed to be accurate in the model and the 
simulations. Hence, the effects of imprecise information to the 
flight of the quadcopter are beyond the scope of the paper. The 
following set of weights were applied in the optimization 
criterion: 
  

 𝑄 = �
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

�  (33) 

 
 𝑅 = 𝑑𝑖𝑎𝑔([10,10,10,1,1,3]) (34) 
 

The prediction horizon is 𝑁𝑝 = 20 steps, the control 
horizon is 𝑁𝑐, which, together with the choice of weights, 
allow obtaining a good compromise between tracking 
performance, robustness, and computational complexity. The 
sampling time of the controller is 𝑇𝑠 = 50ms. The reference 
trajectory is given by the hovering conditions: 
 
  𝑥𝑟, 𝑦𝑟, 𝜃𝑟, 𝜙𝑟, 𝜓𝑟 = 0, 𝑧 = 1  (35) 
  
The initial conditions are set to: 
 
 𝑥0 = 0.1, 𝑦0 = −0.2, 𝑧0 = 1.2, 𝜃0 = 0.1  (36) 
 𝜙0 = −0.1, 𝜓0 = 0.2 (37) 
 
with all the derivations set to 0.  

The results were compared to an offline solution computed 
in MATLAB using the quadprog function and are presented in 
Table I. The table shows the value of cost criterion at the first 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 507



 

 

sampling point for different number of iterations and average 
time of execution. Cold-starting of the FGM was used in all 
the experiments. Warm–starting could further decrease the 
average evaluation times.   
 
Table I Computational times and comparison with MATLAB 
solution 

Method J(0) t [ms] 
FGM – 5 iterations  15.5196 4.29 
FGM – 10 iterations 13.4574 5.50 
FGM – 15 iterations 12.8897 6.71 
FGM – 20 iterations 12.8046 7.92 
FGM – 25 iterations 12.6740 9.12 
FGM – 30 iterations 12.4235 10.33 
FGM – 40 iterations 12.2627 12.73 
FGM – 60 iterations 12.2237 17.56 
MATLAB - quadprog 12.2221     - 

  
As the result shows solution computed by the fast gradient 
solver, depends on the maximum number of iterations. As the 
sampling time is 50ms, execution of the Fast Gradient 
algorithm with 60 iterations still leaves enough free time for 
the control loop including Kalman filter for state estimation 
and filtration. The system is simulated with FGM with 30 
iteration and the control courses are compared with the 
optimal ones obtained with off-line MATLAB quadprog 
solver. The simulation results can be seen in Fig. 3. As can be 
seen in the simulations, the behavior of the output signals does 
not vary that much.  

VI. EXAMPLE II – FUZZY MPC CONTROL OF PH 
NEUTRALIZATION 

The simulated nonlinear process of neutralization was 
considered as a second example. The model is used in many 
studies to test the nonlinear control strategies [20]. To design 
an MPC controller for nonlinear process, the nonlinear process 
is modeled by a Takagi-Sugeno fuzzy system with linear 
functional consequents in the fuzzy rules and local linear 
models [21]. Different predictive controllers are designed for 
different rules (local sub-systems) and the global controller 
output is the fuzzy weighted integration of local ones. The 
models to be used in the control system design are taken to be 
discrete state-space models. By using a state-space model, the 
current information required for predicting ahead is 
represented by the state variable at the current time. 

The control policy Δ𝑢(𝑘 + 𝑖), 𝑖 = 0,1,2, … , 𝑁𝑢can be 
developed by first generating m sets of local control policies, 
where m is the total number of local models. The weighted 
sum of the local control policies gives the overall control 
policy: 

   
 Δ𝑢(𝑘 + 𝑖) = ∑ 𝜔𝑗Δ𝑢𝑗(𝑘 + 𝑖)𝑚

𝑗=1  (38) 
 
where 𝜔𝑗 is the validity of jth model. Apparently, the 
validities of local models are normalized to unity: 

   
 ∑ 𝜔𝑗𝑚

𝑗=1 = 1 (39) 

 
 

 

 
Fig. 3 Simulation using quadprog and the fast gradient algorithm with 30 

iterations (solid line– MATLAB quadprog, dotted line – Fast Gradient 
algorithm ). 

Using the fuzzy approach the original nonlinear model is 
composed of m MIMO linear models with jth MIMO rule  as 
an example, 

 
 𝑅𝑗     𝐼𝐹 𝜑 ∈ 𝑍𝑗𝑇𝐻𝐸𝑁 𝒀𝑝

𝑗 (𝑘) = 𝐾𝑗𝑥(𝑘) + 𝑳𝑗𝑼𝑗(𝑥) (40) 
 
where  j=1,..,m. and 𝜑 is the scheduling vector. Since the 
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consequent part of each rule is a linear equation, it is easy 
to design a linear controller for each rule. The global 
nonlinear controller is a fuzzy weighted integration of 
linear ones.  The Fig. 4 shows the structure of multiple 
model predictive control. 
 

 
Fig. 4 Structure of Multiple model control 

The simulated system consists of a continuous stirred tank 
reactor (CSTR) in which neutralization reaction between a 
strong acid (HA) and a strong base (BOH) takes place in the 
presence of a buffer (BX). The system has three states, single 
output and single input.  

 
  𝑥1 = [𝐴−], 𝑥2 = [𝐵+], 𝑥3 = [𝑋−], 𝑦 = 𝑝𝐻, 𝑢 = 𝑞𝐵 (41) 
 
where[𝐴−], [𝐵+], [𝑋−] are acid, base and buffer 
concentrations, respectively. The term 𝑞𝐵 represents the flow 
rate of the base. The scheme of the CSTR is depicted in Fig. 5. 
The process dynamics is given by the following set of 
differential equations: 

 
  𝑥̇1 = 𝑞𝐴

𝑉
�𝑥1,𝑖 − 𝑥1� −

𝑞𝐵
𝑉
𝑥1 (42) 

      𝑥̇2 = − 𝑞𝐴
𝑉
𝑥2 + 𝑞𝐵

𝑉
�𝑥2,𝑖 − 𝑥2� (43) 

     𝑥̇3 = − 𝑞𝐴
𝑉
𝑥3 + 𝑞𝐵

𝑉
�𝑥3,𝑖 − 𝑥3� (44) 

 
The pH value can be determined using the implicit equation:  

 
  [𝐻+] + 𝑥2 + 𝑥3 − 𝑥1 −

𝐾𝑤
[𝐻+]

− 𝑥3

1+
(𝐾𝑥)�𝐻+�

𝐾𝑤

= 0 (45) 

 
where log10pH H 

 
+= and 𝐾𝑤, 𝐾𝑥 are the dissociation 

constants of water and buffer, respectively.  
Table 1. Model Parameters  

symbol parameter value 
𝑥1,𝑖 acid inlet concentration 1.2 ×  10−3 mol/L 
𝑥2,𝑖 base inlet concentration 2.0 ×  10−3  mol/L 
𝑥3,𝑖 buffer inlet concentration 2.5 ×  10−3 mol/L 
𝐾𝑥 buffer dissociation const. 10−7mol/L 
𝐾𝑤 water dissociation const. 10−14mol2/L2 
𝑉 reactor volume 2.5L 

 

 
Fig. 5 pH neutralization process 

The system parameters used in this work were taken from [17]  
and are summarized in Table 1. The output equation is clearly 
strongly nonlinear. The titration curve and the gain variation 
that illustrate the nonlinearity of the pH neutralization process 
are depicted in Fig. 6. 

 
Fig. 6 Titration curve and gain variation of pH neutralization process 

 
The sampling of the estimation and control schemes was set to 
30s due to the dynamics of the process and constraints of the 
process input are assumed to be 0≤u(k)≤0.5. The 
concentrations (states) are assumed to be measured. Six fuzzy 
sets with triangular membership functions were used for 
approximation of the nonlinear process as shown in Fig. 4. 
The location of the models was obtained using C-means 
clustering. At these operation modes the nonlinear process was 
linearized to obtain parameters of local models. The fuzzy 
model is a good approximation of the process as presented in 
Fig. 7 which shows both steady-state characteristic of process 
and fuzzy membership functions. To account for high 
variation of gain of the process the weighting factor λ used in 
the predictive control cost function is also weighted using 
membership functions:  

 
 𝜆𝑗 = 𝜔𝑗𝑔𝑎𝑖𝑛𝑗2 (46) 

where the gain of the local model 𝑀𝑖  is computed: 

 𝑔𝑎𝑖𝑛𝑗 = 𝐶𝑗�𝑰 − 𝑨𝑗�
−1𝑩𝑗 (47) 
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Fig. 7 Steady-state characteristic and distribution of membership 
functions 

The matrices from (11) 𝐻 ∈ 𝑅𝑁𝑝∗𝑁𝑝∗𝑛𝑜∗𝑛𝑜, 𝐾 ∈ 𝑅𝑁𝑝∗𝑛𝑜∗𝑛𝑠, 𝐿 ∈
𝑅𝑁𝑝∗𝑁𝑐∗𝑛𝑜∗𝑛𝑖 , where no, ns, ni are number of outputs, states 
and inputs, respectively are stored in the flash memory while 
variables such as the vectors f and the internal variables must 
be stored in RAM. For given number of local models m the 
memory requirements in bytes are given by 

 
 𝑚 ∗ 𝑛𝑏 ∗  𝑁𝑝 ∗  𝑛𝑜 ∗  (𝑁𝑝 ∗  𝑛𝑜 + 𝑛𝑠 + 𝑁𝑐 ∗  𝑛𝑖) (48) 
 
where nb is the number of bytes required to store a number. 
The 4 bytes are used in the example. The distribution of 
models in the operating space given by the centers of fuzzy 
sets is also stored in the flash memory.  
The memory demands for online computation are given by the 
number of decision variables. The following vectors of size 
𝑁𝑢 ∗ 𝑛𝑖 are needed for online computation: 𝑓, 𝑦, 𝑤, 𝑢, 𝑢𝑜𝑙𝑑 and 
the auxiliary vector of the same dimension to store the values 
of gradient. 
The fuzzy controller output is given by the weighted sum of 
local controllers. Thus the constrained optimization problem 
must be solved separately for each local controller.  The online 
computation of the fast gradient algorithm only requires the 
computation of gradient which is for the case of MPC control 
a matrix-vector multiplication (𝐻∆𝑢). Another two matrix-
vector multiplications are needed to compute f(x).  The Fast 
Gradient algorithm is rather simple to implement as it requires 
only simple linear algebra such as matrix-vector 
multiplications, vector additions and comparisons. The initial 
guess  ∆𝑢(𝑘 + 𝑖) = 0, 𝑖 = 0, … , 𝑁𝑢 is used in the example as it 
represents always a feasible solution to the optimization 
problem. The Fig. 8 shows the time of evaluation of control 
input in a single sampling interval which represents call of the 
Fast Gradient method for all the local models. The values are 
averages of 20 executions with different states. The control 
horizon Nc was set to the same value as prediction horizon.  
The MPC controller is implemented in plain C-code without 

the help of mathematical libraries BLAS/LAPACK. The 
control courses and weights of each model during the example 
simulation are depicted in Fig. 9.  

 
Fig. 8 Execution times for different values of imax 

 
Fig. 9 Control courses for pH neutralization example 

Using multiple local models, the on-line nonlinear 
optimization can be avoided and simple quadratic 
programming problem is solved at each sampling interval. The 
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control performance of the proposed fuzzy control scheme 
with MPC based on multiple models is comparable to the 
performance obtained when a computationally demanding 
nonlinear optimization procedure is used online at each 
sampling instant within a nonlinear MPC controller [18].  

VII. CONCLUSION 
In this work fast online model predictive control with input 

constraints for real-time implementation is considered. The 
implementation aspects of the Fast Gradient algorithm for 
finding optimal solution of the model predictive control 
problem are clarified with two simulation examples. In the 
first example a model predictive controller was applied for 
stabilization problem of a quadrotor helicopter. The results 
show that evaluation of the MPC control problem of the 
quadrotor system with 18 states and the prediction horizon of 
20 steps and control horizon of 3 steps is manageable in less 
than 20ms without losing the accuracy of the solution. Enough 
free time remains for the control loop including Kalman filter 
for state estimation and filtration. 

Fuzzy MPC and its performance are evaluated in the second 
example. Although the sampling frequency of the simulated 
process is in terms of second and the embedded system has 
much higher performance than required by the pH 
neutralization process, it allows applying low-power 
techniques that would decrease the power consumption. The 
example also confirms that nonlinear process modeled as set 
of fuzzy linear models with the algorithmic and numerical 
simplicity of fast gradient methods allows fast online 
optimization for medium length of prediction horizon.  

As the work is focused on a fast MPC implementation, no 
frequency domain analysis to test robustness indicators such 
as gain, phase and delay margins is reported here.  
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