

Abstract— In this paper we investigate the use of the Model

Predictive Control (MPC) technique on a low power embedded
computing platform. The control approach uses a quadratic
optimization problem to compute the optimal control signal. The
problem is solved subject to a linear model of the system and the
physical limitations of the system. The optimization problem is
solved online using the Fast Gradient method. The proposed
controller has been implemented on a Stellaris Launchpad board with
ARM Cortex processor. By means of two simulation studies we
detail the software and the hardware aspects concerning a fast real-
time MPC implementation. In the first example linear MPC is used
for stabilization of a quadrotor model. In the second example
nonlinear pH neutralization plant is controlled using fuzzy MPC
algorithm.

Keywords— Embedded Systems, Fast Gradient Method, Model
Predictive Control, Multiple Models

I. INTRODUCTION
ODEL predictive control (MPC) has gained a lot of
interest of both academia and industry in the recent
years. The main reason for the wide-scale adoption of

MPC is its ability to handle constraints on inputs and states
that arise in most applications. Moreover, MPC problem
formulation enables direct inclusion of predictive information,
allowing the controller to react to future changes in reference
signal. MPC naturally handles processes with multiple inputs
or outputs and its concept can be used with dynamic models of
any dimension. MPC technology can now be found in a wide
variety of application areas including chemicals, food
processing, automotive, and aerospace applications [1]. With
each new measurement the input to plant is determined by
solving a finite horizon optimal control problem [2]. The
problem is often in the form of a quadratic cost criterion with
input constraints. Since the solution of the optimization
problem is required every sample time the MPC was initially
restricted to slow dynamics processes.

To avoid online optimization the solution of the control
problem for different states can be pre-computed off-line. This
explicit solution represent a piece-wise affine map over a

Jakub Novak is with Faculty of Applied Informatics, Tomas Bata

University in Zlin, nam. T.G. Masaryka 5555, 76001 Zlin, Czech Republic
(email: jnovak@fai.utb.cz)

Petr Chalupa is with Faculty of Applied Informatics Tomas Bata
University in Zlin, nam. T.G. Masaryka 5555, 76001 Zlin, Czech Republic
(email: chalupa@fai.utb.cz).

The research was supported by the European Regional Development Fund
under the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089. This assistance is
very gratefully acknowledged.

partition of the state-space and can be stored efficiently in the
form of a look-up table [3]. The explicit MPC offers reduction
in online evaluation time but the primary limitation is that the
complexity can grow quickly with the problem size, thus
limiting the applicability of explicit MPC to small and
medium-sized control problems.

The increase in computational power such as ARM Cortex
processors and advances in optimization algorithms has
opened new trend which brings MPC capabilities also to
complex and fast systems.

Interior point method (IPM) and active set method (ASM)
appear to be the most efficient approaches for online solving
of quadratic programming problem. A fast implementation of
Interior point method is reported in [4] and its applicability is
demonstrated in simulation studies. The method exploits the
particular structure of the MPC problem and considerably
reduces the computation time of control action. The
comparison of both methods for implementation of MPC is
presented in [5]. Richter et al. [6] reported an online-
optimization for systems with input constraints using Fast
Gradient Method (FGM) developed by Nesterov [7]. The
strategy to compute an upper bound for the maximum number
of iterations needed to ensure a predefined accuracy is
provided in [8]. Kogel and Findeisen [9] developed a method
for computation of the gradient in Fast Gradient method
exploiting the problem structure, which requires less memory
and is faster than the standard method for large horizons. In
[10] the problem of input quantization and how it can be
exploited in order to determine a suboptimality level is shown.
The authors also present a real application with Segway-like
robot controlled using a hard real-time operating system and a
low-cost microcontroller. There are several reports of
implementations of the MPC on a chip with reduced
computational power and memory. Bleris and Kothare present
a real-time implementation of the MPC on a microcontroller
for Glucose regulation in [11] and [12], where they used
logarithmic number system and Newton method for
optimization of the objective function. Due et al. demonstrated
in [12] applications of Multi-parametric model based control
on a chip for a slow industrial system but also for fast sampled
active valve train engine. MATLAB framework for generating
fast model predictive controllers for embedded targets such as
ARM processors has been developed and tested on inverted
pendulum in [13]. The optimization algorithm is based on the
work by Stephen Wright [14] . With the development of cheap
multi-core CPU in microcontrollers, the parallel computation
might be the promising way for further decrease of

Implementation Aspects of Embedded MPC
with Fast Gradient Method

J. Novak, P. Chalupa

M

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 504

mailto:chalupa@fai.utb.cz

computation time. In this work we focus on the
implementation aspects of MPC on embedded systems where
the quadratic programming problem is solved with FGM.
Criterions for stability and robustness guarantees are beyond
the scope of this paper.

The paper is structured as follows: Section 2 briefly repeats
the MPC formulation. Section 3 describes the fast gradient
algorithm. A description of the experimental setup can be
found in Section 4. Section 5 and 6 contains the results for
implementation of MPC on embedded system for two
simulation studies. Finally, the main conclusions are
summarized in Section 7.

II. PROBLEM STATEMENT
In the MPC the control actions which optimize the

forecasted process behavior are recalculated each sampling
interval. The forecasted process behavior is based on a
dynamic model of the process to be controlled. Thus, at each
sampling instant an optimal control problem must be solved.
Afterwards, the optimized control action is applied to the
process until the next sampling instant when new states are
available. Hence, MPC is sometimes also referred to as
receding horizon control. The optimization problem is based
on a time-invariant discrete process model, linear constraints
and a convex quadratic objective function:

 min∆𝑢(𝑘),∆𝑢(𝑘+1),…,∆𝑢(𝑘+𝑁𝑐−1) 𝐽(𝑘) (1)

 𝐽(𝑘) = ∑ �𝑦�(𝑘 + 𝑖) − 𝑦𝑟(𝑘 + 𝑖)�𝑇𝑄�𝑦�(𝑘 + 𝑖) − 𝑦𝑟(𝑘 + 𝑖)� 𝑁𝑝

𝑖=1 (2)

+�Δ𝑢(𝑘 + 𝑖 − 1)𝑇𝑅Δ𝑢(𝑘 + 𝑖 − 1)
𝑁𝑐

𝑖=1

where 𝑦�(𝑘 + 𝑖) is the ith step output prediction, 𝑦𝑟(𝑘 + 𝑖) is
the ith step reference trajectory, Δ𝑢(𝑘) is difference between
𝑢(𝑘) and 𝑢(𝑘 − 1), 𝑅, 𝑄 are positive definite matrices and 𝑁𝑝
and 𝑁𝑐are the prediction and control horizons, respectively.
Only the first element of the optimal predicted input sequence
Δ𝑢(𝑘) is applied to the plant:

 𝑢(𝑘) = 𝑢(𝑘 − 1) + Δ𝑢(𝑘) (3)

The criterion (1) can be rewritten into a condensed quadratic
problem

 min∆𝑢(𝑘),∆𝑢(𝑘+1),…,∆𝑢(𝑘+𝑁𝑐−1) �

1
2
Δ𝒖𝑇𝑯Δ𝒖 + 𝒇(𝑥)Δ𝒖� (4)

 𝑢(𝑘)𝜖𝑈

with input u(k) constrained in each step to a closed set U .
The Hessian matrix H and vector f(x) depend on the cost
criterion and system dynamics. Only input constraints are
considered so the condensed problem has 2Nc inequality
constraints, but only Nc optimization variables. As usual in
receding control strategy only the first input obtained by
minimization of the quadratic criterion and satisfying the
constraints is applied to system. The discrete linearized

model is assumed in the form:

 𝒙(𝑘 + 1) = 𝑨𝒙(𝑘) + 𝑩𝒖(𝑘) (5)
 𝒚(𝑘) = 𝑪𝒙(𝑘)

where u(k) is the vector of manipulated variables or input
variables; y(k) is the vector of the process outputs and
x(k) is the state variable vector. Using the linear model the
model predictive controller would exhibit steady – state
offset in the presence of plant/model mismatch or
unmeasured disturbance due to lack of integral action. In
order to introduce integral behavior, a new state variable
vector is chosen to be:

 𝒙 = [∆𝒙(𝑘)𝑇 𝒚(𝑘)]𝑇 (6)

Combining (6) and (7) leads to the following state-space
model:

 �∆𝒙(𝑘 + 1)
𝒚(𝑘 + 1) � = � 𝑨 𝟎

𝑪𝑨 𝑰� �
∆𝒙(𝑘)
𝒚(𝑘) � + � 𝑩𝑪𝑩�∆𝒖(𝑘) (7)

𝒚(𝑘) = [0 1] �∆𝒙(𝑘)
𝒚(𝑘) �

The predictor for new state vector x and control increment

sequence Δ𝑈 = [∆𝒖(𝑘), ∆𝒖(𝑘 + 1), ∆𝒖(𝑘 + 𝑁𝑐 − 1)]𝑇 for
given horizons can be formulated in terms of vectors as:

 𝒀 = 𝑲𝒙 + 𝑳∆𝑼 (8)

where

 𝒀 = �
𝒚(𝑘 + 1)

⋮
𝒚(𝑘 + 𝑁𝑝)

� ∆𝑼 = �
∆𝒖(𝑘)
⋮

∆𝒖(𝑘 + 𝑁𝑐 − 1)
� (9)

and the relations for matrices K and L are:

 𝑲 = �
𝑪𝑨
𝑪𝑨𝟐
⋮

𝑪𝑨𝑁𝑝−1
� (10)

 𝑳 = �𝑳𝟏𝑳𝟐
� , 𝑳1 = �

𝑪𝑩 0 … 0
𝑪𝑨𝑩 𝑪𝑩 … 0
⋮

𝑪𝑨𝑵𝒄−𝟏𝑩
⋮

𝑪𝑨𝑵𝒄−𝟐𝑩
⋱
…

0
𝑪𝑩

� (11)

 𝑳2 = �
𝑪𝑨𝑵𝒄𝑩 … 𝑪𝑨𝟐𝑩 𝑪(∑ 𝑨𝑗)𝑩1

𝑗=0

⋮ ⋮ ⋮ ⋮
𝑪𝑨𝑁𝑝−𝟏𝑩 … 𝑪𝑨𝑁𝑝−𝑁𝑐+1𝑩 𝑪(∑ 𝑨𝑗)𝑩

N𝑝−N𝑐

𝑗=0

� (12)

The Hessian matrix H and vector f(x) from criterion can then
be formulated as:

 𝑯 = 𝑳𝑻𝑸𝑳 + 𝑹, 𝑓(𝑥) = −𝑹(𝒀𝒓 − 𝑲𝑥(𝑘))𝑇𝑳 (13)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 505

where 𝒀𝒓 represents the vector of reference signals on
prediction horizon.

III. FAST GRADIENT ALGORITHM
Efficient solution of the introduced quadratic programming

problems with discrete-time linear model is a key feature for
fast MPC control scheme. The optimization method utilized
here to solve (1) is based on Nesterov’s method also known as
the Fast Gradient method, see [7]. The main benefit of the
classical gradient schemes is that they do not rely on second
order derivative information and take a damped steepest
descent step in each iteration. Fast gradient method modifies
this idea to yield faster convergence. Fast gradient method is
easy to implement as it requires only to compute gradient and
to perform projection operation into feasible set in each step.
The optimization is started with an initial guess Δ𝑢0 and stops
after 𝑖𝑚𝑎𝑥 iterations, such that

 𝐽(Δ𝑢𝑖𝑚𝑎𝑥) − 𝐽(Δ𝑢∗) ≤ 𝜖 (14)

where 𝐽(Δ𝑢∗)is the value of the optimal solution, 𝜖 > 0 is the
suboptimality level, and Δ𝑢𝑖𝑚𝑎𝑥 is called a suboptimal point.
Theoretical bound for 𝑖𝑚𝑎𝑥 can be found in [6]. We can
describe the iterative scheme of fast gradient method by
algorithm.

Fast Gradient method algorithm
Requirements: Initial guess Δ𝑢0, number of iterations
𝑖𝑚𝑎𝑥 , maximum and minimum eigenvalues of H: L, μ

1. Set 𝑢𝑜𝑙𝑑 = Δ𝑢0, w = Δ𝑢0
2. For i=1 to 𝑖𝑚𝑎𝑥

Compute 𝑢 = 𝑃𝑈(w, 1/L)

Compute 𝑤 = 𝑢 + 𝑐(𝑢 − 𝑢𝑜𝑙𝑑)
3. Return u

The constant c is defined as:

 𝑐 > 0, 𝑐 = √𝐿−√𝜇
√𝐿+√𝜇

 (15)

Numbers L and 𝜇 are Lipschitz constant of the gradient and
convexity parameter respectively. Both are computed from the
eigenvalues of the Hessian matrix. L is the maximal
eigenvalue and 𝜇 is the minimal eigenvalue. Note that, the
projected gradient step PU(w, 1/L) is an Euclidean projection
of w resulting from the gradient step

 𝑢 = 𝑤 − 1

𝐿
∇𝐽(𝑤) (16)

into the feasible set U. This projection is very easy for box
constraints but for general constraints it gets more
computationally demanding. The gradient of the cost
function (5) is simply:

 ∇𝐽(𝑢) = 𝑯∆𝒖 + 𝒇(𝑥) (17)

The zero vector policy Δ𝑢(𝑘 + 𝑖) = 0, 𝑖 = 1,2, . . , 𝑁𝑐 − 1 can
be used as an initial feasible guess (cold-starting).
However, using the solution of the previous optimal
control problem, called warm-starting usually decreases
computational effort.

IV. SELECTED HARDWARE PLATFORM
The proposed fuzzy logic predictive controller was

implemented on The Stellaris® LM4F120 board which is a
low-cost evaluation platform for 32-bit ARM® Cortex™-
M4F-based microcontrollers from Texas Instruments. The
microcontroller runs at 80 MHz. The board has 32KB of
SRAM memory, 256KB of flash memory and 2KB EEPROM.
The Fig. 1 shows the device. For implementation of MPC
controller the requirements for memory and evaluation speed
must be considered. The board has only 32KB of RAM
however model parameters can be pre-computed offline.

Fig. 1 Stellaris LM4F120 board

V. EXAMPLE I – STABILIZATION OF QUADCOPTER
In the first example the stabilization of the simulated
quadrotor model is considered. A considerable amount of
effort has been invested in controlling quadrotor helicopters
and several control strategies have been tested. Classical PID
approach, which assumed simplified dynamics of quadrotor,
was developed in [15]. In [16] the authors proposed a
backstepping controller using a quadrotor’s simplified model.
In [17], a method for controlling the quadrotor using a
combination of MPC and H -infinity control was described
and tested in simulations. In [16] controllers for altitude and
attitude are developed based on PID and model predictive
control and compared through flight tests.

The quadroter is an underactuated mechanical system with
6 degrees of freedom and only with 4 control inputs, hence it
is described with 12 states (see Fig. 2). The first six states
represent the position to Earth and speeds. The other six states
are attitude and its change. In particular, x and y are the
coordinates in the horizontal plane, z is the vertical position, 𝜙
is the yaw angle (rotation around the z-axis), 𝜃 is the pitch
angle (rotation around the x-axis), and 𝜓 is the roll angle

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 506

(rotation around the y-axis). As described in Fig. 2, each of the
four motors generate, respectively, four thrust forces and four
torques. The quadcopter rotates on three axes by simply
adjusting the angular velocity of each rotor in relation to the
other three. If two rotors rotate at the same speed and other
two rotate counterclockwise at the same speed the net yaw is
zero. A difference in speeds between the two pairs of motors
creates a net yaw. The roll or pitch rotation is caused by the
difference in speeds between the two pairs of motors. For
example, to pitch forward the back rotor is rotated at a greater
velocity than the front motor.

Fig. 2 Quadcopter model

The dynamical model obtained through rotational
transformation between the world frame and the quadcopter’s
body frame is given by:

 𝑥̈ = (−𝑢1𝑠𝑖𝑛𝜃 − 𝛽𝑥̇) 1

𝑚
 (18)

 𝑦̈ = (𝑢1𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 − 𝛽𝑦̇) 1
𝑚

 (19)

 𝑧̈ = −𝑔 + (𝑢1𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 − 𝛽𝑧̇) 1
𝑚

 (20)
 𝜃̈ = 𝑢2

𝐼𝑥𝑥
 (21)

 𝜙̈ = 𝑢3
𝐼𝑦𝑦

 (22)

 𝜃̈ = 𝑢4
𝐼𝑧𝑧

 (23)

in which g is the gravity acceleration, m is the mass of the
UAV, and the damping factor 𝛽 takes into account friction
effects that affect the real vehicle and 𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧 are the
components of diagonal inertia matrix of the airframe at its
center of mass. The relation between the inputs and forces is
given by:

 𝑢1 = (𝑓1 + 𝑓2 + 𝑓3 + 𝑓4), 𝑢2 = (𝑓2 − 𝑓4)𝑙 (24)
 𝑢3 = (𝑓3 − 𝑓1)𝑙, 𝑢4 = (−𝑓1 + 𝑓2−𝑓3 + 𝑓4)𝑙 (25)

where l is the distance between each motor and the center of
gravity of the vehicle.

The aim is to control attitude and altitude through a Linear
Time Invariant (LTI) Model Predictive Controller, hence the
derivation of the implicit MPC solution is based on the model
dynamics linearized around the equilibrium point represented
by the hovering condition:

 𝑥, 𝑦, 𝜃, 𝜙, 𝜓, 𝑥̇, 𝑦̇, 𝑧̇, 𝜃̇, 𝜙̇, 𝜓̇ = 0, 𝑧 = 1 (26)
 𝑢1 = 𝑔𝑚, 𝑢2 = 0, 𝑢3 = 0, 𝑢4 = 0 (27)

The model has 4 inputs (𝑢1, 𝑢2, 𝑢3, 𝑢4) and six outputs
(𝑥, 𝑦, 𝑧, 𝜃, 𝜙, 𝜓) and 12 states.

 𝑥1 = 𝑥, 𝑥2 = 𝑥̇, 𝑥3 = 𝑦, 𝑥4 = 𝑦,̇ 𝑥5 = 𝑧, 𝑥6 = 𝑧,̇ (28)
 𝑥7 = 𝜃, 𝑥8 = 𝜃̇, 𝑥9 = 𝜙, 𝑥10 = 𝜙̇, 𝑥11 = 𝜓, 𝑥12 = 𝜓̇ (29)

While the derivation of the implicit MPC control solution is
based on the linearised model dynamics, all simulations are
performed taking into account the nonlinear model of the
quadrotor (18–23). The extended discretized linear model was
developed using (7) and (8) from linearized model. This
operation adds 6 states to the original vector of states leading
to the model with 4 inputs, 6 outputs and 18 states. The
predictor matrices K, L and hessian matrix H were stored in
the flash memory. The memory requirements for given
horizons are given as follows:

 𝑯 ∶ 𝑛𝑖 ∗ 𝑛𝑖 ∗ 𝑁𝑐 ∗ 𝑁𝑐 ∗ 𝑛𝑏 (30)
 K∶ 𝑛𝑠 ∗ 𝑛𝑜 ∗ 𝑁𝑝 ∗ 𝑛𝑏 (31)
 𝑳 ∶ 𝑛𝑖 ∗ 𝑛𝑜 ∗ 𝑁𝑝 ∗ 𝑁𝑐 ∗ 𝑛𝑏 (32)

where nb is the number of bytes required to store a number.
The 4 bytes are used in the example. The position and attitude
information is assumed to be accurate in the model and the
simulations. Hence, the effects of imprecise information to the
flight of the quadcopter are beyond the scope of the paper. The
following set of weights were applied in the optimization
criterion:

 𝑄 = �
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

� (33)

 𝑅 = 𝑑𝑖𝑎𝑔([10,10,10,1,1,3]) (34)

The prediction horizon is 𝑁𝑝 = 20 steps, the control
horizon is 𝑁𝑐, which, together with the choice of weights,
allow obtaining a good compromise between tracking
performance, robustness, and computational complexity. The
sampling time of the controller is 𝑇𝑠 = 50ms. The reference
trajectory is given by the hovering conditions:

 𝑥𝑟, 𝑦𝑟, 𝜃𝑟, 𝜙𝑟, 𝜓𝑟 = 0, 𝑧 = 1 (35)

The initial conditions are set to:

 𝑥0 = 0.1, 𝑦0 = −0.2, 𝑧0 = 1.2, 𝜃0 = 0.1 (36)
 𝜙0 = −0.1, 𝜓0 = 0.2 (37)

with all the derivations set to 0.

The results were compared to an offline solution computed
in MATLAB using the quadprog function and are presented in
Table I. The table shows the value of cost criterion at the first

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 507

sampling point for different number of iterations and average
time of execution. Cold-starting of the FGM was used in all
the experiments. Warm–starting could further decrease the
average evaluation times.

Table I Computational times and comparison with MATLAB
solution

Method J(0) t [ms]
FGM – 5 iterations 15.5196 4.29
FGM – 10 iterations 13.4574 5.50
FGM – 15 iterations 12.8897 6.71
FGM – 20 iterations 12.8046 7.92
FGM – 25 iterations 12.6740 9.12
FGM – 30 iterations 12.4235 10.33
FGM – 40 iterations 12.2627 12.73
FGM – 60 iterations 12.2237 17.56
MATLAB - quadprog 12.2221 -

As the result shows solution computed by the fast gradient
solver, depends on the maximum number of iterations. As the
sampling time is 50ms, execution of the Fast Gradient
algorithm with 60 iterations still leaves enough free time for
the control loop including Kalman filter for state estimation
and filtration. The system is simulated with FGM with 30
iteration and the control courses are compared with the
optimal ones obtained with off-line MATLAB quadprog
solver. The simulation results can be seen in Fig. 3. As can be
seen in the simulations, the behavior of the output signals does
not vary that much.

VI. EXAMPLE II – FUZZY MPC CONTROL OF PH
NEUTRALIZATION

The simulated nonlinear process of neutralization was
considered as a second example. The model is used in many
studies to test the nonlinear control strategies [20]. To design
an MPC controller for nonlinear process, the nonlinear process
is modeled by a Takagi-Sugeno fuzzy system with linear
functional consequents in the fuzzy rules and local linear
models [21]. Different predictive controllers are designed for
different rules (local sub-systems) and the global controller
output is the fuzzy weighted integration of local ones. The
models to be used in the control system design are taken to be
discrete state-space models. By using a state-space model, the
current information required for predicting ahead is
represented by the state variable at the current time.

The control policy Δ𝑢(𝑘 + 𝑖), 𝑖 = 0,1,2, … , 𝑁𝑢can be
developed by first generating m sets of local control policies,
where m is the total number of local models. The weighted
sum of the local control policies gives the overall control
policy:

 Δ𝑢(𝑘 + 𝑖) = ∑ 𝜔𝑗Δ𝑢𝑗(𝑘 + 𝑖)𝑚

𝑗=1 (38)

where 𝜔𝑗 is the validity of jth model. Apparently, the
validities of local models are normalized to unity:

 ∑ 𝜔𝑗𝑚

𝑗=1 = 1 (39)

Fig. 3 Simulation using quadprog and the fast gradient algorithm with 30

iterations (solid line– MATLAB quadprog, dotted line – Fast Gradient
algorithm).

Using the fuzzy approach the original nonlinear model is
composed of m MIMO linear models with jth MIMO rule as
an example,

 𝑅𝑗 𝐼𝐹 𝜑 ∈ 𝑍𝑗𝑇𝐻𝐸𝑁 𝒀𝑝

𝑗 (𝑘) = 𝐾𝑗𝑥(𝑘) + 𝑳𝑗𝑼𝑗(𝑥) (40)

where j=1,..,m. and 𝜑 is the scheduling vector. Since the

0 0.5 1 1.5 2
-0.1

0

0.1

x
[m

]

0 0.5 1 1.5 2
-0.2

0

0.2

y
[m

]

0 0.5 1 1.5 2
0.5

1

1.5

z
[m

]

0 0.5 1 1.5 2
-0.2

0

0.2

pi
tc

h
[-]

0 0.5 1 1.5 2
-0.2

0

0.2

ro
ll

[-]

0 0.5 1 1.5 2
-0.2

0

0.2

ya
w

 [-
]

T [s]

0 0.5 1 1.5 2
17

18

19
u 1 [N

]

0 0.5 1 1.5 2
-1

0

1

u 2 [N
.m

]

0 0.5 1 1.5 2
-1

0

1

u 3 [N
.m

]

0 0.5 1 1.5 2
-0.5

0

0.5

u 4 [N
.m

]

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 508

consequent part of each rule is a linear equation, it is easy
to design a linear controller for each rule. The global
nonlinear controller is a fuzzy weighted integration of
linear ones. The Fig. 4 shows the structure of multiple
model predictive control.

Fig. 4 Structure of Multiple model control

The simulated system consists of a continuous stirred tank
reactor (CSTR) in which neutralization reaction between a
strong acid (HA) and a strong base (BOH) takes place in the
presence of a buffer (BX). The system has three states, single
output and single input.

 𝑥1 = [𝐴−], 𝑥2 = [𝐵+], 𝑥3 = [𝑋−], 𝑦 = 𝑝𝐻, 𝑢 = 𝑞𝐵 (41)

where[𝐴−], [𝐵+], [𝑋−] are acid, base and buffer
concentrations, respectively. The term 𝑞𝐵 represents the flow
rate of the base. The scheme of the CSTR is depicted in Fig. 5.
The process dynamics is given by the following set of
differential equations:

 𝑥̇1 = 𝑞𝐴

𝑉
�𝑥1,𝑖 − 𝑥1� −

𝑞𝐵
𝑉
𝑥1 (42)

 𝑥̇2 = − 𝑞𝐴
𝑉
𝑥2 + 𝑞𝐵

𝑉
�𝑥2,𝑖 − 𝑥2� (43)

 𝑥̇3 = − 𝑞𝐴
𝑉
𝑥3 + 𝑞𝐵

𝑉
�𝑥3,𝑖 − 𝑥3� (44)

The pH value can be determined using the implicit equation:

 [𝐻+] + 𝑥2 + 𝑥3 − 𝑥1 −

𝐾𝑤
[𝐻+]

− 𝑥3

1+
(𝐾𝑥)�𝐻+�

𝐾𝑤

= 0 (45)

where log10pH H 

 
+= and 𝐾𝑤, 𝐾𝑥 are the dissociation

constants of water and buffer, respectively.
Table 1. Model Parameters

symbol parameter value
𝑥1,𝑖 acid inlet concentration 1.2 × 10−3 mol/L
𝑥2,𝑖 base inlet concentration 2.0 × 10−3 mol/L
𝑥3,𝑖 buffer inlet concentration 2.5 × 10−3 mol/L
𝐾𝑥 buffer dissociation const. 10−7mol/L
𝐾𝑤 water dissociation const. 10−14mol2/L2
𝑉 reactor volume 2.5L

Fig. 5 pH neutralization process

The system parameters used in this work were taken from [17]
and are summarized in Table 1. The output equation is clearly
strongly nonlinear. The titration curve and the gain variation
that illustrate the nonlinearity of the pH neutralization process
are depicted in Fig. 6.

Fig. 6 Titration curve and gain variation of pH neutralization process

The sampling of the estimation and control schemes was set to
30s due to the dynamics of the process and constraints of the
process input are assumed to be 0≤u(k)≤0.5. The
concentrations (states) are assumed to be measured. Six fuzzy
sets with triangular membership functions were used for
approximation of the nonlinear process as shown in Fig. 4.
The location of the models was obtained using C-means
clustering. At these operation modes the nonlinear process was
linearized to obtain parameters of local models. The fuzzy
model is a good approximation of the process as presented in
Fig. 7 which shows both steady-state characteristic of process
and fuzzy membership functions. To account for high
variation of gain of the process the weighting factor λ used in
the predictive control cost function is also weighted using
membership functions:

 𝜆𝑗 = 𝜔𝑗𝑔𝑎𝑖𝑛𝑗2 (46)

where the gain of the local model 𝑀𝑖 is computed:

 𝑔𝑎𝑖𝑛𝑗 = 𝐶𝑗�𝑰 − 𝑨𝑗�
−1𝑩𝑗 (47)

0 0.1 0.2 0.3 0.4 0.5
2

4

6

8

qB [l/min]

p
H

 [
-]

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

qB [l/min]

g
a
in

 [
m

in
/l
]

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 509

Fig. 7 Steady-state characteristic and distribution of membership
functions

The matrices from (11) 𝐻 ∈ 𝑅𝑁𝑝∗𝑁𝑝∗𝑛𝑜∗𝑛𝑜, 𝐾 ∈ 𝑅𝑁𝑝∗𝑛𝑜∗𝑛𝑠, 𝐿 ∈
𝑅𝑁𝑝∗𝑁𝑐∗𝑛𝑜∗𝑛𝑖 , where no, ns, ni are number of outputs, states
and inputs, respectively are stored in the flash memory while
variables such as the vectors f and the internal variables must
be stored in RAM. For given number of local models m the
memory requirements in bytes are given by

 𝑚 ∗ 𝑛𝑏 ∗ 𝑁𝑝 ∗ 𝑛𝑜 ∗ (𝑁𝑝 ∗ 𝑛𝑜 + 𝑛𝑠 + 𝑁𝑐 ∗ 𝑛𝑖) (48)

where nb is the number of bytes required to store a number.
The 4 bytes are used in the example. The distribution of
models in the operating space given by the centers of fuzzy
sets is also stored in the flash memory.
The memory demands for online computation are given by the
number of decision variables. The following vectors of size
𝑁𝑢 ∗ 𝑛𝑖 are needed for online computation: 𝑓, 𝑦, 𝑤, 𝑢, 𝑢𝑜𝑙𝑑 and
the auxiliary vector of the same dimension to store the values
of gradient.
The fuzzy controller output is given by the weighted sum of
local controllers. Thus the constrained optimization problem
must be solved separately for each local controller. The online
computation of the fast gradient algorithm only requires the
computation of gradient which is for the case of MPC control
a matrix-vector multiplication (𝐻∆𝑢). Another two matrix-
vector multiplications are needed to compute f(x). The Fast
Gradient algorithm is rather simple to implement as it requires
only simple linear algebra such as matrix-vector
multiplications, vector additions and comparisons. The initial
guess ∆𝑢(𝑘 + 𝑖) = 0, 𝑖 = 0, … , 𝑁𝑢 is used in the example as it
represents always a feasible solution to the optimization
problem. The Fig. 8 shows the time of evaluation of control
input in a single sampling interval which represents call of the
Fast Gradient method for all the local models. The values are
averages of 20 executions with different states. The control
horizon Nc was set to the same value as prediction horizon.
The MPC controller is implemented in plain C-code without

the help of mathematical libraries BLAS/LAPACK. The
control courses and weights of each model during the example
simulation are depicted in Fig. 9.

Fig. 8 Execution times for different values of imax

Fig. 9 Control courses for pH neutralization example

Using multiple local models, the on-line nonlinear
optimization can be avoided and simple quadratic
programming problem is solved at each sampling interval. The

0 0.1 0.2 0.3 0.4 0.5
2

4

6

8

qB [l/min]

pH
 [-

]

system
model

3 4 5 6 7 8
0

0.5

1

1.5

pH [-]

M1 M3M2 M4 M5 M6

5 10 15 20
0

10

20

30

40

50

60

Np [-]

Ti
m

e
[m

s]

imax = 20

imax = 10

imax = 3

imax = 5

0 20 40 60 80 100
0

5

10
pH

 [-
]

0 20 40 60 80 100
0

0.5

q B [l
/m

in
]

0 20 40 60 80 100
0

0.5

1

ω
1

0 20 40 60 80 100
0

0.5
1

ω
2

0 20 40 60 80 100
0

0.5
1

ω
3

0 20 40 60 80 100
0

0.5
1

ω
4

0 20 40 60 80 100
0

0.5
1

ω
5

Time [s]

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 510

control performance of the proposed fuzzy control scheme
with MPC based on multiple models is comparable to the
performance obtained when a computationally demanding
nonlinear optimization procedure is used online at each
sampling instant within a nonlinear MPC controller [18].

VII. CONCLUSION
In this work fast online model predictive control with input

constraints for real-time implementation is considered. The
implementation aspects of the Fast Gradient algorithm for
finding optimal solution of the model predictive control
problem are clarified with two simulation examples. In the
first example a model predictive controller was applied for
stabilization problem of a quadrotor helicopter. The results
show that evaluation of the MPC control problem of the
quadrotor system with 18 states and the prediction horizon of
20 steps and control horizon of 3 steps is manageable in less
than 20ms without losing the accuracy of the solution. Enough
free time remains for the control loop including Kalman filter
for state estimation and filtration.

Fuzzy MPC and its performance are evaluated in the second
example. Although the sampling frequency of the simulated
process is in terms of second and the embedded system has
much higher performance than required by the pH
neutralization process, it allows applying low-power
techniques that would decrease the power consumption. The
example also confirms that nonlinear process modeled as set
of fuzzy linear models with the algorithmic and numerical
simplicity of fast gradient methods allows fast online
optimization for medium length of prediction horizon.

As the work is focused on a fast MPC implementation, no
frequency domain analysis to test robustness indicators such
as gain, phase and delay margins is reported here.

REFERENCES
[1] S.J. Qin and B.J. Badgwell, “A survey of industrial model predictive

control technology,” Control Engineering Practice, vol. 11, pp. 733–
764, 2003.

[2] J.M. Maciejowski, Predictive Control with Constraints, Prentice Hall,
2000.

[3] A. Alessio and A. Bemporad, “A Survey on Explicit Model Predictive
Control,” Nonlinear Model Predictive Control, vol. 384, pp.345-369,
2009.

[4] Y. Wang and S. Boyd, “Fast Model Predictive Control Using Online
Optimization,” IEEE Transactions on Control Systems Technology, vol.
18, pp. 267-278, March 2010.

[5] M.S.K. Lau, S.P. Yue, K.V. Ling and J.M. Maciejowski, A comparison
of interior point and active set methods for FPGA implementation of
model predictive control, In Proceeding of the European Control
Conference, Budapest, 2009, pp. 156-161.

[6] S. Richter, S. Mariethoz and M. Morari, “High-speed online MPC based
on a fast gradient method applied to power converter control,” in
Proceedings of the 2010 American Control Conference, Baltimore,
2010, pp. 4737–4743.

[7] Y. Nesterov, “A method for solving a convex programming problem
with convergence rate 1/k2,” Soviet Math. Dokl., vol. 27, no. 2, pp. 372–
376, 1983.

[8] S. Richter, C.N. Jones and M. Morari, “Real-Time Input-Constrained
MPC Using Fast Gradient Methods,” in Proceedings of the 48th IEEE
Conference on Decision and Control, Shanghai, 2009, pp. 7387-7393.

[9] M. Kogel and R. Findeisen, “A fast gradient method for embedded
linear predictive control,” in Proceedings of the 18th IFAC World
Congress, Milano, 2011, pp. 1362–1367.

[10] P. Zometa, M. Kogel, T. Faulwasser and R. Findeisen, “Implementation
Aspects of Model Predictive Control for Embedded Systems,” in
Proceeding of the American Control Conference, Montreal, 2012, pp.
1205-1210.

[11] L.G. Bleris and M. V. Kothare, “Implementation of Model Predictive
Control for Glucose Regulation on a General Purpose Microprocessor,”
in Proceedings of the 44th IEEE Conference on Decision and Control,
Seville, 2005, pp. 5162-5168.

[12] P.D. Vouzis, L.G. Bleris, M.G. Arnold and M.V. Kothare, “A System-
on-a-Chip Implementation for Embedded Real-Time Model Predictive
Control”, IEEE Transactions on Control Systems Technology, vol. 17,
no. 5, pp. 1006-1017, Sept. 2009.

[13] P. Dua, K. Kouramas, V. Du and E.N. Pistikopoulos, “MPC on a chip—
Recent advances on the application of multi-parametric model-based
control,” Computers and Chemical Engineering, vol. 32, pp. 754-765,
Apr 2008.

[14] J. Currie, A. Prince-Pike and D.I. Wilson, “Auto-Code Generation for
Fast Embedded Model Predictive Controllers,” in Proceedings of the
International Conference on Mechatronics and Machine Vision in
Practice, Auckland, 2012, pp. 122-128.

[15] G. Gol, N.F. Bayraktar and E. Kiyak, “PID Controlling of the Quadrotor
and Sensor Performance Tests,” International Journal of Circuits,
Systems and Signal Processing, vol. 8, pp. 266-275, 2014.

[16] H. Zhen, X. Qi and H. Dung, “An Adaptive Block Backstepping
Controller for Attitude Stabilization of a Quadrotor Helicopter,” WSEAS
Transactions on Systems and Control, vol. 8, pp. 46-55, 2013.

[17] G.V. Raffo and M.G. Ortega. “MPC with Nonlinear H-infinity Control
for Path Tracking of a Quad-Rotor Helicopter,” Proceedings of the 17th
IFAC World Congress, Seoul, 2008, pp. 8564–8569.

[18] A. S. Imam and R. Bicker, Quadrotor Model Predictive Flight Control
System, International Journal of Current Engineering and Technology,
vol. 4, pp. 355-365, February 2014.

[19] A. Bemporad and C. Rocchi, Decentralized Linear Time-Varying Model
Predictive Control of a Formation of Unmanned Aerial Vehicles,
Proceedings of 50th IEEE Conference on Decision and Control, 2011,
pp. 7488-7493.

[20] J. Novak, P. Chalupa, V. Bobal, Multiple model modeling and predictive
control of the pH neutralization process, International Journal of
Mathematical Models and Methods in Applied Sciences, vol. 5, 2011,
pp. 1170-1179.

[21] N. Li, S-Y. Li, Y-G. Xi, Multi-model predictive control based on the
Takagi–Sugeno fuzzy models: a case study, Information Sciences, vol.
165, 2004, pp. 247–263.

[22] S.I. Biagiola, J.L. Figueroa, State Estimation in Nonlinear Processes-
Application to pH Process Control, Industrial & Engineering Chemical
Research, vol. 41, 2003, pp. 4777-4785.

[23] J. Novak, P. Chalupa, Nonlinear State Estimation and Predictive Control
of pH Neutralization Process, Advances in Intelligent Systems and
Computing, vol. 210, 2013, pp 285-294.

Jakub Novak was born in Zlín, Czech Republic in 1978. He is a Researcher
at Faculty of Applied Informatics of Tomas Bata University in Zlín, Czech
Republic. He graduated from Faculty of Technology of the same university
with an MSc in Automation and Control Engineering in 2002 and he received
a PhD in Technical Cybernetics from Faculty of Applied Informatics in 2007.
He is a researcher at the CEBIA-Tech research center at Tomas Bata
University in Zlin. His research interests are modeling and predictive control
of the nonlinear systems.

Petr Chalupa graduated in 1999 from Brno University of Technology and
received the Ph.D. degree in Technical cybernetics from Tomas Bata
University in Zlin in 2003.

He is a researcher at the CEBIA-Tech research center at Tomas Bata
University in Zlin. His professional interests are adaptive and predictive
control of real-time systems.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 511

