

Abstract—When starting a new project, a higher programming

language is usually selected for developing the control algorithm.
And it is only natural to have support for automatic code generation,
which would provide functionality for generating executable code for
embedded processor directly from the high programming language,
where the algorithm was originally developed. Currently there are
several products on the market which implement described
functionality. However this functionality is very limited. It is
provided only for selected microcontrollers and simple peripheral
modules. Increasing computing power of embedded processors
allows implementing more advanced algorithms and to use more
complex peripherals, for instance displaying units. This paper
presents a method of creating support for fully automatic code
generation for Cerebot MX7cK hardware from Simulink. This target
uses complex peripherals, which are not supported in this extent by
any other commercial product. Created support for automatic code
generation is demonstrated by generating executable code for
magnetic levitation plant controller, directly from Simulink.

Keywords—Cerebot MX7cK, automatic code generation,
Simulink, complex peripherals

I. INTRODUCTION
ACH day, there is always increasing need to develop a
new products, with always increasing complexity and

higher function requirements. The need to shorten and make
more efficient development cycle of new applications is
obvious.

Over period of time, the V-cycle becomes a standard
scheme which describes relations between various stages
during development of a new application [1]. This scheme is

This work was supported in part by the BUT grant FSI-J-13-2026

“Development of support for automatic code generation for the Cerebot MX7
cK platform”

V. Lamberský is a PhD candidate at the Brno University of Technology –
Faculty of Mechanical Engineering. His current research focuses on Rapid
Code Generation for embedded applications.

J. Vejlupek is a PhD candidate at the Brno University of Technology –
Faculty of Mechanical Engineering. His current research focuses on Hardware
in the Loop simulation, Rapid Control Prototyping and Rapid Code
Generation for embedded applications.

V. Sova is a PhD candidate at the Brno University of Technology – Faculty
of Mechanical Engineering. . His current research focuses on advanced BLDC
motor control algorithms and Rapid Code Generation for embedded
applications.

R. Grepl is associate professor at the Brno University of Technology –
Faculty of Mechanical Engineering.

illustrated in Fig. 1.
Introducing fully automatic code generation during the
development cycle has several benefits, besides shortening the
development cycle. It helps reduce errors which would be
inevitable when manually rewriting the code from higher
programming language to C language. And making changes in
project definitions is much easier as small change in model
does not require manual rewriting several lines of code. Thus,
higher programming languages are becoming preferred over
low level ones [2], [3] in embedded design applications.

Requierements

Code generation

Testing
modules

Verification and
validation

Project definition

Pro
jec

t in
te

gra
tio

n

Modeling

Fig. 1 Automatic code generation in context of development cycle

Several products support direct code generation from higher

programming language for limited number of embedded
processors and selected peripheral modules. However, always
increasing power and decreasing price of embedded
processors [4] allows us implement more advanced algorithms
and use complex peripherals where it was not reliable before.
And most of these new targets and almost all advanced
peripheral modules are not supported in higher programming
languages for direct code generation in commercial products.

One of these unsupported targets for automated code
generation is a Cerebot MX7cK hardware, which has several
unique properties among other products. It is becoming very
popular mainly for its very low price and fairly high
computing power (it is equipped with the fastest 32bit
Microchip MCU). Beside these properties, Cerebot introduces
a new modular standard for embedded rapid prototyping
hardware [5], [6].

Cerebot presents a standardized way to interface with
peripheral modules. That means a peripheral module can be
easily connected to a connector on board without the need to
solder wires between microcontroller pins and peripheral
module. A wide range of different peripheral modules

Creating support for fully automatic code
generation for Cerebot MX7cK hardware from

Simulink environment
V. Lamberský, J. Vejlupek, V. Sova, R. Grepl

E

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 536

available for the Cerebot hardware makes this platform very
versatile. The concept of detachable peripheral modules is
illustrated in Fig. 2.

 Fig. 2 Cerebot main board with plug in module

This concept of unified interface with peripheral modules

places Cerebot hardware in superior position in its hardware
category.

Based on previously described advantages of Cerebot
platform, and the benefits which would present an option to
generate executable code directly from higher programming
language, it was decided to create a toolset which would
support direct code generation. The created blockset for
Simulink and supporting programs enables fully automatic
generating of executable code directly from Simulink
environment for Cerebot hardware and selected peripheral
modules.

Created blockset presents several benefits over existing
ones. It was created as a freeware; therefore anyone can use
and modify the files. This can be very beneficial, especially
when some functionality is not implemented. A small
modification in source codes can easily change generated code
behavior. Compared to commercial products, where source
code is not available, when some functionality is not available
user usually has to write its own block from scratch, which
takes much longer time compared to modifying an existing
one.

Beside this, the Cerebot platform can be now used much
more efficiently as designing a new application in higher
programming language is much faster. Therefore more time
can be spent on algorithm development and less on algorithm
coding. This hardware can be now used even with people with
limited or none knowledge of C language as the program can
be generated entirely from Simulink without any need to

further modify generated C files.
Main benefits of created tools are demonstrated on a

particular model situation. A code for magnetic levitation
controller was designed completely from Simulink
environment. The levitation of steel ball is maintained by
magnetic field, which is controlled by changing the current
running through the coil to maintain the ball in selected
position. This plant is illustrated in Fig. 3

Fig. 3 Scheme of magnetic levitation plant

 This plant is known to be very unstable, however can be

controlled with a fast enough PID controller. The last chapter
of this paper demonstrates how significantly can be shortened
time needed to design a controller for this plant when using
tools for automatic code generation which were created.

II. TODAY’S TOOLS USED FOR AUTOMATIC CODE GENERATION
TARGETED AT EMBEDDED APPLICATION

This section presents an overview of available embedded
platforms and software products. Further it explains
mechanisms used for translating code from higher level
programming language to executable code.

A. Generating a code from higher language
When generating code from higher programming language
two main problems have to be encountered. First, the higher
programming languages were developed for simulations on a
personal computers and therefore do not generate code which
is very efficient (or optimized for low power CPU). The
second one are target specific functions. When running
simulation on a processor without an OS, on each processor
type, functions for interfacing peripherals are different.

In order to generate efficient C code for embedded
processor from Simulink model, the model representation
needs to be transformed. For instance, article [7] presents
concepts for transforming code to a different language. There
are several tools designed for this task. Official one is
Embedded Coder (created by the Matworks company) and
free alternatives, for instance the Gene-Auto [8]. But this
freeware tool supports much lower number of Simulink block
for code generation compared to Embedded Coder.

During code generation stage, the Simulink model
represented in RTW record is translated into C code. In next
step the generated C files are processed with target specific
compiler and linked to generated executable file, which can be
then directly loaded into the flash memory and run on the

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 537

target hardware.
As mentioned before, Matworks provides a tool for

translating the Simulink model into C code that can be
efficiently run on a low power embedded processor. But it
also contains a hooks and callback functions entries to execute
user scripts and programs. These entries can be used to call a
compiler and loader once all necessary C files are created.
Therefore only one user action is required to generate the
executable code and load it to the target hardware.

To achieve this type of functionality, two type files and
scripts need to be created. The first group of scripts creates
files used in Matlab/Simulink environment to control code
generation process. The second group consists of programs
and scripts running outside Simulink whose are used to
translate generated files and load the generated executable
code to a microcontroller.

Steps involved during the code generation process are
illustrated in Fig. 4.

Fig. 4 User defined files used during various stages of code
generation process

The entry point to code generation process from Simulink is

invoking the make_rtw function (this is done when the build
button is pressed in Simulink model). In first stage, Simulink
model is prepared for code generation, no modifications of
this function are necessary as this procedure only rewrites
Simulink model representation (.mdl) to a RTW one.

In the second step the RTW file is translated using TLC
templates to .c and .h files.

In order to compile generated files, the makefile template
(.tmf) which controls creation of makefile to match used C
compiler need to be modified. The makefile is automatically
executed after its creation, so no specific actions are required
when using default settings.

Hook functions are ideal for calling external user program
or scripts during various stages of code generation process
(e.g. before or after make command). This option is suitable to
call external program to load generated binary file into
microcontroller after compiling and linking is done.

The second problem when generating executable code from

higher language are target specific functions. Particularly, the
function that is implements scheduler module in code entry
function (the main function) and is maintaining code
execution. Beside this we need functions that are setting MCU
peripherals and interfacing with them.

The Cerebot main file is created using file customization
template. The main file contains macros for hardware
initialization and a function, which is called periodically and
is used to schedule execution of generated code in target
hardware. The file customization template can be set from
target tlc file, which is the first function called after code
generation is started. Besides setting the target specific main
file it is used to collect parameter needed during generating c
files or building process by providing user interface (graphical
dialogs) for setting user parameters affecting the generated
code (TLC and MAKE variables). These variables are used to
specify compiler settings, enable automatic load of generated
code, etc.

The second group of target specific function (functions for

peripheral handing) is added as a special block in Simulink
model. Scheme of this concept is illustrated in Fig. 5.

Fig. 5 Simulink model and components for code generation

Matlab/Simulink provides tools for creating blocks that can

easily implement functions for peripheral handing; the key
concept is that the block can provide two types of
functionality for each Simulink block. One type is used during
running the simulation and second one is used during code
generation process.

The function used during simulation, referred as MEX
function, can be implemented in several supported languages
and translated with supported compiler into .mex or .mex64
(based on type of operating system being used) file which will
be used during Simulink simulation. When developing the
Cerebot blockset, these functions were programmed in C
language.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 538

The second group of created functions, which is used
during code generation process, consists of scripts and
functions in TLC language. This language is designed to
process text files and it can place any expression at the point
in code “instead of” the Simulink block. It can be any c
language expression or function call.

B. Platforms supported for automatic code generation
Today, various targets are already supported up to various

extend for automatic code generation from Simulink. Some
targets have inherent support from products that are a part of
Matworks Embedded Coder, support for other products can be
added by purchasing a third party tools or developing them
[9].

From category of blocksets for a 32-bits Microchip
processors several commercial blocksets are available.
Particularly, one blockset was created by Kerhuel [10] and
second from a Microchip Company is being developed,
currently support only 16 bit microprocessors [11]. However,
these blocksets support only some build-in MCU peripherals.
Beside this, in some cases a non-typical application can
require peripheral functionality which is not supported by the
available blocksets.

In cases where missing support from blocked does not
allow fully automatic code generation from Simulink some
options are available. Automatically generated code from
Simulink can be imported into a hand written C project.

This process is usually referred as cogeneration. Matlab
provides tools for simple creation of generic C code which is
ready to be imported into C project where target specific
functions (for handing peripherals) are written manually. This
concept is further explained and demonstrated in [12]. This
approach is suitable for applications with hardware which is
not expected to be used in further projects.

For other applications creating a blockset is recommended
approach. Although creating a new block set is quite complex
task, when reusing created blocks in various designs the time
saved when generating code directly from Simulink can
compensate costs for developing new block set.

C. Cerebot platform
Cerebot MX7 cK target is equipped with one of the most

powerful 32bit PIC microcontrollers available
(PIC32MX795). This makes the board suitable for
implementing fairly complex algorithms. Beside this it
provides several very complex interfaces, which are not
common in embedded applications, for instance Ethernet, or
USB interface.

There is a wide range of various peripheral modules which
can be purchased and used with Cerebot board. It contains
various types plug-in modules suitable for mechatronics
applications (temperature sensor, acceleration, etc.)

Cerebot has a superior position in its category of embedded
rapid prototyping boards for its number of ports trough which
extending peripheral modules can be connected. And for high
number of various types of extension peripheral modules that

are available for this platform.
For these special properties, we have decided to create

support for Cerebot platform to enable option for automatic
code generation directly from the Simulink model. This
blockset will further increase the number of applications for
this board as now this board can be used without any
knowledge of low level programming languages and the
software can be developed much faster.

One of the most complex peripherals which can be
connected to a Cerebot board is display unit (reffered as
OLED2 module). Although it can display only 16 shades of
one color and has resolution of 64x256 pixels, it can display
quite advanced graphic elements.

There is no similar blockset for any platform which would
enable automatic code generation for this peripheral unit. As
standard approaches using masked blocks or calling Matlab
GUI for configuring block parameters does not provide
feasible flexibility for modifying block which generates
various types and quantity of functions with different
parameters. Therefore, a special java application was
developed to provide such functionality in Simulink model.

Some alternative solutions to this approach represent
programmable display modules which can be purchased
together with graphical programming environment. From its
specialized environment the code can be automatically
generated, however these tools can be used only with
hardware, which they are designed for. Beside this, the price
for autonomous Serial graphic displays which are produced by
Electronic assembly is not very low (compared to displays
equipped with simple driver).

III. BLOCKSET FOR CEREBOT
This section will describe developed Simulink blocks,

programs and templates that are part of the Cerebot blockset.

A. Simulink scheduler templates
Since the Cerebot platform is designed only for one type of

microcontroller without interchangeable crystals, unlike other
blocksets, this one does not support setting parameters altering
CPU clock speed by configuration options for clock dividers
or multipliers (the CPU is configured to run on full clock
speed all the time). Although this can be seen as unwanted
limitation of the blockset flexibility, it makes using this
blockset with Cerebot platform easier as no initial
configuration is required from the user.

The blockset supports generating single and multitasking
code. The multitasking code can be generated either as a
cooperative multitasking or preemptive multitasking
scheduled by the FreeRTOS system.

The multitasking code generated from Simulink model
without the option to preempt slower task has obvious
disadvantage; all tasks (even the slow ones) has to be finished
within the period of fastest task. The FreeRTOS overcomes
this limitation, however the code needed to maintain
simulation is much bigger. Beside this, especially slower tasks
have to use thread safe functions and implement critical

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 539

section, where blocks of code should not be interrupted during
execution.

Thus, the FreeRTOS scheduler presents a very straight
forward solution for projects, which would be difficult to
divide into separate functions running in cooperative mode
otherwise. Compared to nested interrupts which would enable
preemptive multitasking for simple algorithms, the RTOS
implements separate stack for each thread and provide
functions for managing functionality, which are necessary for
instance in situations, where certain blocks of code can’t be
interrupted during execution.

The integration of generated code with a FreeRTOS
requires selecting only one option in Cerebot configuration
parameters dialog (see the option in Fig. 6)

Fig. 6 Enabling option for generating preemptive code powered by a
Free RTOS from Simulink model

If this option is not selected, the standard rate monolithic
scheduler without preemption functionality is created and is
timed by periodical event generated by the on chip timer
module.

When this option is selected, it enables seamless fully
automatic integration of the generated code with the
FreeRTOS system, where:

- SysTick is running with the same frequency as slowest
task, therefore no “necessary” scheduler calls are
performed.

- Threads are automatically created with groups of blocks
that have the same execution time period.

- Each thread is timed using the vTaskDelayUntil()
function - and synchronized (for offset) using the
vTaskDelay() FreeRTOS task functions.

- Each thread is created using default size for stack (can be
altered in template files).

B. Simulink blocks for simple peripherals
These blocks are used for implementing functionality of

basic peripherals which does not require complex
configuration. For creating these blocks standard options
available from Simulink were used. That means creating a
masked block using mask editor and created block c.mex and
.tlc functions were not dynamically modified once the block
was created.

For the intended purpose of the developed blockset,
individual block functionality for simulation does not have to
be implemented as modeling peripheral behavior was not
necessary. This simplification saved a significant amount of

time during Cerebot blockset development.
Particularly, blocks in our blockset which represent output

peripherals have inputs for signals which are not used during
simulation time. That means, no calculations are performed
with signal which was connected to that block.

Input peripherals need to output some signal during
simulation. But it can be constant value. The default zero
value was outputted from blocks representing input
peripherals.

This might seem as a limitation for development purposes.
However, when testing the designed algorithm arbitrary signal
can be used instead of input peripherals (ADC input, UART)
blocks. Blocks of these peripherals need to be used only for
code generation and does not to be present during algorithm
development or testing.

Typical examples of blocks which are not available in
commercially available blocksets are blocks for peripherals
specific for particular board design

For instance the block for controlling LEDs: such block is
not available on any other targets, as signaling LEDs are
usually connected to various digital pins on microcontroller
unit. When using a blockset for microchip MCU a digital
output port block needs to be used. This concept is less clear
as the user has to find to which port is the particular led
connected. On the other hand, our block has inputs for each
led making it easy to identify LEDs and corresponding block
inputs (see Fig. 7).

Fig. 7 Identifying block inputs and corresponding led location on
board is simple

Another example of blocks crated for particular hardware

version is blocks for controlling serial port (Fig. 8). One block
is used for configuring UART port properties – speed, data
parity etc. Other blocks are used for writing and reading data.
All blocks use icons to illustrate their function. Since these
blocks are configured to use only one build-in UART port,
using this blockset is much easier compared to other products
for automated code generation as the icon on blocks will help
to identify proper port which is used with this particular block.
These blocks for configuring UART interface and using the
peripheral module are illustrated in Fig. 8. The configuration
dialog is illustrated in Fig. 9.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 540

 Fig. 8 Blocks and user interface for UART peripheral

Fig. 9 Dialog for configuring UART peripheral module

C. Simulink blocks for complex peripherals
Implementing block for controlling display peripheral unit

using Simulink mask editor or Matlab GUI wouldn’t provide
simple way for implementing tool for setting graphic
components for display unit driven by embedded
microcontroller. Therefore a special application was
developed for this task.

The Microchip Company provides free graphic library with
source code for creating various graphic object which can be
implemented with arbitrary graphic display unit (user only
need to implement low lever layer of hardware drivers and
configure the library based on used hardware type).

Implementing functions from Microchip graphic library
saved significant amount of time since we can call these
functions from generated code without the need to create them
by ourselves.

The main task of blocks used to generate code for display
unit is to:

• Place selected functions calls from graphic library into

generated code. Most functions are executed during
model step. Object initialization is moved to initialization
section.

• Configure and maintain variables used as input for
functions from graphic library. If the function requires an
object as an input parameter, the generated code has to
pack variables to appropriate structure.

• Link the selected variables with the Simulink signal (this
mechanism allows controlling displayed objects from the
Simulink model). Each signal used in the generated code
has to have proper parameters (data type and size).

• Generate the functions which will be needed by the graphic
library functions during linking code. Some functions use
extern functions or variables, modules containing this
objects need to be added to the compiled units.

• Generate request for adding library modules to compiled
code. As some functions are using functions from other
modules when starting the code generation process, all
the required modules for the compilation are needed to be
saved to MAKE variables. Once the TLC compiler starts,
RTW parameters are locked and no changes done to them
will be reflected in generated code.

• Provide the suitable user interface for selecting object
which will be displayed and configure them. Easy to use
graphical user interface was created for comfortable and
easy display layout configuration.

• Create a link for calling the Microchip Graphic Resource
Converter program. Before for instance bitmaps can be
loaded and displayed, they need to be converted to proper
format. Microchip provides the utility, which can perform
the conversion. This utility can be started from program
for modifying scene options. The generated files are
detected automatically and objects (fonts and images) are
then available for selection in object options in scene
editor program.

Previously specified functionality was implemented using
two Simulink blocks for the configuration of the generated
code. Fig. 10 illustrates created blocks and hardware which is
running code generated from this Simulink model.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 541

 Fig. 10 Code generated from Simulink running on target hardware

One block (Hardware configuration) creates interface for
configuring the selected display unit (creating driver layer
based on the resolution of the display and the pin connection
configuration. Second block (Scene configuration) configures
the display layout. Since the layout represents a very complex
structure a separate java application was created to provide
user interface for configuring scene and mechanism for
generating required files.

Creating a new instance of display scene block will create
empty scene layout. When double clicking on scene layout
block the external application will be called. After
modifications of the scene parameters are complete, the MEX
file is compiled if necessary and block mask updated. Scheme
of the external application used for configuring display scene
is illustrated in Fig. 11.

 Fig. 11 Overview of display scene layout editor hardware

Functions of different areas labeled in Fig. 10 are explained
below.

1. The File option popup panel which presents options to

generate new .mex and .h file for particular scene.
2. List of object placed to scene and allows its selection is

displayed in this section.
3. The selected scene object properties are presented in this

table. Based on element type, its properties can be fixed
or entered from a Matlab Simulation. When Create inport
option is checked a input port to a block with label
corresponding to text in signal desc option is created.
Value from this signal then modifies displayed item.

4. Clicking on buttons in this panel will place a corresponding
object on screen.

5. Is used as a preview for generated scene layout preview.

As described in this chapter generating code for project

which uses the display peripheral is very easy when using
Cerebot blockset. Adding one configuring and at least one
scene block is sufficient to display objects on OLED2 module.
The display scene is configured in graphical user interface and
selected object properties can be controlled from model using
Simulink signals (connected to input port of scene option
block).

D. Blockset “supporting” files
Another group of files which were created or configured, to

integrate external tools to support code generation process,
were make script and callback hooks.

When make script is generated it is automatically calls
XC32 compiler with proper parameters. Once the executable
code is generated, callback method is used to invoke loader,
which loads generated program to a MCU flash memory. This
loader was written in Java language using free libraries for
communication with the programmer provided by a Microchip
Company. The programmer/debugger chip is a part of the
Cerebot platform and has an USB interface for
communication with a PC.

IV. MAGNETIC LEVITATION CONTROLLER

A. Plant and hardware setup
Controlling the magnetic levitation is a little tricky task.

The plant is unstable and with a very small time constant. The
steel ball is floating in magnetic field, which has to be strong
enough to “levitate it” but not too strong to “suck it”.
Therefore the control loop has to be executed very quickly
(the frequency of 1000Hz is sufficient for PID controller).
Beside this the controller uses a display module to show value
for desired steel ball position. Redrawing the display is a very
slow process; therefore it is convenient to have a slower task
which will update the display with lower period than the one
used for computing PID control algorithm. The controlled
plant is illustrated in Fig. 12, left.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 542

Fig. 12 Overview controlled plant (left) and signal conditioning
circuits (right)

This plant can be almost directly connected to a Cerebot

hardware and modules. Only the voltage has to be properly
scaled (down for output signals, up for input signal). We use
only one output signal from the controlled plant – the height
in which is the steel ball floating. And one input signal, that is
used for controlling current going through coil in the
electromagnet levitating the steel bal. The voltage conversion
circuits consist only from resistors and operating amplifier.
Fig. 12, right illustrates how simply and quickly can be
created module for scaling the voltage between Cerebot and
controlled plant.

The Cerebot hardware uses several modules. A display
module is used to provide information to user, a digital to
analog converter module is used for generating control signal
for magnetic levitation and one on chip analog to digital
converter module is used to read the voltage from ball position
sensor. The complete Cerebot hardware setup is illustrated on
Fig. 13.

Fig. 13 The Cerebot hardware with connected peripheral modules

The next step is to create software. This can be done in
Simulink environment as described in next chapter.

B. Software setup
The Simulink model running on the target consists of two

types of blocks. The one group is the control algorithm and
second one consists of blocks used for handing the
peripherals. Implemented model is illustrated on Fig. 14

Fig. 14 Simulink scheme of algorithm implemented in Cerebot

This simulation is powered by a freeRTOS kernel, which
creates one task for fast and one for slow simulation part (the
fast and slow tasks are marked in Fig. 14). The implemented
PID control algorithm uses following peripheral modules:

- Block for reading value from onchip ADC module.
- Block for writing value to Pmod DAC module.
- Block for writing value to Pmod display module.
For reference, the entire simulation consists only of roughly

20 blocks and 20 lines of code in embedded Matlab function
block (implements functions for formatting strings for display
module). It generates 25 .c and .h files and uses another 12 .c
modules from libraries (for display and RTOS system) having
together several thousand lines of code. Most of these files
would have to be written or configured manually if the
support for automatic code generation is not available.

V. CONCLUSION
Created support for automatic code generation from

Simulink presents a tool which can very significantly speed up
the application development cycle.

As demonstrated in previous chapter, the executable code
can be created very quickly. Once the control algorithm is
designed it can be used in Simulink model from which the
executable code is generated. Only blocks for interfacing with
peripheral modules need to be added.

Created blockset can help speed up the development
process of any application which is using this hardware. Since
it is an open source, missing blocks for unsupported
peripherals can be easily created by modifying existing ones,
which makes this blockset more flexible than available
commercial products.

REFERENCES
[1] E. Markopoulos, J. Bilbao, E. Christodooulou, T. Stoilov, T. Vos, C.

Makatsoris, "Process Development and Management: towards the
maturity of organizations", in: NAUN International Journal of
Computers Vol2 (4) 2008, pp.361-370

[2] Grepl, R. Real-Time Control Prototyping in MATLAB/Simulink: review
of tools for research and education in mechatronics IEEE International
Conference on Mechatronics (ICM 2011-13-15 April, 2011, Istanbul),
2011.

[3] ITO, Kunihihiko; MATSUURA, Saeko. Model driven development for
embedded systems. In: Proceedings of the 9th WSEAS international
conference on Software engineering, parallel and distributed systems.
World Scientific and Engineering Academy and Society (WSEAS),
2010. p. 102-108.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 543

[4] Kuhl, M.; Reichmann, C.; Protel, I.; Muller-Glaser, K.D.; , "From
object-oriented modeling to code generation for rapid prototyping of
embedded electronic systems," Rapid System Prototyping, 2002.
Proceedings. 13th IEEE International Workshop on , vol., no., pp. 108-
114, 2002

[5] Duma, R.; Dobra, P.; Abrudean, M.; Dobra, M.; , "Rapid prototyping of
control systems using embedded target for TI C2000 DSP," Control &
Automation, 2007. MED '07. Mediterranean Conference on , vol., no.,
pp.1-5, 27-29 June 2007

[6] M. Stanek, D. Manas, M. Manas, J. Navratil, K. Kyas, V. Senkerik, A.
Skrobak, “Comparison of different rapid prototyping methods”,
International Journal of Mathematics and Computers in Simulation 6 (6),
pp. 550-557

[7] Bližnák, Michal, et al. "Optimized Production-Ready Source Code
Generation Based on UML." INTERNATIONAL JOURNAL OF
SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 1, Volume 7, 2013

[8] Toom, A., Izerrouken, N., Naks, T., Pantel, M., Ssi-Yan-Kai, O.:
Towards reliable code generation with an open tool: Evolutions of the
Gene-Auto toolset. In: ERTS. Societe des Ingenieurs de l’Automobile
(2010)

[9] Netland, Ø.; Skavhaug, A.; , "Adaption of MathWorks Real-Time
Workshop for an Unsupported Embedded Platform," Software Engi-
neering and Advanced Applications (SEAA), 2010 36th EUROMICRO
Conference on , vol., no., pp.425-430, 1-3 Sept. 2010.

[10] "Simulink - Embedded Target for PIC." Lubin Kerhuel's Website. N.p.,
n.d. Web. 31 Jan. 2014.

[11] "MPLAB 16-Bit Device Blocks for Simulink." Development Tools.
N.p., n.d. Web. 31 Jan. 2014.

[12] Lambersky, V., "Model based design and automated code generation
from Simulink targeted for TMS570 MCU," Education and Research
Conference (EDERC), 2012 5th European DSP , vol., no., pp.225,228,
13-14 Sept. 2012

V. Lamberský was born in Moravska Trebova, Czech Republic, in 1985. He
received the BSc degree in Mechatronical Engineering in 2008 from the
Faculty of Mechanical Engineering at Brno University of Technology, and
engineer degree in Mechatronical Engineering in 2010 from the Faculty of
Mechanical Engineering at Brno University of Technology. Currently he is
pursuing his ph.D degree. His current research focuses on methods for
predicting computing performance of control algorithms on embedded
hardware and methods for implementing support for automated code
generation from higher programming languages.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 544

