
 

 

  
Abstract—We present a new mathematical technique of 

biomedical data processing, based on the knowledge of differential 
geometry of curves. The efficiency of the method is demonstrated 
using real and simulated ballistocardiographic data. The basic vital 
functions - heart and respiration rates - have been extracted from the 
data measured by a special bed equipped with mechanical sensors. 
Simulated data are used to show the robustness of the method with 
respect to possible very low signal-to-noise ratio. 
 

Keywords—Ballistocardiography, Differential geometry, Vital 
functions.  

I. INTRODUCTION 
HE   main objective of the present study is to introduce a 
new mathematical method of biomedical signal 

processing, based on the differential geometry of curves. It has 
been shown recently that the novel application of mathematical 
approach, commonly used in some completely different 
disciplines, to the biomedical signal processing can bring some 
really new, and sometimes surprising, insights to the 
information extraction from the data and its interpretation. As 
an example we mention the application of random matrix 
theory - a common tool in quantum chaos domain - for the 
human EEG analysis, [1], see also [2]. The differential 
geometry is a very versatile tool covering wide range of 
applications e.g. in physics, such as general theory of 
relativity, quantum waveguides theory, etc. However, its usage 
for the biomedical signal processing was, up to our knowledge, 
reported for the first time quite recently in 2008, [3]. Since 
2008, several papers concerning the geometric approach 
applied to so-called ballistocardiography have been published. 
 

This work was supported by the project of specific research at Faculty of 
Science, University of Hradec Kralove, grant No. 2013/2113.  

D. Jezbera  is with the University of Hradec Králové, Faculty of Science, 
Rokitanského 62, 500 03 Hradec Králové and Charles University, Faculty of 
Medicine in Hradec Králové, Šimkova 870, 500 03 Hradec Králové, Czech 
Republic (e-mail: daniel.jezbera@uhk.cz). 

J. Kříž is with the University of Hradec Králové, Faculty of Science, 
Rokitanského 62, 500 03 Hradec Králové, Czech Republic (phone: 
+420734420623; e-mail: jan.kriz@uhk.cz). 

F. Stundička is with the University of Hradec Králové, Faculty of Science, 
Rokitanského 62, 500 03 Hradec Králové, Czech Republic (e-mail: 
filip.studnicka@uhk.cz). 

P. Šeba is with the University of Hradec Králové, Faculty of Science, 
Rokitanského 62, 500 03 Hradec Králové, Czech Republic (e-mail: 
sebapetr@gmail.com). 

The brief review of these results is provided in Section III of 
the paper. 

Ballistocardiographic signal represents the mechanical 
recoil of the human body caused by the cardiac and respiratory 
activity. Another aim of the paper is to show that geometric 
approach to the human ballistocardiographic signal enables an 
unobtrusive detection of useful physiological information. It 
covers the heartbeat and respiration monitoring and provides 
an estimation of the pulse wave velocity along the abdominal 
aorta. 

Ballistocardiography has a long tradition. It has been 
studied for decades using various types of measuring devices. 
It was demonstrated in many clinical studies that the signal 
contains valuable information about the state of the 
cardiovascular system. However the variability and complexity 
of the signal hindered its usage in the routine clinical praxis - 
see [4] and [5] for a review. 

The complexity of the ballistocardiographic signal 
distinguishes it from the commonly used ECG 
(electrocardiography) which measures the electric activity of 
the heart. While ECG is easily reproducible the measured 
mechanical signal is more challenging. Even if the person is 
quietly resting the body motions caused by the cardiac activity 
interfere with the breathing and with the motion of viscera. 
Moreover the heart activity excites various mechanical 
resonances that are not directly related to the cardiovascular 
process and depend on the immediate condition of the body 
tissues and of the underlying bed. An additional problem is 
related to the contact between the body and the measuring 
sensor. 

The ballistocardiographic measurement is done 
unobtrusively, i.e. the sensors are implemented in the bed and 
are invisible for the patient. Moreover the patient is free to 
take any position he wants (provided he rests quietly). This 
means that there is not a standard mechanical force transfer 
between the body and the sensor. So the measured signal 
depends substantially on the posture of the body. And last but 
not least are also problems caused by the vibration of the 
ground (external noise) [6]. Particularly in higher floors it can 
influence the measurement substantially. As summary: a clear 
and repetitive pattern known from the ECG signal (the QRS 
complex) is usually missing in the ballistocardiographic signal. 

On the other hand the mechanical monitoring has also 
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certain advantages. ECG represents solely the electrical 
control signal. What really matters is however the related 
mechanical activity of heart muscle and the propagation of the 
pulse wave along the arterial tree. The heart contraction can be 
displayed by echography which is however time consuming 
and requires experienced personnel. The ballistocardiographic 
data can supply similar information. Their advantage is that 
they enable a low cost and continuous monitoring. And the 
motion activity and/or the sleep evaluation of the person can 
be obtained into the bargain, [7]. The technological 
improvement of the mechanical sensors enables nowadays to 
integrate them into a standard bed. So it is not a surprise that 
we can recently observe an renewed interest in this field. 

There are several attempts to use the mechanical sensors in 
an bed to monitor the human vital functions. Some of them are 
based on the weight measurement that represents a standard 
part of modern intensive care bed. Another solution of interest 
could be easily portable and of potential use in any standard 
bed. By a portable equipment we mean simple enclosure that 
can be placed below the bed mattress and being able to register 
and evaluate the ballistocardiographic signal. The drawback of 
such a portable equipment is that the obtained data are usually 
of lower quality than data obtained on an intensive care bed 
with special construction and equipment. This means that the 
mathematical algorithm analyzing the data from the portable 
ballistocardiographic equipment has to be particularly robust 
and stable. Such algorithm based on geometrical properties of 
the signal has been developed and is described below. 

II. SIGNAL ANALYSIS 
As already mentioned even in the ideal case without 

external noise there is already a variability of the 
ballistocardiographic signal due to the insuppressible 
interference between the cardiac and respiratory motions. 
Therefore to cut the signal into epochs related to the particular 
heartbeats is, in contrast to ECG, not straightforward. Several 
methods were developed for this purpose. One of them use the 
machine learning [8], [9]. Another method improves the signal 
by using multiple sensors imbedded into the bed mattress and 
measuring the pressure changes on various places [10] etc. We 
will use the fact that the real ballistocardiographic signal is by 
its nature three dimensional object since it reflects the body 
recoil in the longitudinal, lateral and in the dorso-ventral 
directions [11], [12]. The clue is however not contained 
merely in the three dimensional character of the data but also 
in the method we use to uncover the underlying processes - our 
analysis will be purely geometrical. We will not treat the 
measured data as several separated time series but we will 
describe them as the coordinate projections of a certain object 
- the signal curve. As far as we know this approach is new and 
has been not reported or used before, with the exception of our 
recent papers, [3], [13] – [17]. The clinical tests performed up 
to this day show that it enables the unobtrusive monitoring of 
the vital functions regardless on the particular sensor system 
construction.  

 The ballistocardigraphic process is a mechanical image of 
the momentum changes due to the heart muscle contraction 
and the pulse propagation along the main arterial branches. It 
has therefore similar geometrical transformation properties as 
the measured body. When the signal is measured in a fixed 
reference frame (related with the bed) and the body turns 
round, the measured ballistocardiographic signal curve rotates 
as well [18]. The process itself remains however unchanged 
and so the transformed signal curve describes the same 
hemodynamics. (The influence of gravity or of other external 
forces is neglected for simplicity.) Note that the measured 
signals - i.e. the particular projections of the signal curve to the 
coordinate system - may change drastically when the body 
turns. The geometric properties of the signal curve remain 
however invariable. The gravity slightly changes this picture. 
It has been for instance demonstrated, that during a parabolic 
flight, which withdraw the gravity influence, the signal curve 
of a vector cardiogram undergoes an additive scaling - see 
[19]. 
 Based on the above arguments we can now formulate the 
main approach to the ballistocardiographic vital functions 
monitoring. We will not analyze the measured time series 
themselves. We will also not study the particular signal curve 
(i.e. a geometric object, whose coordinate projections are the 
measured data). The crucial issue we will discuss are the 
equivalence classes of the signal curves, i.e. classes of curves 
that are equivalent under the similarity transform, i.e. under 
rotation and translation. 
 From the mathematical point of view, we will exploit the 
invariant curve description based on the concept of moving 
coordinate frame, [20]. At a given point of the curve the local 
coordinate frame is defined in such a way that one of its axes 
is tangential to the curve, the second axis represents the 
normal, the third is the binormal, etc. As the point moves along 
the curve the coordinate system changes as well. The signal 
(and hence also the final signal curve) is naturally measured in 
(parametrized by) time. Geometrically this is, however, not the 
optimal description since such a parametrization is not related 
to the curve geometry. A natural parameter is the arc length, 
i.e. the length measured along the signal curve. What is 
understood under the notion “arc length” depends on the 
transformation under which the invariance is defined. Here we 
look for a curve description that is invariant 
under the Euclidean transformation - so “arc length” means 
simply its Euclidean length. A similar theory can be, however, 
constructed also for the affine group -see [21]. 

A. Geometric Invariants  
To construct the Euclidean geometric invariants let us 

consider a smooth and regular n-dimensional time 
parameterized curve c(t), i.e. the smooth mapping c : [0, T] → 
Rn with T being the length of the measured interval, such that 
the standard n-dimensional Euclidean space norm of its 
derivative  
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The functions cj denote the curve projections to fixed reference 
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frame.  
 The Euclidean arc length is defined by 

ττ dcts
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Function s is obviously increasing, thus there exists its inverse. 
Writing )),(()( stcsc = where t(s) is the inverse of s(t) we 
obtain reparameterization c of the curve c called arc length or 

unit speed (since clearly 1)(' =sc ) parametrization. Since 

both curves c and c belong to the same equivalence class, i.e. 
they describe the same geometric object, we will omit the bar 
hereafter. If it would be necessary, we will distinguish both 
mappings by writing t or s as the function argument. 

Although the following construction can be made for any 
parametrization, we will use the arc length, since the following 
formulae are simpler for this case. Let us assume that the 
derivatives c’(s), c’’(s), …, c(n-1) are linearly independent for 
each s. Then there exists for each parameter s an orthogonal 
frame (E1(s),…,En(s)) of n-dimensional unit vectors such that 
the k-th derivative c(k)(s) of the curve c(s) can be expressed as 
a linear combination of its first k vectors (E1,…,Ek), 

11 −≤≤ nk . So the vector E1(s) is just the derivative of the 
curve with respect to the arc length s: E1(s) = c’(s). Next 
vectors E2(s),…,En-1(s) can be obtained by the Gramm-
Schmidt orthogonalization of the first n – 1  derivatives of c(s). 
The last vector is simply the unit vector perpendicular to 
(E1(s),…,En-1(s)) completing a right-handed frame. The family 
(E1(s),…,En(s)) is called the distinguished Frenet frame. 

The further geometric invariants (called usually Cartan 
curvatures) κi, i = 1, …, n – 1, describing uniquely the curve c 
(up to the similarity transform) are defined by the Frenet-
Serret formulae as 

).()(')( 1 sEsEs iii +⋅=κ             (3) 
Roughly speaking: the curvatures κi characterize the local 
changes of the coordinate system related with the curve. It is 
worth to notify that there are exactly (n – 1) curvatures 
describing the n-dimensional curve. One dimension seems to 
be missing. This is due to the fact, that the curvatures describe 
the object invariantly, i.e. independently on its rotation and 
translation. The missing dimension describes the exact 
position of the curve in the space whereas the internal 
geometry of the curve is given by the (n – 1) functions κi. 

Our main assumption is that haemodynamical events like the 
heart contraction or the scattering of the pulse wave on an 
arterial bifurcation express themselves in the intrinsic 
geometry of the signal curve and are contained in the functions 
κi. In practice it turns out that to recognize the main cardiac 
and pulse wave events it is enough to investigate the signal arc 
length and first curvature κ1 only. 

B. Arc Length and the Monitoring of the Vita Functions 
Let us calculate the Euclidean arc length (2) for a nontrivial 

signal (i.e. a signal that is not constant in all channels). For 
large t the function s(t) is approximately linearly increasing 

with time: atts ≈)( at with a being a constant depending 
mainly on the signal variance. We will assume for simplicity 
the variance to be constant, i.e. that the signal strength and the 
background noise do not change during the measurement. 
Subtracting the linear increase we define a new function M(t) = 
s(t) – at  which display the local changes of the arc length. The 
processes (respiratory or the cardiac activity) that are reflected 
in the ballistocardiographic signal change the geometry of the 
signal curve. They lead to local changes of the arc length that 
are finally displayed as a quasiperiodic behavior of the 
monitoring function M(t). The point is that the arc length is not 
very sensitive to the detailed shape of the signal. This solves 
the problem related to the ballistocardiographic signal 
variability. Although the signal shape of a resting person 
changes in the dependence on the instant interference between 
the cardiac activity and breathing the arc length grow is less 
sensitive. We will use the function M(t) as the starting point 
for the ballistocardiographic vital functions monitor. 

To be precise let us define the running average of the arc 
length over a time period Δ, 

∫
∆+

∆−∆
=∆
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2/
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t

dsts ττ                (4) 

and the monitoring function M(t) as 
).,()(),( ∆−=∆ tststM                (5) 

The interval Δ used in the above definition depends on the 
underlying physiological process and equals to 4 seconds for 
breading or to 1 second for the cardiac activity respectively. In 
the ideal case of a resting person and a small background noise 
the function M(t, Δ) behaves quasiperiodically. The time 
elapsed between two subsequent heart beats (Δ = 1s) or 
between two breaths (Δ = 4s) is simply obtained as the 
distance between two subsequent maxima (or minima) of the 
function M(t, Δ). 

The body motion and/or the external influence (for instance 
the building vibrations) may lead to the appearance of additive 
and spurious maxima, which are not related to the 
physiological process of interest. The quasiperiodic character 
of monitoring function remains, however, untouched since 
those perturbations are mainly of a random nature. The mean 
time elapsed between two subsequent heart beats is in this case 
obtained using the autocorrelation function. 

C. Cartan Curvatures and Pulse Wave Velocity 
Mechanical events like a heart contraction or a scattering of 

the pulse wave on an arterial bifurcation lead to recoils and 
can be registered by mechanical sensors. It might be difficult 
to observe this response just by inspecting the individual time 
series. But such events change the geometry of the total signal 
curve. Hence they will be visible as a changeover of its 
invariants.  

It was demonstrated that the scattering of the pulse wave on 
the aortic arch as well as its scattering on the abdominal 
bifurcation appear as clear maxima in the first Cartan 
curvature. The time lag between these two events (two 
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Figure 1: Comparison of the monitoring function (blue) and the ECG signal (red) in one volunteer.

maxima) is inversely proportional to the pulse wave velocity.  

III. SUMMARY OF PUBLISHED RESULTS 
Our above described geometrical approach to 

ballistocardiographic signal analysis has been used for several 
experiments. The paper [3] (see also [13]) deals with the 
experiment of the volunteers reclining quietly on the stiff bed 
mounted on the top of standard Bertec force plate, model 
4060A, equipped with the strain gage transducers. The pulse 
wave velocity on the aorta was estimated using the first Cartan 
curvature.  

The data measured by a prototype of a ballistocardiographic 
bed with four three-axes strain gauge transducers embedded in 
its legs were analyzed in [14]. The pulse wave velocity as well 
as heart beat variability were evaluated. The results were 
compared with the pulse wave velocity measured by 
applanation tonometry (see [22]) and RR intervals measured 
by standard ECG, respectively. 

IV. EXPERIMENTAL SETUP 
The data obtained by the automatic weighing system 

integrated into the intensive care bed “Multicare” produced by 
Linet, Ltd. manufacturer are studied. The four weighing 
sensors are placed in the four corners of the loading surface of 
the bed. A volunteer was asked to lie quietly in the supine 
position on the bed. Signals from all four sensors were 
digitalized with AD converter and stored to the computer hard 
disc. The above described mathematical method has been 
implemented on the computer as a Matlab script.  

The geometric approach has been tested on a group of 10 
healthy volunteers (7 male and 3 female) of the age varying 
from 28 to 56. Each measurement lasted for four minutes. The 
ECG signal was measured simultaneously for comparison. 

V. ARTIFICIAL DATA 
We emulated the ballistocardiographic signals that were 

similar to  measured signal recordings. Several Gaussian 
waveforms (with different means, standard deviations and 
amplitudes) were chosen to emulate the mechanical response 
of the cardiovascular system. Variability between trials as well 
as the quasiperiodic character of the data were achieved by 
varying the parameters of Gaussian waveforms. The white 
background was added to the signal. The SNR of emulated 
data was varied from 1 dB to -10 dB. .  

VI. RESULTS 
It appeared that the integrated weighing sensors were not 

sufficiently precise to estimate the pulse wave velocity. Their 
precision was, however, perfectly sufficient to obtain the 
information about the vital functions, in particular heart beat 
and respiratory frequency with the beat-to-beat precision. 

The above described monitoring function was calculated 
and the heart rate and respiratory frequency was evaluated for 
each measured subject. The heart beat was then compared to 
the RR intervals obtained from the standard one-channel ECG 
recordings. 

The typical example of the monitoring function in 
comparison with the ECG signal is depicted in Fig 1. One can 
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easily check the clear coincidence of the ECG R waves with 
the peaks of the monitoring function. 

 Figure 2: Heart rate in beat to beat precision obtained by geometric 
approach and ECG. 

 
 
 

Figure 2 shows the example of the heart rate (in the unit of 
beat per minute) evaluated by ECG RR intervals and by our 
method.  

The respiration was also obtained from slower variations of 
the monitoring function, see Fig 3. 

In all measured volunteers we have found the difference 
between heart rate measured by the monitoring function and 
ECG was less than 10%. 

The analysis of the artificial ballistocardiographic data has 
proven the robustness of the technique with respect to low 
signal-to-noise ratio. It may seem surprisingly, since naturally 
the calculation of derivatives increases noise power. However 
the above described smoothing procedure (running average) is 
really powerful. 
 

We have not observed any significant difference in the 
monitoring function while signal-to-noise ratio was varied. As 
an example we present a comparison of a one particular 
emulated signal depicted together with a monitoring function 
for two different values of signal-to-noise ratio. While the 
noise of the signal itself is really obvious, the monitoring 
function remains nearly unchanged, see Fig. 4. 

 
 

Figure 3: Time intervals between two following heart beats obtained by geometric approach and ECG together with the time interval between 
two subsequent inhalations. 

VII. CONCLUSIONS 
Rather recent method of the biomedical signal processing 

based on differential geometry was presented. Its efficiency 

and the robustness was confirmed on the data measured by the 
weighing sensors integrated in the intensive care medical bed 
as well as on the emulated data. The open question remains the 
possibility of the usage of the geometric approach to analyze 
some other biomedical signals. 
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Figure 4: Comparison of the signal from one particular artificial balilistocardiographic channel (blue) with the monitoring function (red). The 
signal-to-noise ratio in the upper part is 1, while in the lower part -10. 
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