
 

 

  
Abstract—In this overview a mathematical and physical model 

of the dynamic electrical bioimpedance is presented. The properties 
of dielectric materials, the dependence of dielectric permittivity on 
frequency as well as the expression of the complex permittivity for 
different theory approaches such as Debye, Cole – Cole, Cole – 
Davidson and Havriliak – Negami are also given. In addition the 
Fricke–Morse model, the Cole impedance model and the Debye 
model for biological tissue are analyzed.  
 

Keywords—Conductivity, dielectric materials, impedance, 
permittivity. 

I. INTRODUCTION 
 When an electric field (EF) can be maintained with zero 

or almost zero power losses in a material, then it is 
characterized as a dielectric or electrical insulator. In fact, the 
dielectric is not an ideal insulator, because a number of 
electrons can pass through the material. Because of the 
processes of changing the polarity in the material, part of the 
electrical energy is lost as heat. Dielectric material is one that 
has the ability to store energy when an external EF is applied. 
When a constant voltage is applied across the parallel plates of 
a capacitor with a dielectric between them, then more energy 
is stored. This means that the dielectric increases the ability of 
energy storage in the capacitor, eliminating some of the 
charges of the electrodes that would help in increasing the EF 
strength between the plates. The measured capacity with 
dielectric depends on the electrical loads of the material and is 
related to the dielectric constant. The following equation 
applies: 
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where C and Co are the capacities with a dielectric and 
vacuum, respectively, and εr΄ is the relative dielectric 
permittivity of the material. Dielectric materials used in the 
manufacture of capacitors, are the most suitable for preventing 
the creation of electrical currents through their mass while at 
the same time maintaining the voltage in the different parts of 
the electrical devices. 

The relative dielectric constant of an insulating material 
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should be close to 1 while for a dielectric it can generally be 
up to 10. The terms dielectric and insulator are often used 
almost synonymously, but with the former we focus on the 
physical properties of the material while with the latter its use 
in practical applications. 

 The electric force between the charges in a material is 
given by the following formula (Coulomb’s law): 
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where εο = 8.854 · 10-12 F / m is the electric permittivity of 
free space. 

If material is inserted between the charges, power is 
reduced according to the formula: 
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where ε is the absolute permittivity of the medium, which is 

given as or εεε ⋅= , and εr is the relative permittivity of the 
medium. The dimensions of ε and εο are F/m in SI, but εr is a 
dimensionless number greater or equal to 1 in the case of the 
vacuum.  

The capacitance of a capacitor consisting of two parallel 
plates is given by the equation: 

o AC
d

ε
=

                                             (4) 
where A is the area of each plate and d is the distance 

between them. 
The presence of a dielectric material between the plates 

reduces the electrical field between the plates due to the 
existence of a polarized field in the opposite direction within 
the material in which case the above equation becomes: 

r o AAC C
d d

ε εε
= ⇒ =

 or 0rC Cε=                                       
                                    (5) 
For an ideal dielectric material ε is a real number but in 

practice for any dielectric material there is also an imaginary 
component that is associated with the dielectric loss because 
of the poor conductivity of the material which is why ε is 
called absolute complex permittivity which is also denoted by 
ε * and describes the total interaction of the dielectric 
materials with the variable electrical field. In this case the 

Mathematical and Physical modelling of the 
dynamic electrical bioimpedance 

Georgios Giannoukos, Mart Min 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 600

mailto:g.giannoukos@gmail.com
http://en.wikipedia.org/wiki/Vacuum_permittivity
http://en.wikipedia.org/wiki/Vacuum_permittivity
http://en.wikipedia.org/wiki/Vacuum_permittivity


 

 

following equation is used: jε ε ε′ ″= −                                       
(6) 

II. RELATIVE COMPLEX PERMITTIVITY 
 In practice the relative complex permittivity is used 

instead of the absolute complex permittivity because it is 
dimensionless and takes simple numerical values. It is equal to 
the absolute complex permittivity divided by the electrical 
permittivity of free space, so: 

 
r r r
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   ′ ′′ ′ ″= = − = −   
                        

                          (7) 
where εο = 8.854 · 10-12 F / m is the electrical permittivity of 
free space. 

ε' is the real part of the relative complex permittivity which 
is related to the stored energy within the medium. 

rε ″
is the imaginary part of the relative complex 

permittivity which is related to the dissipation (or loss) of 
energy within the medium. 

The εr΄ is an indication of how much energy can be stored 
in the material by the applied EF and is called relative 
permittivity. For the vacuum εr΄=1 while for gaseous dielectric 
materials εr΄ ≈ 1, but for most liquid and solid insulators: 1 ≤ 
εr΄ ≤ 10. For semiconductors it is usually 10 ≤ εr΄ ≤ 20 and for 
metals εr΄ → ∞ because there are no dielectrics. 
The εr΄΄   is related to the loss of energy in the medium and is 
an indication of how polar loose the material is to the external 
imposed EF. Loose material in a frequency occurs when the 
polarization mechanism of the material is able to follow the 
ER changes applied to the material. The εr΄΄ is always a 
positive quantity much smaller than the εr΄.  

Another symbol of the rε is the 
*
rε  or 

*
rk in which case 

* ' ''
rk k jk= −  where k΄ = εr΄ and k΄΄ = εr΄΄. 

III. DEPENDENCE OF DIELECTRIC PERMITTIVITY ON 
FREQUENCY 

 The dependence of the frequency of dielectric 
permittivity is associated with the mechanisms of polarization 
which take place in each frequency range. 
At low frequencies all mechanisms are present. Increasing the 
frequency and reaching the microwave region (105-1010Hz), 
the permanent dipoles, due to inertia, can monitor changes in 
the field and align with it. The polarization orientation stops 
and the dielectric permittivity declines. Also some energy no 
longer goes to the circuit but is absorbed by the material 
indicating the existence of losses. The curve ε΄΄ in this region 
takes the form of a resonance curve. 

At higher frequencies in the infrared the mechanism of 
ionic polarization stops while in the UV the mechanism of 
electronic polarization stops.  

 
Fig.1: ε΄ and ε΄΄ change with the frequency [1] 
 
The real part of dielectric permittivity ε΄varies between a 

maximum value εs, corresponding to static fields or very low 
frequencies and a minimum value ε∞, corresponding to very 
high frequencies. The imaginary part ε΄΄is related to losses and 
has a maximum at the resonance frequency. 

The ε΄ and ε΄΄ are given by Debye’s equations: 
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Where τ is the relaxation time of the material 
 
From the above equations we get: 

( ) ( )( )

s s

2 2 2 2

2 2
s

ε -ε ε -εε ε -́ε -j ε΄́ jω τ
1 ω τ 1 ω τ

ε -́ε ε΄́ ε -́ε ε -ε

∞ ∞
∞ ∞

∞ ∞ ∞

= = − ⇒
+ +

+ = ⇒

ε -

 

( )2 2
s sε΄ ε΄́ ε΄ ε -ε ε ε∞ ∞+ = −                  

                             (9) 
The above equation in a diagram representing a circle has 

its center on the axis ε΄at the point (εs+ε∞)/2. The diagram 
shown in the figure below is a graph called Cole-Cole. 

 
 
Fig.2:  Cole-Cole graph 

 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 601

http://en.wikipedia.org/wiki/Vacuum_permittivity
http://en.wikipedia.org/wiki/Vacuum_permittivity
http://en.wikipedia.org/wiki/Vacuum_permittivity
http://en.wikipedia.org/wiki/Vacuum_permittivity
http://en.wikipedia.org/wiki/Vacuum_permittivity
http://en.wikipedia.org/wiki/Vacuum_permittivity


 

 

A dielectric material subjected to a field can be visualized 
at any frequency from an equivalent circuit of a capacitance 
and a resistance in series or parallel. For materials that exhibit 
dielectric losses the parallel equivalent is usually considered 
more suitable.  

 
 

 
Fig.3: Real and imaginary part of the dielectric permittivity 

for a Debye mechanism 
 
As shown in the figure above, in a frequency range around 

the value ω = 1 / τ we observe a peak in ε'' which is because in 
this region energy losses are maximized due to the frequencies 
ω and 1/τ being comparable. The maximum peak located at 
the frequency ωmax = 1/τ 

We also see a step in ε because in much smaller frequencies 
than ωmax the dipoles have time to follow the changes in the 
field whereas at much higher frequencies they don’t thus they 
are not involved in the polarization which is why at low 
frequencies ε΄=εs and at high frequencies ε΄= ε∞.                      

Debye’s dispersion equations describe a relaxation process 
which is characterized by a single relaxation time and each 
relaxation process is described separately. The experimental 
results are consistent with the theoretical in the case of polar 
liquids. However, when studying systems in condensed 
matter, due to interactions between atoms and molecules, 
several relaxation times appear and the experimental data 
deviates from Debye’s theory. For a description of the 
experimental data different theories are used such as the Cole-
Cole, Cole-Davidson and Havriliak-Negami because they take 
into account different types of distribution of relaxation times 
[2]. The expression of the complex permittivity for each 
approach (theory Debye [3], Cole – Cole [4], Cole – Davidson 
[5], Havriliak – Negami [6]) is given by the following 
relations: 

Debye:       
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∞
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Cole-Cole: 
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( )

s

1

ε -ε
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1 jω ατ

∞
∞ −= +

+
, 0 1α≤ ≤ ,        (11)  

where α is a parameter and the distribution of relaxation 
times is symmetrical around τ. If α=0 then it gives the Debye 
equation 

Cole-Davidson: 

( )sε -ε
ε ε

(1 jω )βτ
∞

∞= +
+ , 0 1β≤ ≤ ,         

                                    (12)     
the distribution of relaxation times is not symmetrical and β 

is a parameter which determines the shape. If β=1 then it gives 
the Debye equation. 

Havriliak – Negami [7],[8],[9]:  

( )s

1

ε -ε
ε ε

[1 ( jω ) ]α βτ
∞

∞ −= +
+ , 0 1α≤ ≤  and 

0 (1 ) 1α β≤ − ≤ ,                               (13)  
if β=1 it gives the Cole-Cole equation, if α=0 the Cole-

Davidson equation and if β=1 and α=0 the Debye. [10] 

IV. DIELECTRIC SPECTROSCOPY 
 In the above analysis we assumed that the electrical field 

which is applied to the dielectric is sinusoidal with stable 
frequency. Dielectric spectroscopy studies the change in 
dielectric properties of the material with time and frequency.  
Inside in an isotropic and homogeneous dielectric the 
polarization density vector P and the intensity E of the EF 
have the same direction and are linked in the equation [11, 
12]: 

 OP Eχε=                             (14) 
where χ is the electrical susceptibility of the material. The χ 
indicates the degree of all kinds of polarizing of a dielectric 
and is dimensionless (for the vacuum it is equal to zero). 
The ε0 = 8.85419 · 10-12 As / Vm, is the dielectric constant of 
the vacuum.  

The electric displacement D is determined by the overall 
positive or negative electric charge per unit area induced in 
the corresponding electrode. The electrical charge of the two 
electrodes is the origin of all the electrical field lines. In the 
area between the electrodes without a dielectric, the electrical 
displacement is parallel to the electric field E and is connected 
to it by the equation D= ε0E. When there is an isotropic 
dielectric between the electrodes then the electrical 
displacement increases by the polarization density P and the 
equation becomes D= ε0E+P [13, 14]. This happens because 
in each electrode part of the charge creates the electric field E 
while the remaining charge compensates polarization charges 
of the dielectric. 

Considering the above equations we get:  
(1 )O O OD E E Eε χε χ ε= + = +                (15) 

Thus in a time constant electrical field the electrical 
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displacement D is proportional to E and for isotropic dielectric 
materials the vectors P and D are parallel to E. The 
proportionality factor (1 + χ)ε0 is the dielectric permittivity ε 
of the material  and  the 1+χ is the relative dielectric 
permittivity εr. In this case the use of complex equations is not 
necessary. 

 When the electrical field is time varying E(t) then the D 
in the vacuum immediately follows changes in the field D (t) 
= ε0E(t). The charge density at the electrodes is determined by 
the displacement current, which is derived from the voltage 
source and equals dQ / dt, where Q is the total charge on each 
electrode. 

When the vacuum is replaced by an isotropic dielectric 
material then the electric displacement D is: 

D(t) = εοΕ(t)+P(t)                            (16)  
The time dependence of P(t) is not the same as E(t) because 

the polarization of the dielectric is not directly related to the 
applied field, but it has a time delay which is different for the 
various types of polarization. To find the relationship between 
the field and the polarization we will try to determine a time-
varying function of the electrical susceptibility χ = χ(t) and 
hence the relative dielectric permittivity εr=1+χ(t) applies to 
the equations: 

( ) ( ) ( )OP t t E tχ ε=                         (17) 
and D(t) = (1+χ(t)) εο E(t)                            (18) 
 It is assumed that a temporal changing EF is applied: 

E(t)=E0u(t-t0) where u(t-t0) is the step function of the temporal 
change. Initially the field is zero and in t0 the applied EF has a 
constant value E0, which is maintained for t> t0. 

 
Fig.4: The temporal variation of the polarization of the 

dielectric as a result of stepping electric field. 
 
In this case the polarization P(t) of the dielectric is 

associated with the time-dependent susceptibility of  χ(t) 
according to the equation: 

( ) ( ) ( )0o
o

P t
t u t t

E
ε χ= −

                        (19) 
 
That is, the time-dependence of the polarization follows 

that of susceptibility χ(t), which a characteristic function of 
the material, and the magnitude of the polarization is 

proportional to the applied field. 
The function of polarization and susceptibility is generally 

distinguished into three time domains. In principle there are 
very fast processes of polarization (mainly electronic) that can 
be considered to be affected in a very short time close to zero. 
Simultaneously with the application of the field there is an 
instantaneous polarization P(t = t0), denoted P∞ because it is 
performed at very high speed. This part of the polarization 
function cannot be recorded with the usual measuring 
equipment. After a long period of time, the polarization 
eventually becomes constant and takes the value Ps. 
Considering these two extreme values, the polarization can be 
given by the equation: 

( ) ( ) ( )S oP t P P P g t t∞ ∞= + − −
               (20) 

where g(t) is a dimensionless, monotone increasing function 
(characteristic of the material) which determines the way the 
polarization goes from the baseline value P∞ to the final value 
Ps. 

Using the indices s and ∞ for the respective values of χ, the 
polarization can be written as follows: 

( ) ( ) ( )
( ) ( )

o S o o

o o

P t g t t E

P t t E

ε χ χ χ

ε χ
∞ ∞= + − − ⇒  

=
           (21) 

where 

( ) ( )( ) S ot g t tχ χ χ χ∞ ∞= + − −
               (22) 

If 1+χs=εs ⇒χs=εs-1 and 1+χ∞=ε∞ ⇒χ∞=ε∞ -1        (23) 
then the above equations become: 

( ) ( ) ( ) ( )1o S o oP t g t t Eε ε ε ε∞ ∞= − + − −           (24) 
and 

( ) ( ) ( )( ) 1 S ot g t tχ ε ε ε∞ ∞= − + − ⋅ −
      (25) 

According to equation D=(1+χ)ε0E then we obtain 

( ) ( ) ( )o S o oD t g t t Eε ε ε ε∞ ∞= + − −        (26) 
Where  

( ) ( )( ) 1 ( ) S ot t g t tε χ ε ε ε∞ ∞= + = + − −
     (27) 

is the time depending relative permittivity of the dielectric 
material. All of the above are valid only for the simple case of 
stepping 

V. ELECTRICAL BIOIMPEDANCE 
 Electrical bioimpedance [15] describes how a living 

organism responds to an externally applied electrical current 
[19]. It can be defined as the impedance of biological 
specimens. It is a measure of the difficulty of the flow of 
electrical current through the tissues. 

 A biological tissue can be modeled from a structural 
viewpoint as the grouping of a number of elements called 
cells, which are immersed in an ionic medium (Na+ , K+ , 
Ca2+ , Cl- ) called extracellular fluid which also contains 
proteins and it can be divided into plasma and interstitial fluid. 
We can consider any biological tissue as an electrolyte 
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because of the ions it contains. 
Inside the cell membrane there is also a fluid (cytosol or 

intracellular fluid) and ion concentration in the intracellular 
environment, which is where the body’s metabolic processes 
take place. It also contains organelles and the nucleus of the 
cell.  

The cell membrane consists of proteins and phospholipids 
forming a bilayer lipid membrane. Each monolayer has very 
small electrical conductance (10-6A/V) and for that reason we 
can consider it as a dielectric material. Also there are ion gates 
in the membrane which control the ion conductance (which is 
the inverse of the resistance).  

For these reasons we can model the cell membrane as a two 
plated capacitor connected to a resistor in parallel (Cm-Rm). 
The intracellular medium of the cell also behaves as a resistor 
(Ri). 

 Taking into account the ions in the extracellular fluid we 
can add another resistor (Re) to represent the extracellular 
fluid to the equivalent circuit [16].  

 

 
 
Fig.5: Equivalent electrical circuit of a tissue 
 
By simplifying the above circuit taking into account that the 

two Rm resistors are connected in series and also the 
capacitors Cm, then the circuit becomes: 

 
Fig.6: Simplified equivalent electrical circuit of a tissue 
 
As aforementioned, the conductance of the membrane is 

very low in which case Rm takes a very high value. So the 
above circuit is further simplified [17] (this is the Fricke–
Morse model [18]): 

 
Fig.7: Fricke–Morse model 
 
The impedance of the above circuit is equal to: 

( )1
1 ( )

e i

i e

R jR C
Z

jC R R
ω

ω
+

=
+ +                               (28) 

At low frequencies most of the current flows around the cell 
and only a little goes through the cell the membrane 
impedance is very high. If in equation (28) ω→0 then Z=Re 
due to the fact that.  

 
Fig.8: Passage of low frequency currents through a cell 

suspension or tissue 
 
At high frequencies the current flows through both the 

extracellular and intracellular fluid because the membrane 
capacitance doesn’t act as an impediment.  

When ω→∞ then 

1 0CZ
jCω

= →
  thus Re//Ri and 

e i

e i

R RZ
R R

=
+                                                                     (29) 
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Fig.9: Passage of high frequency currents through a cell 

suspension or tissue 
 

 
Fig.10: Impedance vs frequency in a tissue 
 
 The conductivity and the permittivity of tissue are 

frequency dependent [19]. This phenomenon is called 
dispersion [20, 21, 22, 23, 24] of which there are four types: 
α,β,δ and γ.  

 
 
Fig.11: Frequency dispersions [22] 
 
The Fricke-Morse model is not very accurate so the Cole 

impedance model was proposed for tissue. The Cole empirical 
equation [20] is expressed by the following equation: 

 

0

1 ( )
R RZ R

j αωτ
∞

∞

−
= +

+                              (30) 
 
where: Z is the complex impedance, R0 is the resistance at 

zero frequency, R∞ is the resistance when f→∞ (only resistive 
parts), ω is the angular frequency, τ is the characteristic 
relaxation time constant and α is a parameter with values 
between 0 and 1.  

For example if α=1 we obtain Fricke-Morse model 
In the Fricke-Morse model we substitute the capacitance 

(Debye model) with the Constant Phase Element (CPE) [25] 
which is described as an imperfect capacitor which is 
frequency dependent. The impedance of the CPE is: 

1
( )CPE aZ

j Cω
=

,                                  (31) 
and when α=1 the CPE behaves as an ideal capacitor. 

 
Fig.12: Debye model for tissues 
 
By applying the Cole equation to this model we obtain: 
R0=R1+R2, R∞=R1 and τ=R2C.                            
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