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Abstract: The control of FOPD (first order plus delay) 
systems with high normalized time (ratio of time delay and 
time constant) is a very hard task, especially when the 
system parameters are subjected to variations. A great 
number of physical systems show such model behavior. In 
process control today, proportional integral derivative (PID) 
(continuous and digital) controllers still predominate and are 
sufficient for most needs with more than 95 per cent of 
control loops being of the PID type. In this work, we present 
a method of determination of an optimal robust PID 
controller based on the ISE (integral squared-error), using 
Taguchi method. This approach is very useful when the 
process parameters are prone to variations in a given range.  
Once the criteria of optimization posed, a statistical analysis 
is needed to determine if the control parameters are 
significant or not. The design of experiments method is 
certainly  the most appropriate to tackle this type of 
problem.  Indeed it allowed us to quantify the weight of the 
factors that affect the output and evaluate their interactions. 
The analysis of the results led us to define the most 
appropriate set up that minimizes the negative effect of 
noise factors. 

Keywords:  Robust control, Taguchi, controller, ISE, PID, 
noise factors 
 

I INTRODUCTION: 
 

We will consider the following unity feedback system: 

 
The output of a PID controller, equal to the control 
input to the plant, in the time-domain is as follows: 

    (1) 
 The variable ( ) represents the tracking error, the 
difference between the desired input value ( ) and the 
actual output ( ). This error signal ( ) will be sent to 
the PID controller, and the controller computes both 
the derivative and the integral of this error signal. The 
control signal ( ) to the plant is equal to the 

proportional gain ( ) times the magnitude of the 
error plus the integral gain ( ) times the integral of 
the error plus the derivative gain ( ) times the 
derivative of the error. 
This control signal ( ) is sent to the plant, and the 
new output ( ) is obtained. The new output ( ) is 
then fed back and compared to the reference to find 
the new error signal ( ). The controller takes this new 
error signal and computes its derivative and its 
integral again, ad infinitum. 
The transfer function of a PID controller is found by 
taking the Laplace transform of Eq.(1). 

   (2) 
 = Proportional gain  = Integral gain  = 

Derivative gain 
A proportional controller ( ) will have the effect of 
reducing the rise time and will reduce but never 
eliminate the steady-state error. An integral control (

) will have the effect of eliminating the steady-state 
error for a constant or step input, but it may make the 
transient response slower. A derivative control ( ) 
will have the effect of increasing the stability of the 
system, reducing the overshoot, and improving the 
transient response. 
The effects of each of controller parameters, , , 
and  on a closed-loop system are summarized in the 
table below. 
Table1: Effects of PID parameters. 

CL 
RESP 

RISE 
TIME 

OVER 
SHOOT 

SETTLIN
G TIME 

S-S 
ERROR 

Kp Decreas Increase Small 
Change Decrease 

Ki Decreas Increase Increase Eliminat 

Kd Small 
Change Decrease Decrease No 

Change 
 
Note that these correlations may not be exactly 
accurate, because , , and  are dependent on 
each other. In fact, changing one of these variables can 
change the effect of the other two. 
 
Consequently considerable advantages could be obtained 
by implementation the Taguchi's approach in the process 
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of automation control [1]. Proportional integral derivative 
(PID) controllers still predominate in process control 
today and are sufficient for most needs as more than 95 
per cent of control loops are of the PID type. A vast 
amount of literature is available that addresses the 
problem of PID controllers tuning [2,3]. A complete study 
of PID tuning for different forms of transfer functions has 
been done by O’Dwyer [4]. The most important factor in 
all of these tuning methods is the form of the actual 
transfer function of a plant. If the structure of this transfer 
function is significantly different from the one used to 
derive the tuning formulas, then a substantial amount of 
system unpredictability should be expected. However, this 
problem is simplified when there is no structural 
mismatch between the actual and the assumed transfer 
functions. In this case there is no structural uncertainty, 
but rather the uncertainty is isolated to the actual value of 
the parameters used to model the plant. If the model and 
the actual plant have the same structure type, then the 
parameters of the transfer function become of primary 
concern. In a study made by Bialkowski [5], it was shown 
that 30 per cent of their control loops functioned poorly 
due to incorrect PID controller settings. It is, therefore, 
evident that a tuning refinement in the presence of model 
parameter uncertainties is of great importance. 
To date, there is no research about robustness of PID 
controllers under noise condition resulting from parameter 
uncertainty. The quality of PID controllers tuning is the 
result of a number of parameters. Some of these are 
controllable while others are noise factors [2,3,6]. 
The object of this paper is the search of robustness of the 
PID controllers using the design of experiments method 
[7].  For that purpose we first need to select the factors of 
the PID controllers and identify the noise factors that 
cause undesirable variation upon the quality 
characteristic.  
 

2 METHOD AND RESULTS: 
Conventional methods of PID controllers tuning: 
 
The Ziegler and Nichols [6] tuning method is based on 
the calculation of the ultimate period (Pu) and ultimate 
gain (Ku) of the system. The pair Pu, Ku can be 
calculated by letting the process loop gain increase 
until the system begins sustained oscillations [2,3].  
An alternative method for tuning is the relay feedback 
method [2]. In this method the system is forced to 
oscillate by introducing a non-linear feedback of the 
relay type in order to generate a limit cycle oscillation 
in the system. The amplitude of the system 
oscillations can be controlled since it is proportional to 
the relay amplitude. In the PID tuning mode, when the 
steady state is reached, the system oscillates at a 
frequency with period and amplitude close to the 
ultimate period (Pu) and ultimate gain (Ku) of the 
open loop system. We can also use the auto-tune rules 
in the case where a controller based on minimizing a 
criterion needed in servo tuning ISE case [8]. 
Quality characteristic of PID controllers: 

Clarifying things it is assumed that the model of 
process and actual plant have the same transfer 

function define by equation (1 ) [2,3] where, sG
 is the 

DC-gain of process model, τ   is the time delay and T 
is the time constant. 
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The PID controller may be implemented in continuous 
or discrete time, in a number of controller structures. 
The ideal continuous PID controller time is expressed 
in Laplace form as follows [1,2]:  

)4()( sK
s

KKpC d
I

p ++=  

This form is known as parallel form.  This controller may 
be in the following one (filtered form) which is physically 
realisable, provided N is taken in the range 10-20, without 
any change in performance. (Equation  3) . 
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The performance index used is the integral-squared-error 
(ISE) and is mathematically defined by [2,3,6]  
 

)6())((
0

2∫
∞

−= dttyyISE sp  

 
where y(t) and ysp is the current output and the desirable 
output (set point) of process model, respectively. 

 
This particular performance criterion is widely used for 
controllers tuning because its minimisation is related to 
minimisation of error magnitude and duration [6]. Thus, 
in this study, the ISE will be taken as the quality 
characteristic to be observed. 

 
Control factors of PID controllers and noise: 

In the PID controllers, the KP, KI and KD parameters are 
the control factors since they can be changed by the 
conventional auto-tuner to minimize the quality 
characteristic ISE [2,6].  
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The experience reveals that non-linear behaviour of the 
control factors of a PID can be determined only if more 
than two levels are used [9]. Therefore, in our 
investigation we will assign three levels for each control 
factor. Also literature reveals that between KP, KI and 
KD there is no significant interaction (there is no 
dependence), which affects the quality characteristic ISE 
[2,6]. The design of experiments method will allow us to 
verify this statement as this method is well suited to 
assess the interactions of factors that affect the output 
[10].In this study, after the auto-tuning method [8] ,the 
initial optimum set of values is determined for the control 
factors under ideal conditions, i.e. w ithout considering 
any noise factor, is KP=2, KI=2 and KD=0.5. The three 
levels of three control factors are identified for study as 
presented in Table 2. 
 
Table 2: PID parameters 

Factor
s 

Range Level 1 Level 2 Level 3 

Kp 1.6-2.4 1.6 2 2.4 

Ki 1.6-2.4 1.6 2 2.4 

Kd 0.5-0..5 0.4 0.5 0.6 

 
Noise factors are those parameters of process model 
(equation (1)) that cannot be controlled or are too 
expensive to control or cannot be identified. In equation 
(1), the Gs (DC-gain), τ (delay time) and τ/T (normalized 
time delay, ration of process time delay to time constant, 
dimensionless factor) are generally known to be the most 
uncertain factors; even small uncertainties in their values 
(uncontrollability) lead to poor control. In this study, the 
first noise factor NF1 (DC-gain, Gs) could be higher (up 
to 1.1) than the original estimate of 1. The second noise 
factor NF2 (time delay, τ) could be higher (up to 0.55s) 
than the original estimate of 0.5 s and the third noise 
factor NF3 ( Time constant could be higher (up to 1.1) 
than the original estimate of 1. So, the process parameters 
are subject to a 10 % change; Table 3. 
 
 

 
 
Table 3: Noise factors 

 
 
 
 
 
 
 

 
 
 
As we can see the quality characteristic ISE  (output) 
depends on three controllable factors (KP, KI  and  KD ) 
and three noise factors ( NF1, NF2 and NF3) . The 
purpose of this work is to determine the importance of 
these factors and their reactions in order to find the 
optimum set up which will lead us to the robust design by 
obtaining the desired ISE, which is its minimum. As 
stated earlier in order to achieve this we shall apply the 
method of experiments method .However we cannot run 
this analysis considering these six factors at once because 
of inheriting constraints. In deed on one hand we must 
assign three levels to Kp, KI and KD as explained earlier 
(constraint relative to the number of required levels). On 
the other hand we only have two levels available for the 
NF’s. Therefore the only option left is to run the 
experiments for the controllable factors with their three 
levels for each combination of the noise factors. Hence 
the orthogonal arrays which we work with are presented 
in table 3. Thus, ISE is evaluated for the nine runs for 
each of  four different combinations of the three noise 
factors (two levels at each noise factor). The ISE response 
was computed for each combination of control and noise 
matrix experiments using the MATLAB SIMULINK 
program by simulating the control system equations. For 
each combination of control factor levels, the mean and 
the standard deviation (std) were also evaluated.The 
choice of this set up of orthogonal arrays was done 
according to  Byrne and Taguchi[11], Montgomery and  
Ross[12] and  Roy [13].  The results of these simulations 
are presented in Table 4. For the ith combination of the 
noise factors the output is represented by Ri . 
From Table 4 one can guess that the best results are 
obtained in trials number 4 and 7. We also can see how 
the noise factors depending on their levels affect the 
results. We then apply the design of experiments analysis 
separately to the four results in order to determine the 
weight of each factor and evaluate their interactions [14]. 
This will lead us to the optimum  set-up. 
 
 

Factors Range Level 1 Level 2 

NF1 (Gs) 1-1.1 1 1.1 

NF2 (τ) 0.5-0.55 0.5 0.55 

NF3 (T) 1-1.1 1 11 
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Table 4: Simulations Results . 

 
 
We first report the polynomials which represent the 
mathematical models of the results that we obtained with 
the design of experiments method:    

  
R1 = +  0.71  -  0.046 Kp  +  0.025 Ki  -  0.001 Kd  -  
0.005 KpKi  - 0.0005 KpKd  - 0.012KiKd + … 

R2 = + 0.79  +  0.012 Kp  +  0.026 Ki  + 0.012 Kd  +  
0.020 KpKi  - 0.017 KpKd   + 0.013 KiKd +… 

R3  = +0.74  +  0.033 Kp  +  0.015 Ki  + 0.034 Kd  + 
0.032  KpKi  - 0.014  KpKd  + 0.028  KiKd+ … 

R4  = + 0.81+  0.017  KP  +  0.033 Ki  + 0.011Kd  +  
0.022 KpKi   -0.020  KpKd  + 0.015  KiKd + … 

There are two main observations that need to be made: 
first ,the levels of the noise factors affect randomly the 
weights of the parameters. As an example the weight of 
Kp varies from 0.046 to 0.017 depending on the noise 
level. From this we can conclude that any analysis with 
the design of experiments method based only on the 
contrallable parameters could lead to  wrong results as  
we can only determine the local minima of the ISE with 
these data. Taking into account the effect of the noise 
factors is thus mandatory. The second observation concers  
the weights of the interactions (KpKi ,KpKd,KiKd) which 
can be quite important This  contradicts Astrom et al [2] 

and Ziegler et al [6] . In order to find the set up  that gives 
the global minima of the ISE we need to consider the 
plots of R1, R2, R3 and R4 as functions of different 

interactions (Fig.1a,1b,1c,1d) as well as the contour plots 
. They are given in Fig.1 and Fig.2 .In deed these plots 
allow us to assess the effects of the different factors and 
their interactions. We can deduct from these figures that 
the optimum levels of the control factors so that the effect 
of noise is reduced and the ISE minimised are: level 2 for 
the factor kp ,level 1 for ki and level 2 for Kd. 

 

     

               Figure 1-a Interaction plot of R1                                   Figure 1-c Interaction plot of R2 

 

 
 

NF1 

NF2 

NF3 

1 1 2 2 

1 2 1 2 

2 1 1 2 

Kp Ki Kd  

1 1 1 0.7486 0.7805 0.7079 0.7901 

1 2 2 0.7741 0.8111 0.7340 0.8279 

1 3 3 0.8086 0.8525 0.7699 0.8752 

2 1 3 0.7014 0.7570 0.7063 0.7645 

2 2 1 0.7160 0.7808 0.7040 0.7998 

2 3 2 0.7404 0.8112 0.7305 0.8347 

3 1 2 0.6788 0.7804 0.7296 0.7962 

3 2 3 0.6962 0.8290 0.8200 0.8533 

3 3 1 0.7311 0.8648 0.7765 0.9006 
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               Figure 1-b  Interaction plot of R3                          Figure 1-d Interaction plot of R4 

 

 

 
           Figure 2-a  Contour plot of R1                                     Figure 2-b Contour plot of R2 

  

 

 

          Figure 2-c  Contour plot of R3                                            Figure 2-d Contour plot of R4 
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3 CONCLUSION: 
 

The use of the design of experiments method that takes in 
consideration the noise factors proved to be appropriate as 
it allowed us to find the best set up of the tree PID control 
factors that reduce the negative effect of the associated 
random noise factors. This was achieved by analysing the 
effect of these factors and their interactions. The contour 
plots were very useful as they permit to make projections 
which allow a global insight of the problem. In doing so 
we were able to determine the best factors levels that give 
the best combination of the controllable factors. In 
addition the analysis showed that the interactions of 
control factors are quite important as they can be of the 
same magnitude. This contradicts the assertions given in 
reference [2] and [6]. 
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