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Abstract— This paper deals with a design of a universal and robust 

digital control algorithms for control of great deal processes with time-

delay. Time-delays are mainly caused by the time required to transport 

mass, energy or information, but they can also be caused by processing 

time or accumulation. Typical examples of such processes are e.g. 

pumps, liquid storing tanks, distillation columns or some types of 

chemical reactors. The designed control algorithms are realized using 

the digital Smith Predictor (SP) based on polynomial approach – by 

minimization of the Linear Quadratic (LQ) criterion. For minimization 

of the LQ criterion is used spectral factorization principle with 

application of the MATLAB Polynomial Toolbox. The designed 

polynomial digital Smith Predictors were verified in simulation 

conditions. The main contribution of this paper is an experimental 

simulation examination of the robustness of the designed control 

algorithms. The robustness designed control algorithms was examined 

in term of influence parametric uncertainties – caused by variance of a 

static gain of the process model. The program system 

MATLAB/SIMULINK was used for these purposes.  

 

Keywords—Digital control, LQ control, Polynomial approach, 

Simulation of control loops, Smith Predictor, Time-delay, Robustness.  

I. INTRODUCTION 

IME-delay may be defined as the time interval between the 

start of an event at one point in a system and its resulting 

action at another point in the system. Delays are also known 

as transport lags or dead times; they arise in physical, chemical, 

biological and economic systems, as well as in the process of 

measurement and computation. One older classification of 

techniques for the compensation of time-delayed processes is 

introduced in [1, 2] and newer overview of recent advances and 

open problems it is possible to find in [3].            

The existence of pure time lag, regardless if it is present in 

the control or/and the state, may cause undesirable system 

transient response, or even instability. Consequently, the 

problem of controllability, observability, robustness, 

optimization, adaptive control, pole placement and particularly 

stability and robust stabilization for this class of systems, has 

been one of the main interests for many scientists and 

researchers during the last five decades. 
 

Manuscript received July 31, 2015. V. Bobál, P. Dostál and M. Kubalčík are 
with the Department of Process Control, Faculty of Applied Informatics, Tomas 

Bata University in Zlin, Nad Stranemi 4511, 760 05 Zlin, Czech Republic (e-
mails: bobal@fai.utb.cz, dostalp@fai.utb.cz, kubalcik@fai.utb.cz). 
 

 

 
 

 

It is possible to say in present (see e. g. [4]) that “The 

beginning of the 21st century can be characterized as the time-

delay boom leading to numerous important results”.  

 When a high performance of the control process is desired or 

the relative time-delay is very large, a predictive control 

strategy is one possible approaches for a control of time-delay 

processes. The predictive control strategy includes a model of 

the process in the structure of the controller. The first time-

delay compensation algorithm was proposed by Smith [5] in 

1957. This time-delay compensator (TDC) known as the Smith 

Predictor (SP) contained a dynamic model of the process and it 

can be considered as the first model predictive algorithm.  

Historically, first modifications of time-delay algorithms 

were proposed for continuous-time (analog) controllers using 

some different approaches, see e.g. [6] - [9].  In industrial 

practice the implementation of the time-delay compensators on 

continuous-time technique was difficult. Therefore the Smith 

Predictors and its modified versions can be implemented since 

1980s together with the use of microprocessors in the industrial 

controllers. In spite of the fact that these algorithms can be 

implemented in digital platforms, most of the literature analysis 

and synthesis time-delay systems including the robustness, 

disturbance rejection and the extension of suitable 

compensators, is focused only in the continuous-time version. 

The first digital time-delay compensators are presented (see e.g. 

in [9]).  

One of possible approaches to control of processes with time-

delay is digital Smith Predictor based on polynomial theory. 

Polynomial methods are design techniques for complex systems 

(including multivariable), signals and processes encountered in 

Control, Communications and Computing that are based on 

manipulations and equations with polynomials, polynomial 

matrices and similar objects. Systems are described by input-

output relations in fractional form and processed using 

algebraic methodology and tools. The design procedure is thus 

reduced to algebraic polynomial equations [10]. Controller 

design consists in solving polynomial (Diophantine) equations. 

The Diophantine equations can be solved using the uncertain 

coefficient method – which is based on comparing coefficients 

of the same power. This is transformed into a system of linear 

algebraic equations [11]. Because the classical analog Smith 

Predictor is not suitable for control of unstable and integrating 

time-delay processes, the polynomial digital LQ Smith 
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Predictor for control of unstable and integrating time-delay 

processes has been designed in [12].  

It is obvious that the majority processes met in industrial 

practice are influenced by uncertainties. The uncertainties 

suppression can be solved either implementation adaptive 

control or robust control. Some adaptive (self-tuning) 

modifications of the digital Smith Predictors are designed in 

[13] – [15]. Two versions of these controllers were 

implemented into MATLAB/SIMULINK Toolbox [16], [17]. 

Until recently, robust control and adaptive control have been 

viewed as two control techniques which are used for controller 

design in the presence of process model uncertainty (process 

model variations) [18].  

From a robust control point of view, adaptive control is a 

method used for reducing the uncertainty level of the process 

model by recursive process model identification in closed 

control loops. Furthermore, the design of a robust controller 

deals in general with designing the controller in the presence of 

process uncertainties. This can be simultaneously: parameter 

variations (affecting low- and medium-frequency ranges) and 

unstructured model uncertainties (often located in high-

frequency range). While in adaptive control the adaptation 

suppresses the parametric variations, the problem of 

suppressing unstructured model uncertainties remains. 

The aim of this paper is the experimental examination of the 

robustness of control time-delay processes. Robustness is the 

property when the dynamic response of control closed loop 

(including stability of course) is satisfactory not only for the 

nominal process transfer function used for design but also for 

the entire (perturbed) class of transfer functions that express 

uncertainty of the designer about dynamic environment in 

which real controller is expected to operate. The design of 

robust digital controllers for systems with time delay is 

investigated in [19]. A particular class of digital controller is 

considered, namely based on the pole assignment approach.        

A more comprehensive discussion of robustness is be given 

when design using frequency methods is considered. For root 

locus design, the natural measure of robustness is, in effect gain 

margin. One can readily compare the system gain at the desired 

operating point and the point(s) of onset of instability to 

determine how much gain change is acceptable. Just this 

method will be used for investigation of the robustness control 

time-delay processes.                  

The paper is organized in the following way. The general 

problem of a control of the time-delay systems with regard to 

robustness is described in Section I. The fundamental principle 

of digital Smith Predictor is described in Section II. Two 

versions of the primary polynomial LQ controller, which are 

components of the digital Smith Predictor, are proposed in 

Section III. The simulation verification of individual control-

loops with their results are presented in Section IV. Section V. 

concludes this paper.  

II. PRINCIPLE OF DIGITAL SMITH PREDICTOR 

The discrete versions of the SP and its modifications are 

more suitable for time-delay compensation in industrial 

practice. The block diagram of a digital SP (see [13] - [15]) is 

shown in Fig. 1. The function of the digital version is similar to 

the classical analog version. 

 
Fig. 1 Block diagram of a digital Smith Predictor 

 

Number of higher order industrial processes can be 

approximated by a reduced order model with a pure time-delay. 

In this paper the following second-order linear model with a 

time-delay is considered 
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The term z-d represents the pure discrete time-delay. The 

time-delay is equal to 0dT  where 0T is the sampling period. 

The block Gm(z-1) represents process dynamics without the 

time-delay and is used to compute an open-loop prediction. The 

numerator in transfer function (1) is replaced by its static gain 

B(1), i.e. for z = 1. This is to avoid problem of controlling a 

model with a B(z-1), which has non-minimum phase zeros 

caused by a high sampling period or fractional delay. Since   

B(z-1) is not controllable as in the case of a time-delay, it is 

moved out of the prediction model Gm(z-1) and is treated 

together with the time-delay block, as shown in Fig. 1. The 

difference between the output of the process y and the model 

including time-delay ŷ is the predicted error êp as shown in    

Fig. 1, whereas e and d are the error and the measured 

disturbance, w is the reference signal. The primary (main) 

controller Gc(z-1) can be designed by different approaches (for 

example digital PID control or methods based on polynomial 

approach). The outward feedback-loop through the block in 

Fig. 1 is used to compensate load disturbances and modelling 

errors. 

III. DESIGN OF PRIMARY POLYNOMIAL 2DOF CONTROLLER  

 

 
 

Fig. 2 Block diagram of a closed loop 2DOF control system 
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Polynomial control theory is based on the apparatus and 

methods of linear algebra. The design of the controller 

algorithm is based on the general block scheme of a closed-loop 

with two degrees of freedom (2DOF) according to Fig. 2. 

The controlled process is given by the transfer function in 

the form 

 

1
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
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where A and B are the second order polynomials. The controller 

contains the feedback part Gq and the feedforward part Gr. Then 

the digital controllers can be expressed in the form of a discrete 

transfer functions 
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where  1 11K z z    

According to the scheme presented in Fig. 2 and equations       

(2) – (4) it is possible to derive a polynomial Diophantine 

equation for computation of feedback controller parameters as 

coefficients of the polynomials Q and P     

 

1 1 1 1 1 1( )K( ) ( ) ( ) ( ) ( )A z z P z B z Q z D z        (5) 

  

where  1D z  is the characteristic polynomial. 

Asymptotic tracking of the reference signal w is provided by 

the feedforward part of the controller which is given by solution 

of the following polynomial Diophantine equation 

 

 1 1 1 1 1( ) ( ) ( ) ( )wS z D z B z R z D z       (6) 

 

For a step-changing reference signal value, polynomial        

Dw (z-1) = 1 - z-1 and S is an auxiliary polynomial which does 

not enter into the controller design. Then it is possible to derive 

the polynomial R from equation (6) by substituting z = 1 
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The 2DOF controller output is given by 
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Two primary polynomial LQ controllers are derived in this 

paper using minimization of LQ criterion [20]. For the 

minimization procedure is used spectral factorization by means 

of the MATLAB Polynomial Toolbox 3.0 [21].  

A. Minimization of LQ Criterion Using Variable u(k) 

In the first case the linear quadratic control methods try to 

minimize the quadratic criterion by penalization of the quadrat 

controller output u(k) 

 

    2 2

0

( ) ( ) ( )u

k
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where qu is the so-called penalization constant, which gives the 

rate of the controller output on the value of the criterion (where 

the constant at the first element of the criterion is considered 

equal to one). In this paper, criterion minimization will be 

realized through the spectral factorization for an input-output 

description of the system  

 

           1 1 1

uA z q A z B z B z D z D z     (10) 

 

where δ is a constant chosen so that d0 = 1. 

Spectral factorization of polynomials of the first and the 

second degree can be computed simply by an analytical way 

[12], [22]; the procedure for higher degrees must be performed 

iteratively. Although A(z-1) and B(z-1)   are the second degree 

polynomials (spectral factorization (10) can be computed by an 

analytical way), the MATLAB Polynomial Toolbox is used for 

this computation. The factorized polynomial D(z-1)  must be 

also of second degree 

 

 1 1 2

2 21 221D z d z d z      (11) 

 

For computation of the spectral factorization (10) was used 

in this paper file spf.m by command 

 

d = spf(a*qu*a' + b*b')  (12) 

 

It is obvious that by using of the spectral factorization, only 

two parameters d21 and d22 of the second degree polynomial 

D2(z-1) (11) can be computed. This approach is applicable only 

for control of processes without time-delay (out of Smith 

Predictor). The primary controller in the digital Smith Predictor 

structure requires usage of the fourth degree polynomial  

 

 1 1 2 3 4

4 1 2 3 41D z d z d z d z d z          (13) 

 

in equations (5) and (6). The polynomial D2(z-1) (11) has two 

different real poles α, β or one complex conjugated pole 

1,2z j    (in the case of oscillatory systems). These poles 

must be included into polynomial D4(z-1) (13) and other two 

poles γ, λ  are user-defined real poles. A suitable pole 

assignment was designed for both types of the processes in [12].  
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Then the digital 2DOF controller (8) can be expressed in the 

form  
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where  
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and parameters 0 1 2, ,q q q  are computed from (5). The primary 

2DOF controller output is given by 
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B. Minimization of LQ Criterion Using Increment Δu(k)  

In the second case the linear quadratic control methods try to 

minimize the quadratic criterion by penalization of the square 

incremental value of controller output Δu(k) 
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Equation (10) for computation of the spectral factorization 

changes into  
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It is obvious that after arrangement and substitution the first 

term of the left side (18) has this form 
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where 
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and   
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Because (20) is the third degree polynomial whose 

parameters and poles α, β and γ it is impossible to compute by 

an analytical way, MATLAB Polynomial Toolbox 3  was used 

for their computation using command (12). 

The characteristic polynomial is the sixth degree polynomial 

in this case 
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Spectral factorization (18) gives three optimal parameters of 

polynomial (20) and then it is possible to write characteristic 

polynomial (26) as a combination of polynomial (23) and 

product root of factors in positive power of variable z      
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where , ,    are user-defined real poles. After modification 

(23) the characteristic polynomial is in the following form 
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  After comparison of (23) and (24) it is possible to obtain 

expressions for computation of individual parameters of 

polynomial (24)  
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Then the 2DOF controller design consists of determination 

of parameters (25) of polynomial (24) using command (12) 

from the Polynomial Toolbox and solution of the Diophantine 

equation for computation of feedback controller parameters  
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and from expression (7)  
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The primary 2DOF controller output is given by 
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IV. SIMULATION VERIFICATION AND RESULTS 

A simulation verification of the designed control algorithms 

was performed in MATLAB/SIMULINK environment. The 

robustness of individual control loops was experimental 

investigated by a change of the static gain K of the nominal 

process model. From the point of view of the robust theory it is 

possible to consider these experiments on behalf of the gain 

margin determination by the parametric uncertainty influence.  

 Three types of process models were chosen for simulation 

experiments. Consider the following continuous-time transfer 

functions (nominal continuous-time models):   
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Let us now discretize them a sampling period 0 2 sT  . The 

discrete nominal models of these transfer functions are  
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The individual simulation experiments are realized 

subsequently: the static gain K=2 was increased as far as the 

control closed-loop was in the stability boundary (no damping 

oscillation was achieved).  

A.   Control Using Primary Controller (16)  

1)  Experiments with stable non-oscillatory model (30) G1: 

 For these experiments the penalization factor was chosen as            

qu = 2. The characteristic polynomial  4D z  is given by     

  4 3 2

4 1.1461 0.4409 0.00652 0.0032D z z z z z      

with individual poles 

3796 0.7419; 0.1; 0.5          .  

The control courses of the process output and controller 

output for the nominal model  1

1NG z  are shown in Fig. 3.    

The pole map of the control nominal model  1

1NG z is shown 

in Fig. 4.  

 

 
Fig. 3 Control of nominal model  1

1NG z , K = 2 

 
Fig. 4 Pole map of control nominal model  1

1NG z  
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Fig. 5 Control of perturbed model  1

1PG z , K = 3 
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Fig. 6 Control of perturbed model  1

2PG z , K = 4 
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The control courses of the process output and controller 

output for the individual perturbed models are shown in Figs. 5 

- 7. It is obvious from Fig. 7 that for the static gain K = 4.4 is 

the closed-loop control on the stability boundary. It is obvious 

from these Figs. that approximate interval of the robust stability 

of nominal model  1

1NG z  is for the static gain  2, 4.4K  .    

 

Fig. 7 Control of perturbed model  1

3PG z , K = 4.4 

 

2) Experiments with stable oscillatory model (31) G2: 

   For these experiments the penalization factor was chosen as            

qu = 1. The characteristic polynomial  4D z  is given by     

  4 3 2

4 0.8902 0.3911 0.1147 0.0083D z z z z z      

with individual poles 

, 1451 0.3890 0.1; 0.5i         .  

The control courses of the process output and controller 

output for the nominal model  1

2NG z  are shown in Fig. 8. The 

pole map of the control nominal model  1

2NG z is shown in    

Fig. 9. 

 

 
 

Fig. 8 Control of nominal model  1

2NG z , K = 2 

 
Fig. 9 Pole map of control nominal model  1

2NG z  

The experimental examination of robustness was realized 

just as in the case of the model  1

1NG z . It was demonstrated 

that the approximate interval of the robust stability of the 

nominal model is for the static gain  2, 5K  .   

3) Experiments with non-minimum phase model (32) G3: 

 

Fig. 10 Control of nominal model  1

3NG z , K = 2 
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  4 3 2

4 1.4973 0.6449 0.0653 0.0015D z z z z z      

with individual poles 

0320 0.6153; 0.1; 0.75         .  

The control courses of the process output and controller 

output for the nominal model  1

3NG z  are shown in Fig. 10. 

The pole map of the control nominal model  1

3NG z is shown 

in    Fig. 11. 

 
Fig. 11 Pole map of control nominal model  1

3NG z  

The experimental examination of robustness was realized 

just as in the case of the model  1

1NG z . It was demonstrated 

that the approximate interval of the robust stability of the 

nominal model is for the static gain     2, 3.7K  .    

B. Control Using Primary Controller (29) 

1) Experiments with stable non-oscillatory model (30) G1: 

For these experiments the penalization factor was chosen as            

qu = 2. The characteristic polynomial  6D z  is given by      
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, 4561 0.2867 0.1316; 0.1; 0.2; 0.8i             .  

 
Fig. 12 Control of nominal model  1

1NG z , K = 2 

The user-defined poles λ, μ, ν were chosen in order that the 

control closed-loop did not oscillate. The control courses of the 

process output and controller output for the nominal model 

 1

1NG z  are shown in Fig. 12. The pole map of the control 

nominal model  1

1NG z is shown in Fig. 13.  

 
Fig. 13 Pole map of control nominal model  1

1NG z  

The control courses of the process output and controller 

output for the individual perturbed models are shown in         

Figs. 14 - 16. It is obvious from Fig. 16 that for the static gain 

K = 7 is the control closed-loop on the stability boundary. It is 

obvious from these Figs. that the approximate interval of the 

robust stability of the control nominal model  1

1NG z  is for the 

static gain  2, 7K  .    

 

Fig. 14 Control of perturbed model  1

Δ 1PG z  - K = 3  

 
Fig. 15 Control of perturbed model  1

Δ 2PG z  - K = 4  
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Fig. 16 Control of perturbed model  1

Δ 3PG z  - K = 7  

2) Experiments with stable oscillatory model (31) G2: 

For these experiments the penalization factor was chosen as            

qu = 1. The characteristic polynomial  6D z  is given by      

  6 5 4 3

6

2

1.3136 0.9496 0.4291

0.1082  0.013 62 0.000

D z z z z z

z z

   

  
  

with individual poles 

, 1848 0.5001 0.3441; 0.1; 0.2; 0.3i             . 

The control courses of the process output and controller 

output for the nominal model  1

2NG z  are shown in Fig. 17. 

The pole map of the control nominal model  1

2NG z is shown 

in Fig. 18.  

 
Fig. 17 Control of nominal model  1

2NG z , K = 2 

 
Fig. 18 Pole map of control nominal model  1

2NG z  

The experimental examination of robustness was realized 

just as in the case of the model  1

1NG z . It was demonstrated 

that the approximate interval of the robust stability of the 

nominal model is for the static gain     2, 4.6K  . 

3) Experiments with non-minimum phase model (32) G3: 

For these experiments the penalization factor was chosen as            

qu = 1. The characteristic polynomial  6D z  is given by      

  6 5 4 3

6

2

2.0579 1.6738 0.6884

0.1526  0.018 00 0.001

D z z z z z

z z

   

  
  

with individual poles 

, 1201 0.1071 0.6176; 0.3; 0.4; 0.5i             . 

The control courses of the process output and controller 

output for the nominal model  1

3NG z  are shown in Fig. 19. 

The pole map of the control nominal model  1

3NG z is shown 

in Fig. 20.  

 
Fig. 19 Control of nominal model  1

3NG z , K = 2 

 
Fig. 20 Pole map of control nominal model  1

3NG z  

The experimental examination of robustness was realized 

just as in the case of the model  1

1NG z . It was demonstrated 

that the approximate interval of the robust stability of the 

nominal model is for the static gain     2, 4.6K  . 

The experimental examination of robustness properties of 

designed controller algorithms is demonstrated in the Table I. It 

is necessary to take consideration that robustness properties are  
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dependent not only on dynamical types of individual processes 

but also on choice of user-defined poles, sampling period, size 

of parameter qu. Also parametric uncertainties of time constants 

influence the robustness of control closed-loops.       

 
TABLE I 

EXPERIMENTAL EXAMINATION OF ROBUST PROPERTIES 

 

Nominal 

Model 

Robust Interval K 

Criterion (9) 

Robust Interval K 

Criterion (17) 

GN1 (30) (2, 4.4) (2, 7.0) 

GN2 (31) (2, 5.0) (2, 4.6) 

GN3 (32) (2, 3.7) (2, 5.3) 

V. CONCLUSION 

The paper presents an experimental simulation investigation 

of robust algorithms for control of time-delay systems. The 

MATLAB Polynomial Toolbox 3.0 is used for design of the 

polynomial digital Smith Predictor. The primary controllers of 

the digital Smith Predictor are based on minimization of the LQ 

criterion using spectral factorization. Two types of 

minimization of LQ criterions have been designed. In criterion 

(9) it is minimized a square of the controller output u(k) – 

controller (17). In criterion (16) it is minimized a square of the 

increment value of the controller output  u(k) – controller 

(29). Simulation experiments demonstrated the influence of 

static gain K (parametric uncertainty) on the course of control 

variables (robustness of the control closed-loop). From 

comparison of both methods it is evident that minimization 

criterion (9) leads to faster courses of control variables. 

However the control closed-loop is in the stability boundary for 

a lower value K as in the case of minimization criterion (16) – 

except of the control closed-loop with stable oscillatory process 

(31). In this case the robust intervals are nearly identical using 

controllers (17) and (29). However minimization criterion (16) 

leads to quieter courses of control variables with their smaller 

oscillations for grater values of static gain K. The controller (29) 

is more conservative and robust than controller (16). From 

simulation experiments it is evident that both control algorithms 

are relative simply and they are suitable for application for 

control in real-time conditions. Designed universal Smith 

Predictors were verified by control of a laboratory heat 

exchanger [23]. The real-time experiments confirmed that both 

designed LQ Smith Predictors are able to cope with given 

control problem [24].   
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