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Abstract— Nowadays, many technologies involved for 

medical examinations produce multidimensional images. Such 

data need to be managed in an effective manner in order to be 

efficiently stored and transmitted. In such scenarios, data 

compression techniques are essential to improve the efficiency 

of transmission and storage. Lossless compression techniques 

are generally preferred, since medical images are often 

sensitive and important data. Indeed, through lossless 

compression techniques, the original data can be exactly 

restored. In this paper, we define a predictive structure well 

suited for the lossless compression of multidimensional 

medical images. We experimentally tested our approach on 

several datasets, including a dataset of 3-D Computed 

Tomography (CT), 3-D Magnetic Resonance (MR) and 5-D 

fMRI images. The experimental results we achieved 

outperform other state-of-the-art approaches for 3-D medical 

images. 

 

Keywords— Multidimensional medical images compression; 

Multidimensional medical images coding; Multidimensional data 

compression. 

I. INTRODUCTION 

OWADAYS, research activities in medical imaging 

technologies are continuously evolving on several 

aspects, especially on the improvement of the acquisition 

and transmission algorithms. 

Internet, Clouds services, Peer-to-Peer networks and all the 

inter-connection services are widely diffused and provide new 

services to medical staffs, such as telemedicine, tele-radiology, 

real-time tele-consultation, PACS (Picture Archiving and 

Communication Systems), etc.. A significant challenge is 

related to the efficient management of large amount of storage 

space, required to store medical data, as well as to the 

optimization the time required to transmit medical data. 

In such scenarios, the implicit costs of required memory 

space grow proportionally to the size of data. In future medical 

applications, the new techniques will further increase the 
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requests for memory space and/or transmission time. 

Several technologies involved for medical examinations 

produce multidimensional data. In general, we can informally 

describe a multidimensional dataset as an N-dimensional 

collection of highly-related bi-dimensional components (where 

N ≥ 3). A component can be an image, a data matrix, etc.. It is 

important to point out that all of these bi-dimensional 

components have the same size.  

In detail, we can define the dimensions of a 

multidimensional dataset, by using the following notation: 

<M1, M2, …, MN-2, X, Y>, where Mf is the size of the f-th 

dimension (1 ≤ f ≤ N – 2), while X and Y are the width and the 

height of the bi-dimensional components, respectively. A 

specific bi-dimensional component can be univocally 

identified through a vector of N–2 elements: [p1, p2, …, pN-2], 

where },...,2,1{ ii Mp  . 

The atomic elements of a multidimensional dataset are the 

samples, which are the elements that compose a component. 

For example, a sample can be a pixel of an image, an element 

of a matrix, etc.. It should be observed that a sample can be 

univocally identified, by using the following notation  

(d1, d2, ..., dN-2, x, y), where 1 ≤ x ≤ X, 1 ≤ y ≤ Y and 1 ≤ df ≤ Df 

(1 ≤ f ≤ N-2).  

In medical contexts, Computed Tomography (CT) and 

Magnetic Resonance (MR) imaging technologies produce 

three-dimensional data (N = 3), and functional Magnetic 

Resonance (fMRI) imaging technologies produce four-

dimensional and five-dimensional data (N = 4 and N = 5). 

In detail, 3-D CT images are acquired through X-rays. In 

particular, during the acquisition a computer is used, which 

permits to obtain several cross-sectional views. In addition, for 

the identification of normal or abnormal structures of the 

human body, the 3-D CT images are often used. X-rays 

scanners can generate several images, considering different 

angles around the body part, which is undergo analysis. The 

result of the processing, performed by the dedicated computer, 

is a collection of the cross-sectional images, often referred as 

slices. 

3-D MR images produce relevant information used in 

medical applications and in medical diagnosis (ranging from 

neuroimaging to oncology). Generally, MR images are 

preferred, especially, when both CT and MR images produce 

the same information. In particular, MR acquisitions do not 

use any ionizing radiation. On the other hand, MR techniques 

cannot be used in presence of subjects with cardiac 

pacemakers and/or metallic foreign bodies, MR techniques 
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cannot be applied. 

For what concern the Functional Magnetic Resonance 

Imaging (functional MRI or fMRI), the main aim of such 

technology is to measure the hemodynamic response (change 

in blood flow), related to neural activity in the brain [5]. In 

detail, through fMRI techniques, it is possible to observe the 

neuronal activities, characterized by neuroactivation task, 

which need metabolic oxygen support. Substantially, an fMRI 

scanner is a type of specialized MRI scanner. 

It is important to emphasize that each dataset produced by a 

fMRI scanner produce is composed of a collection of 3-D data 

volumes (T dimension). In particular, a 3-D volume is 

substantially characterized by a collection (on the Z 

dimension) of bi-dimensional images (X and Y dimensions). It 

is important to note that multiple trials of observation are often 

performed (R dimension), in this manner the accuracy of the 

examination is further improved. Therefore, data can be 

viewed a multidimensional data, by considering N equal to 4 

or equal to 5. 

It is important to point out that medical data need to be 

managed in an efficient and effective manner. Starting from 

such considerations, it is evident that data compression 

techniques are an essential aid to solve the transmission and 

storage problems. Lossless compression is often required or 

indispensable in medical contexts, since such data are precious 

or often obtained by means of unrepeatable medical exams.  

Therefore, this paper focuses on the lossless compression 

predictive-based techniques [7]. In detail, we have focused on 

multidimensional medical image sequences (3-D CT and 3-D 

MR images, and 5-D fMRI images), which need a 

considerable space memory requirements to be stored or 

transmitted. We describe a multidimensional and configurable 

predictive structure, which is well suited for the compression 

of multidimensional medical images. In addition, our predictor 

is scalable, adjustable, and adaptive. 

The achieved results show experimental evidences of its 

performance on multidimensional medical images: 3-D 

Computed Tomography (3-D CT), 3-D Magnetic Resonance 

(3-D MR) and 5-D functional Magnetic Resonance Images (5-

D fMRI). 

The rest of this paper is organized as follows: Section 2 

describes the predictive structure, Section 3 reports our 

experimental results and Section 4 highlights our conclusions 

and outlines future research directions. 

II. PREDICTIVE CODING OF MULTIDIMENSIONAL IMAGES 

 

The proposed predictive model is based on the least squares 

optimization techniques. The prediction is performed by 

considering a multidimensional prediction context, which is 

composed by the neighboring samples of the current 

component and one (or more) reference component(s). It is 

important to note that the reference component(s) can be of 

different dimension(s), with respect to the current component. 

Thus, the prediction of the current sample is obtained by using 

a multidimensional prediction context.  

From now on, without loss of generality, we assume that the 

current sample has coordinates (m1, m2, …, mN-2, x, y) (where  

1 ≤ m1 ≤ Mi, 1 ≤ x ≤ X and 1 ≤ y ≤ Y). 

We denote as Sets of References, the reference components 

used by our predictor. The Sets of References should be set at 

the beginning of the algorithm.  

In particular, each Set of References is defined as in the 

equation (1). 

Ri = },...,,{ 21

i
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ii

i
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In the equation (1), each element is defined as 
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A generic element of a Set of References, i

jr iR  (1 ≤  i ≤ 

N – 2), denotes a specific bi-dimensional component. In 

particular, we will use the following notation: if 0i

jr , then 

the denoted component is the one identified through the vector 

[m1, m2, …, mi-1, 
i

jr , mi+1, …, mN-2], or, if 0i

jr , then the 

denoted component is the one identified through the vector 

[m1, m2, …, mi-1, 
i

ji rm  , mi+1, …, mN-2]. 

We define an enumeration, in order to refer to a sample, 

without the use of its absolute coordinates. In detail, through 

an enumeration the relative indexing among all the samples (or 

a subset of them) of the same component is allowed. In 

particular, by fixing a sample, namely the reference sample, all 

the other samples of the component will be indexed with 

respect to it. The relative indexing of the samples is used for 

the definition of the multidimensional prediction context 

involved by our predictive model.  

Let E denotes a 2-D enumeration, which has as objective the 

relative indexing of the samples in a bi-dimensional context, 

with respect to a specific reference sample. The fundamental 

requisites that the enumeration E needs to satisfy are that the 

specified reference sample has 0 as index and that any two 

samples (with different coordinates) do not have the same 

index.  

Let )()( j

s

e

j rx  (where j

j

s Rr  ) denotes the e-th sample in 

the bi-dimensional context according to the enumeration E 

with respect to the sample with coordinate (m1, m2, …, mj-1, 
j

sr , mj+1, …, mN-2, x, y) when 0j

sr , or (m1, m2, …, mj-1, 

 , mj+1, …, mN-2, x, y) when 0j

sr . 

Furthermore, let 
)(ex  denotes the e-th sample, according to 

the enumeration E, with respect to the current sample. Notice 

that 
)0(x denotes precisely the current sample. 

In particular, the T-order prediction (where 











2

1

2

1
) of the current sample 

)0(x  is 

obtained by means of the equation (2). 
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coefficients are chosen to minimize the energy of the 

prediction error (equation (3)). 

 



P  x( i)  ˆ x ( i) 
2

i1

H

  (3) 

 

It should be noted that the H parameter is used to indicate 

the number of samples used, for the current and for each of the 

components specified in the references sets. Therefore, it is 

observable that H · (T + 1) + T samples are used for each 

prediction. 

The coefficients 0  are obtained by using the optimal 

linear prediction method, as in [10]. We can rewrite the 

equation (3), by using the matrix form as outlined in the 

equation (4). 

P = (C  – X)t  (Cα  – X) (4) 

As in [10], the linear system, reported in the equation (5), is 

obtained by taking the derivate of the equation (4), with 

respect to  , and by setting it to zero. 

(C t C) 0 (C t X) (5) 

Once the coefficients 0 , which solve the linear system (5), 

are obtained, it is possible to determinate the prediction of the 

current sample, 
)0(ˆ , by using the equation (2). 

The prediction error, obtained by means of the equation (6) 

and eventually mapped through an invertible mapping function 

[7] is sent to an entropy encoder. 

 )0()0( ˆ  (6) 

 

If our predictive structure uses only past information, there 

is no need to send any side information to the decompression 

algorithm. 

It is important to emphasize that the computational 

complexity of the prediction is related to the two configurable 

parameters: H and the Sets of References. It is possible to 

model the multidimensional prediction context by specifying 

its wideness and the number of the reference components. By 

doing this it is possible either to define a prediction context 

which can minimize the use of the computational resources or 

to refine the accurateness of the prediction by using more 

computational resources.  

In some situations, our predictive structure can be 

ineffective. In particular, when the linear system of equations 

(3) cannot be solved because it has no solutions or infinitely 

many solutions. In such scenarios, which we referred as 

exceptions, the predictive structure is not able to perform the 

prediction. 

In presence of a sample that cannot be predicted through the 

proposed predictive structure (because an exception is 

verified), an alternative predictive structure (as for instance 

Median Predictor, etc.) shall be used. 

 

Fig. 1. Graphical representation of the used enumeration. 

III. EXPERIMENTAL RESULTS 

In this section, we describe the experimental results achieved 

during our testing phase. In particular, we experimentally 

performed our testing on several datasets related to different 

typologies of multidimensional medical images: 3-D medical 

images (Section 3.A), namely, 3-D Computed Tomography 

images and 3-D Magnetic Resonance images, and 5-D fMRI 

images (Section 3.B). 

It is important to note that the predictive-based compression 

scheme, we implemented, predicts each sample by including 

only the previously coded samples, in the prediction context. 

In this manner, both the compression and the decompression 

algorithms are able to have a consistent prediction for each 

sample. Each prediction is followed by the coding of the 

prediction error, which is obtained as the difference between 

the current sample and its prediction. It is important to point 

out that the prediction errors can be encoded by using an 

entropy or a statistical coder.  

In our experiments, the following encoders, for the 

prediction of errors, are used: PAQ8 [6] and/or Prediction by 

Partial Matching with Information Inheritance (PPMd or 

PPMII) [11]. In addition, different values for the H parameter 

and several values for the Sets of References are considered. 

It is important to point out that all the samples that belong to 

a component, with no reference component(s), are predicted 

by using the 2-D Linearized Median Predictor (2D-LMP) 

(described in [9]). On the other hand, for all the other samples 

that belong to the components with reference component(s), 

our multidimensional predictive structure is used.  

The enumeration we used is graphically represented in 

Figure 1, in which the current sample has zero as index 

(highlighted in parenthesis), while the grey samples are already 

processed. 

In the following, when we mention a Set of Reference, the 

mnemonic name of a dimension is used, instead of its index, in 

order to improve the readability. For instance, we use the 

notation of RZ to indicate the Set of Reference related to the Z 

dimension. 

All the results are reported in terms of bits-per-sample 

(BPS). 
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Tab. 1. Description of the 3-D CT images. 

Image Name Number of Slices 

CT_skull 192 

CT_wrist 176 

CT_carotid 64 

T_Aperts 96 

 

 

 

 

 

 

 

 
Tab. 2. Description of the 3-D MR images. 

Image Name Number of Slices 

MR_liver_t1 48 

MR_liver_t2e1 48 

MR_sag_head 48 

MR_ped_chest 64 

 

 

 

 

 

 

 

 

 

A. 3-D Medical Images 

 

We performed our experiments on a dataset composed by four 

3-D CT (briefly described in Tables 1) and four 3-D MR 

images (briefly described in Tables 2). In particular, each slice 

have 256 columns and 256 rows. In addition, each sample is 

stored by using 8 bits. 

Regarding the coding of prediction errors, we have used 

either the PAQ8 algorithm as well as the PPMd algorithm. It is 

important to note that the error is first mapped, similarly to [7], 

before the sending to the encoder. In addition, the 3-D 

Differences-based Linearized Median Predictor (3D-DLMP) 

[9] is used for the exceptions. In relation to the H parameter, 

the following parameters are used: 8, 16 and 32. Furthermore, 

several configurations for the Set of References are used. 

Tables 3 and 4 report the experimental results achieved on 

the 3-D CT images and 3-D MR images, respectively. In 

particular, two configurations of the Set of References are used 

and the prediction of errors are coded through the PPMd 

scheme. 

Analogously to Tables 3 and 4, Tables 5 and 6 respectively 

summarize the results achieved on the 3-D CT images and on 

the 3-D MR images, in which the PAQ8 scheme is used for the 

coding of prediction errors, 

 

Tab. 3. Experimental results achieved on the 3-D CT images. PPMd 

is used for the coding of prediction errors. 

H }1{ZR  }2,1{ ZR  }3,2,1{ ZR  

CT_Aperts 

H=8 0.8507 0.7870 0.8140 

H=16 0.8646 0.7768 0.7850 

H=32 0.8751 0.7778 0.7786 

CT_carotid 

H=8 1.4535 1.4208 1.4130 

H=16 1.4770 1.4128 1.3650 

H=32 1.4850 1.4052 1.3455 

CT_skull 

H=8 2.1417 1.7159 1.7260 

H=16 2.1552 1.6604 1.6237 

H=32 2.1603 1.6287 1.5735 

CT_wrist 

H=8 1.0958 1.0562 1.0521 

H=16 1.1109 1.0129 0.9674 

H=32 1.1129 0.9895 0.9344 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Tab. 4. Experimental results achieved on the 3-D MR images. PPMd 

is used for the coding of prediction errors. 

H }1{ZR  }2,1{ ZR  }3,2,1{ ZR  

MR_liver_t1 

H=8 2.2970 2.0224 2.0722 

H=16 2.3295 1.9804 1.9563 

H=32 2.3618 1.9731 1.9231 

MR_liver_t2e1 

H=8 1.9721 1.4332 1.4240 

H=16 2.0014 1.4073 1.3619 

H=32 2.0186 1.3930 1.3366 

MR_ped_chest 

H=8 1.6736 1.5245 1.5197 

H=16 1.6856 1.4587 1.3956 

H=32 1.6952 1.4282 1.3391 

MR_sag_head 

H=8 2.0916 1.7127 1.7061 

H=16 2.0992 1.6750 1.6308 

H=32 2.1049 1.6477 1.5892 
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Tab. 5. Experimental results achieved on the 3-D CT images. PAQ8 

is used for the coding of prediction errors. 

H }1{ZR  }2,1{ ZR  }3,2,1{ ZR  

CT_Aperts 

H=8 0.7829 0.7268 0.7501 

H=16 0.7968 0.7198 0.7261 

H=32 0.8063 0.7205 0.7198 

CT_carotid 

H=8 1.3838 1.3456 1.3376 

H=16 1.4060 1.3417 1.2930 

H=32 1.4116 1.3343 1.2739 

CT_skull 

H=8 2.0291 1.6139 1.6191 

H=16 2.0365 1.5645 1.5247 

H=32 2.0372 1.5366 1.4786 

CT_wrist 

H=8 1.0496 1.0066 0.9998 

H=16 1.0645 0.9691 0.9244 

H=32 1.0646 0.9486 0.8935 

 

 

 

 
Tab. 6. Experimental results achieved on the 3-D MR images. PAQ8 

is used for the coding of prediction errors. 

H }1{ZR  }2,1{ ZR  }3,2,1{ ZR  

MR_liver_t1 

H=8 2.2013 1.9443 1.9870 

H=16 2.2304 1.9062 1.8823 

H=32 2.2568 1.8973 1.8485 

MR_liver_t2e1 

H=8 1.8760 1.3437 1.3311 

H=16 1.9051 1.3196 1.2739 

H=32 1.9201 1.3079 1.2504 

MR_ped_chest 

H=8 1.5801 1.4576 1.4577 

H=16 1.5869 1.3917 1.3406 

H=32 1.5932 1.3591 1.2822 

MR_sag_head 

H=8 1.9606 1.5960 1.5888 

H=16 1.9676 1.5609 1.5179 

H=32 1.9720 1.5360 1.4768 

 

 

In Tables 7 and 8, the average results related to 3-D CT 

images and 3-D MR images are respectively reported. It 

should be noted that the best results are achieved when the 

PAQ8 algorithm is used. However, the PAQ8 scheme needs 

more computational resources with respect to the PPMd 

scheme. 

From Figures 2 and 3, which show the histograms 

respectively related to Tables 7 and 8, the best trend of the 

average results is obtained when the H parameter is equal to 

32, except for the configuration in which RZ={-1} (i.e., one 

previous slice is used). In detail, the best results are obtained 

when the configuration RZ={-1,-2,-3} is used (i.e., three 

previous slices are used). 

Tab. 7. Average experimental results on the 3-D CT images. 

 

H }1{ZR  }2,1{ ZR  }3,2,1{ ZR  

PPMd 

H=8 1.3854 1.2450 1.2513 

H=16 1.4019 1.2157 1.1853 

H=32 1.4083 1.2003 1.1580 

PAQ8 

H=8 1.3114 1.1732 1.1767 

H=16 1.3260 1.1488 1.1171 

H=32 1.3299 1.1350 1.0915 

 

 
Tab. 8. Average experimental results on the 3-D MR images. 

 

H }1{ZR  }2,1{ ZR  }3,2,1{ ZR  

PPMd 

H=8 2.0086 1.6732 1.6805 

H=16 2.0289 1.6304 1.5862 

H=32 2.0451 1.6105 1.5470 

PAQ8 

H=8 1.9045 1.5854 1.5912 

H=16 1.9225 1.5446 1.5037 

H=32 1.9355 1.5251 1.4645 

 

 

 

 
Fig. 2. Histogram of Table 7. 

 

 

 
Fig. 3. Histogram of Table 8. 
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Tab. 9. Comparison of different compression techniques  

on the 3-D CT images. 

Methods / Images CT_skull CT_wrist CT_carotid CT_Aperts 

Proposed (H=32) 1.5393 0.9527 1.3363 0.7265 

Proposed (H=16) 1.5688 0.9737 1.3448 0.7271 

3D-ESCOT [12] 1.8350 1.0570 1.3470 0.8580 

MILC [9] 2.0306 1.0666 1.3584 0.8190 

AT-SPIHT [4] 1.9180 1.1150 1.4790 0.9090 

3D-CB-EZW [2] 2.0095 1.1393 1.3930 0.8923 

DPCM+PPMd [1] 2.1190 1.0290 1.4710 0.8670 

3D-SPIHT [12] 1.9750 1.1720 1.4340 0.9980 

3D-EZW [2] 2.2251 1.2828 1.5069 1.0024 

JPEG-LS [3] 2.8460 1.6531 1.7388 1.0637 

 

 

 

Tab. 10. Comparison of different compression techniques 

on the 3-D MR images. 

Methods / Images MR_liver_t1 MR_liver_t2e1 MR_sag_head MR_ped_chest 

Proposed (H=32) 1.8996 1.3101 1.5477 1.3740 

Proposed (H=16) 1.9089 1.3232 1.5737 1.4053 

3D-ESCOT 2.0760 1.5100 1.9370 1.6180 

MILC 2.1968 1.7590 2.0975 1.6556 

3D-SPIHT 2.2480 1.6700 2.0710 1.7420 

3D-CB-EZW 2.2076 1.6591 2.2846 1.8705 

DPCM+PPMd 2.3900 2.0250 2.1270 1.6890 

3D-EZW 2.3743 1.8085 2.3883 2.0499 

JPEG-LS 3.1582 2.3692 2.5567 2.9282 
 

 
Fig. 4. Graphical comparison of different compression 

techniques on the 3-D CT images. 

 

 
Fig. 5. Graphical comparison of different compression 

techniques on the 3-D MR images. 

 
 

In Table 9, we compare the achieved experimental results with 

respect to the state of the art techniques (first column), for 

each one of the tested 3-D CT images (from the second to the 

fifth columns). It is important to note that we report the results 

obtained by our approach, by using H = 32 (first row) and 

H = 16 (second row). In detail, the configuration  

RZ = {-1, -2} is used, whereas the PAQ8 scheme is used for the 

coding of prediction errors. Figure 4 graphically shows the 

results reported in Table 9, by emphasizing our approach with 

dotted lines (cyan dotted line when H = 16 and orange dotted 

line for H = 32, respectively). In particular, on the X-axis are 

reported the 3-D CT images, while on the Y-axis the obtained 

results value, in terms of BPS. From Figure 5, it should be 

noted that our approach outperforms all the compared state-of-

the-art methods. 

 Table 10, similarly to Table 9, summarizes the comparison 

of the achieved experimental results with respect to the state of 

the art techniques, for what concern the 3-D MR images. Also 

for the 3-D MR images, we compare the results obtained by 

our approach, in which H = 32 (first row) and H = 16 (second 

row) are used. In particular, the configuration RZ = {-1, -2} is 

used and the PAQ8 scheme is used for the coding of prediction 

errors. From Figure 5, which graphically shows the results 

reported in Table 10, it is possible to observe that our 

approach outperforms all the compared methods. 

B. 5-D fMRI Images 

 

Now, we focus on the experiments we performed on the data 

produced through the functional Magnetic Resonance Imaging 

(fMRI) technology. In particular, we perform our experiments 

on a dataset, denoted as “Living-nonliving decision with plain 

or mirror-reversed text” (briefly outlined in Table 11), 

provided by the OpenfMRI project [8]. 

For brevity, we used a more compact notation that permits 

to indicate which dimensions will be used by the predictive 

structure for each prediction. For example, the following 

notation 4-D (T, Z) is related to a specific configuration of the 

Sets of References (i.e., RT = {-1} and RZ = {-1}). In 

particular, such an example indicates that the previous slice of 

each one of four dimensions of a fMRI image, namely, the 

dimensions highlighted in parenthesis (i.e., T and Z 

dimensions) and the X and the Y dimensions. Only for the 

configuration denoted as 5-D, it is no necessary to report the 

used dimensions in the parenthesis, because of all of the 

dimensions of a fMRI image are exploited (i.e., RR = {-1}, RT 

= {-1} and RZ = {-1}). 

In detail, for our experiments we used the 2D-LMP 

predictor for the prediction of all samples that belong to the 

components, with no reference component(s), as well as for 

the management of the exceptions. In addition, all the 

prediction errors are coded by using the PPMd scheme. 
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Tables 12 and 13 report the experimental results related to 

the H parameter equal to 16 and 32, respectively. 

 
Tab. 11. Description of the dataset of 5-D fMRI Images. 

 
Subjects Dimension 

sub001 <6, 205, 25, 64, 64> 

sub002 <6, 205, 25, 64, 64> 

sub003 <5, 205, 25, 64, 64> 

sub004 <6, 205, 25, 64, 64> 

sub005 <5, 205, 25, 64, 64> 

sub006 <5, 205, 25, 64, 64> 

sub007 <5, 205, 25, 64, 64> 

sub008 <6, 205, 25, 64, 64> 

sub009 <6, 205, 25, 64, 64> 

sub010 <6, 205, 25, 64, 64> 

sub011 <6, 205, 25, 64, 64> 

sub012 <6, 205, 25, 64, 64> 

sub013 <6, 205, 25, 64, 64> 

sub014 <6, 205, 25, 64, 64> 

 

 
Tab. 12. Experimental results achieved on the dataset of fMRI 

Images (H = 16). 

Subjects 3-D (Z) 3-D (T) 4-D (Z, T) 4-D (T, R) 5-D 

sub001 7.0516 5.7572 5.7733 5.7470 5.7947 

sub002 7.0821 5.6136 5.6337 5.5941 5.6437 

sub003 7.4694 5.7476 5.7815 5.7176 5.7750 

sub004 7.4131 5.7105 5.7421 5.6716 5.7301 

sub005 7.2722 5.6545 5.6868 5.6376 5.6952 

sub006 6.7544 5.3380 5.3642 5.3047 5.3567 

sub007 7.0456 5.5538 5.5845 5.5156 5.5710 

sub008 7.1395 5.6751 5.7029 5.6330 5.6871 

sub009 6.9110 5.5133 5.5368 5.4786 5.5300 

sub010 7.3647 5.6765 5.7113 5.6262 5.6854 

sub011 7.2444 5.6330 5.6649 5.6201 5.6769 

sub012 7.0564 5.6360 5.6597 5.5670 5.6160 

sub013 7.5621 5.9086 5.9427 5.8603 5.9201 

sub014 7.0872 5.6808 5.7040 5.6362 5.6871 

 

 

 
Tab. 13. Experimental results achieved on the dataset of fMRI 

Images (H = 32). 

Subjects 3-D (Z) 3-D (T) 4-D (Z, T) 4-D (T, R) 5-D 

sub001 7.0477 5.7362 5.7233 5.7010 5.7094 

sub002 7.0824 5.5935 5.5861 5.5494 5.5615 

sub003 7.4737 5.7266 5.7299 5.6721 5.6896 

sub004 7.4146 5.6894 5.6913 5.6254 5.6443 

sub005 7.2689 5.6322 5.6352 5.5919 5.6105 

sub006 6.7531 5.3145 5.3119 5.2573 5.2712 

sub007 7.0429 5.5313 5.5321 5.4700 5.4858 

sub008 7.1366 5.6520 5.6505 5.5857 5.6009 

sub009 6.9099 5.4903 5.4845 5.4311 5.4431 

sub010 7.3692 5.6549 5.6593 5.5796 5.5987 

sub011 7.2383 5.6100 5.6122 5.5723 5.5895 

sub012 7.0516 5.6128 5.6061 5.5186 5.5282 

sub013 7.5576 5.8844 5.8862 5.8113 5.8283 

sub014 7.0776 5.6562 5.6497 5.5862 5.5976 

Tab. 14. Average experimental results on the fMRI images. 

 

H 3-D (Z) 3-D (T) 4-D (Z, T) 4-D (T, R) 5-D 

8 7.1809 5.6872 5.7795 5.7053 5.8118 

16 7.1753 5.6499 5.6777 5.6150 5.6692 

32 7.1732 5.6275 5.6256 5.5680 5.5828 

 

 

 
Fig. 6. Histogram of Table 12. 

 

In Table 14, the average experimental results related to the 

dataset of fMRI images are reported. 

From Figure 6 (which graphically represents the results in 

Table 14), it is possible to note that the worst results are 

obtained in the case of the 3-D (Z) configuration. On the other 

hand, the best results are achieved when the 4-D (T, R) 

configuration is used. 

In the case of the 4-D (T, Z) configuration, the achieved 

average results are slightly better with respect to the ones 

obtained when the 3-D (T) configuration is used, but only in 

the case in which the H parameter is equal to 32. Indeed, the 

results of the 4-D (T, Z) configuration are worse than the ones 

of the 3-D (T) configuration, when the H parameter is equal to 

16. 

IV. CONCLUSIONS AND FUTURE WORK 

 

Various medical instruments produce multidimensional 

medical images (i.e., magnetic resonance, computed 

tomography, etc.). Such data are often transmitted among 

different entities and should be manage in an efficient manner.  

Data compression techniques are an essential aid to solve 

the transmission and storage problems. By considering the 

importance of such typology of data, lossless techniques are 

often preferred, since the lost information, due to lossy 

techniques, might lead to incorrect analysis. 

In this paper, we have described a Multidimensional 

Predictive Model that can be used for efficient and lossless 

compression of multidimensional medical images. Our 

predictive model is configurable and it is also possible to 

configure it, according to the hardware in which the 

compression algorithm is implemented.  

We have experimentally tested our approach by considering 

several datasets composed by 3-D magnetic resonance (MR), 

3-D computed tomography (CT) and 5-D fMRI images. The 
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achieved results related to the 3-D medical images outperform 

the compared state of the art techniques. 

Future works will include a deeper experimentation on 

lossless compression by using other N-D data (eg. 4-D 

ultrasound images, etc.). 
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