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Abstract— The paper presents a design and implementation of a 

2DOF (two degree of freedom) multivariable controller. The 

controller was designed in both discrete and continuous-time 

versions. The control algorithm is based on polynomial theory and 

pole – placement. The controller integrates an on – line identification 

of an ARX model of a controlled system and a control synthesis on 

the basis of the identified parameters. The model parameters are 

recursively estimated using the recursive least squares method. In 

case of the continuous-time control loop derivatives of the input and 

output variables of the continuous – time systems can not be directly 

measured. Therefore differential filters and filtered variables are 

established to substitute primary variables. The filtered variables are 

then used in the recursive identification procedure. 

 

Keywords— multivariable control, control algorithms, adaptive 

control, polynomial methods, pole assignment, recursive 

identification.  

I. INTRODUCTION 

YPICAL technological processes require the 

simultaneous control of several variables related to one 

system. Each input may influence all system outputs. The 

design of a controller for such a system must be quite 

sophisticated if the system is to be controlled adequately. 

There are many different methods of controlling MIMO (multi 

input – multi output) systems [1]. Several of these use 

decentralized PID controllers [2], others apply single input-

single-output (SISO) methods extended to cover multiple 

inputs [3]. The classical approach to the control of multi-

input–multi-output (MIMO) systems is based on the design of 

a matrix controller to control all system outputs at one time. 

The basic advantage of this approach is its ability to achieve 

optimal control performance because the controller can use all 

the available information about the controlled system. 

Controllers are based on various approaches and various 

mathematical models of controlled processes. A standard 

technique for MIMO control systems uses polynomial methods 

[4], [5], [6], [7], [8] and is also used in this paper. Controller 

synthesis is reduced to the solution of linear Diophantine 

equations [9].  
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One controller, which enables control of TITO (two input-

two output) systems, is presented. The proposed control 

algorithm is based on the 2DOF (two degree of freedom) 

configuration [10]. The controller was realized both in discrete 

and continuous-time versions. Both versions of the controller 

were realized both with fixed parameters and as self-tuning 

controllers [11], [12] with recursive identification of a model 

of the controlled system. The recursive least squares method is 

used in the identification part. 

In case of the continuous-time control loop input and output 

derivatives of a system can not be directly measured, the 

differential filters and filtered variables are established to 

substitute primary variables. This approach is described in 

detail in [16], [17], [18]. The filtered variables are then used in 

the recursive identification procedure, where the classical 

recursive least squares method is used to identify the 

parameters. This approach enables fast sampling. The value of 

the sampling period is then dependent only on capabilities of 

used hardware and software. The used software must enable 

realization of filters by differential equations. 

II. MATHEMATICAL MODEL OF THE CONTROLLED PROCESS 

A general transfer matrix of a two-input–two-output system 

with significant cross-coupling between the control loops is 

expressed as (for continuous-time systems q = s as the 

derivative operator and for discrete systems q = z
-1

 as the delay 

operator)    

 
   
   








qGqG
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2221

1211
G                                                    (1)       

     qqq UGY                                                               (2) 

where  qU  and  qY  are vectors of the manipulated 

variables) and the controlled variables, respectively. 

      Tqyqyq 21 ,Y       Tququq 21 ,U                           (3) 

It may be assumed that the transfer matrix can be 

transcribed to the following form of the matrix fraction: 

         qqqqq 1

11

1   ABBAG                                      (4) 

where the polynomial matrices    qRqR 2222 ,  BA  

represent the left coprime factorization of matrix  qG  and the 

matrices    qRqR 221221 ,  BA  represent the right coprime 
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factorization of  qG . The further described algorithms are 

based on a model with polynomials of second order. This 

model proved to be effective for control of several TITO 

laboratory processes [13], where controllers based on a model 

with polynomials of the first order failed.  

A. Discrete Model 

Polynomial matrices of the discrete model are given by 

following exressions  
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The matrices can be converted to difference equations 
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B. Continuous-Time Model 

Polynomial matrices of the continuous-time model are 

defined as follows 
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Differential equations describing dynamical behavior of the 

system are  

24231211242312111 ububububyayayayay //////             (11) 

28271615282716152 ububububyayayayay //////       (12) 

 

III. DESIGN OF 2DOF CONTROLLERS 

The 2DOF configuration of the closed loop system is 

depicted in Fig. 1. It was presented in [10] for SISO control 

loop. 

 

  
Fig. 1 Block diagram of 2DOF configuration 

 

The vector of input reference signals is defined as 

     qqq w hFW
1

                                                             (13) 

The operator q = s as the derivative operator for continuous 

time systems and  q = z
-1

 as the delay operator for discrete 

systems. Further, the reference signals are considered as step 

functions. In this case h(q) is a vector of constants and Fw(q) is 

in the case of the discrete system expressed as 
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and in the case of the continuous-time system as 

  









s

s
sw

0

0
F                                                                    (15) 

The compensator  qF  is a component formally separated 

from the controller. It has to be included in the controller to 

fulfil the requirement on the asymptotic tracking. If the 

reference signals are step functions, then  qF  is an 

integrator. 

It is possible to derive the following equation for the system 

output (operator q will be omitted from some operations for 

the purpose of simplification) 

1

1111
UPBFABUAY

                                                (16) 

Where 

  QFYYWβU 1                                                         (17) 

The corresponding equation for the controller’s output, as 

shown in the block diagram in Fig. 1, follows as 

1

11
UPFU

                                                                       (18) 

The substitution of U1 and Y results in  

  BUQFABUAWβPFU
1111                                 (19) 

The equation (12) can be modified using the right matrix 

fraction of the controlled system into the form 

   βWBFQβPFAAU
1

111


                                     (20) 

The determinant of the matrix in the denominator 

  11 BFQβPFA   is the characteristic polynomial of the 

MIMO system. The roots of this polynomial matrix determine 

the behaviour of the closed loop system. They must be placed 

on the left side of the Gauss complex plane for the system to 

be stable. Conditions of BIBO stability can be defined by the 

following Diophantine matrix equation: 

  MBFQβPFA  11
                                                   (21) 

where  qR22Μ  is a stable diagonal polynomial matrix. If 

the system has the same number of inputs and outputs, matrix 

M can be chosen as diagonal, which allows easier computation 

of the controller parameters. Correct pole placement of the 
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matrix M is very important for good control performance. 

For the continuous-time case the matrix M takes the following 

form 
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and for the discrete system it takes the form 
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A. Design of Discrete Controller 

The degree of the controller polynomial matrices depends 

on the internal properness of the closed loop. The structures of 

matrices P, Q and  were chosen so that the number of 

unknown controller parameters equals the number of algebraic 

equations resulting from the solution of the Diophantine 

equation (21) using the method of uncertain coefficients: 
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The solution of the Diophantine equation results in a set of 

algebraic equations with unknown controller parameters. 
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The controller parameters are obtained by solving these 

equations. The parameters are then used for computation of the 

control law. The control law is defined as: 

FQYβEFPU                                                               (29) 

where E is a vector of control errors. This matrix equation can 

be transcribed to the difference equations of the controller  
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B. Design of Continuous-Time Controller 

Polynomial matrices of the continuous-time controller are as 

follows: 
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The solution of the Diophantine equation results in a set of  

algebraic equations with unknown controller parameters. 

Using matrix notation, the algebraic equations are expressed in 

the following form. 
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The matrix equation (29) can be transcribed to the 

differential equations of the controller 
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For purposes of simulation, the controller was realized in 

the Matlab/Simulink environment as an S-function. It was then 

necessary to obtain its state equations. Further there it is 

introduced a conversion of the first differential equation (37) 

to the state equations. The second differential equation (38) 

was converted similarly. Equation (37) can be itemized as 

follows 
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Equations (39) can be transcribed to transfer functions. It is 

also possible to establish auxiliary variables Z1, Z2, Z3, Z4 and 

Z5. 
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By means of the variables Z1, Z2, Z3, Z4 and Z5 it is possible 

to define following equations 
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and 
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Equations (42) can be converted to a set of differential 

equations of the first order (state equations). Choice of the 

state variables is as follows 
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And the state equations are  
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On the basis of the state variables, which are substituted to 

equations (41), it is possible to derive particular parts of the 

manipulated variable u1 
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                                                  (45) 

The manipulated variable we obtain as sum (46) 

EDCBA uuuuuu 111111                                               (46) 

An expression for computation of the manipulated variable 

u2 is obtained similarly on the basis of differential equation 

(38). 

IV. SYSTEM IDENTIFICATION 

The control algorithm was applied as a self-tuning 

controller. Self-tuning control is based on the online 

identification of a model of a controlled process. Each self – 

tuning controller consists of an on – line identification part and 

a control part.  

Various discrete linear models are used to describe dynamic 

behaviour of controlled systems; see for example the overview 

in [14]. The most widely applied linear dynamic model is the 

ARX model. Usually the ARX model is tested first and more 

complex model structures are only examined if it does not 
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perform satisfactorily. However, the ARX model matches the 

structure of many real processes. The parameters can be easily 

estimated by a linear least-squares technique.  

A. Identification of Discrete Model 

 

The ARX model describing the TITO process is defined as  
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                                                 (47) 

where es1(k), es2(k) are non-measurable disturbances. 

Parameter vectors are specified as follows: 

   432143211 b,b,b,b,a,a,a,ak
T

Θ
                                      (48) 

   876587652 b,b,b,b,a,a,a,ak
T

Θ
 

The data vector is 
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The aim of the identification is a recursive estimation of 

unknown model parameters Θ  on the basis of the inputs and 

the outputs considering the time moment k tk, {y(i), u(i), i = k, 

k - 1, k - 2, ..., k0} (where k0  is an initial time of the 

identification). We are looking for a vector Θ̂  minimizing the 

criterion 
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where 
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When using the least squares method, the influence of all 

measured input and output samples to the parameter estimates 

is the same. This is inconvenient for the identification of 

nonlinear systems, where changes in the identified parameters 

are expected. Tracking of changes of the parameters can be 

achieved using exponential forgetting. This technique ensues 

from the assumption that new data describe the dynamics of an 

object better than older data, which are multiplied by smaller 

weighting coefficients. However, if the identified plant is 

insufficiently activated, the input and output signals are steady 

(this situation is typical for closed control systems), and the 

exponential forgetting factor can cause numerical instability of 

the identification algorithm. A possible solution of this 

problem is the application of adaptive directional forgetting 

[15]. This technique changes the forgetting factor according to 

the level of information in the data. In view of the parameter 

changes in the nonlinear coupled-drives apparatus and the 

expected insufficient activation of the controlled system, the 

recursive least squares method with adaptive directional 

forgetting was applied. Then we minimize a modified criterion 
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where 10 2 is the exponential forgetting factor. 

The vector of parameters is updated according to the 

following recursive expression 
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Where 

       1111  kkkk T  C                                        (54) 

is an auxiliary scalar and 

       11ˆ1ˆ  kkkyke T Θ                                         (55) 

is a prediction error. If   01 k , then the square 

covariance matrix C is updated according to following 

expression 
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Where 
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If   01 k then 

   1 kk CC                                                                     (58) 

The directional forgetting factor is computed in each 

sampling period according to the expression 
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are auxiliary variables. 

B. Identification of Continuous-Time Model 

It is not possible to measure directly input and output 

derivatives of a system in case of continuous – time control 

loop. One of the possible approaches to this problem is 

establishing of filters and filtered variables to substitute the 

primary variables. This approach is described in detail in [16], 
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[17], [18]. The filtered variables are then used in the recursive 

identification procedure.  

Let us consider a linear continuous – time ARX model in a 

form of differential equation  

         tntuBtyA                                                      (63) 

where n(t) is a random continuous – time variable and    is 

the derivative operator. After the Laplace transform we obtain 

           sOsNsUsBsYsA 1                                     (64) 

where the polynomial O1 represents the Laplace transform 

of initial conditions. The output of the system is than given as 
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In order to obtain approximations of derivatives of the 

continuous – time variables it is necessary to establish filters 

using differential equations  

    u(t)tuσC f  ;       tytyσC f                                     (66) 

where )(C  is a stable polynomial and uf is a filtered input 

and yf is a filtered output. After the Laplace transform we 

obtain 

               sOsYsYsCsOsUsUsC ff 32 ;                (67) 

where O2(s) is a polynomial of initial conditions for the 

filtered input and O3(s) is a polynomial of initial conditions for 

the filtered output. The degree of the polynomial c must be 

greater or equal to the degree of the polynomial A (deg C(s)> 

deg A(s)). It is profitable to choose deg C(s) = deg A(s) (the 

lower is the degree of the polynomial C, the faster is the 

dynamics of the filter). Time constants of the filters must be 

lower than time constants of the plant. A right choice of the 

filter’s constants makes convergence of the parameters faster. 

After substitution of the filtered variables to the equation 

(66) we obtain 

       123 OsNOCUBOsCYA ff                           (68) 

After modification and substitution 
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Expression (73) proves that the transfer behaviour between 

the filtered and between the non – filtered variables is 

equivalent. Different are only initial conditions for the filtered 

and original variables. This fact enables to employ the filtered 

variables for the model parameter estimation. 

After transformation to the time domain we obtain the 

following equation 

         tnt uσBtyσA ff                                                (72) 

The filtered variables are taken in discrete time intervals tk 

= kTs,  k = 0,1,2, …, where Ts is the sampling period. The 

equation (74) can be modified to the form suitable for the 

model parameters estimation 
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The parameters of the model are estimated by the recursive 

method described in the previous section according to 

expressions (55) - (64). For the considered continuous – time 

model given by expressions (9) - (12) the equation (75) takes 

following form 
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The regression vector and the vector of parameters are 
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Considering the order of the system, the filters for both 

variables were chosen to have second order. 
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A right choice of the coefficients of the filter’s polynomials 

and choice of the sampling period are the ruling factors for the 

speed of the parameter’s convergence. Time constants of the 

filters must be lower than time constants of the plant. 

V. SIMULATION VERIFICATION 

The proposed controllers were verified by simulation. 

Verification by simulation was carried out on a range of plants 

with various dynamics. 

A. Simulation of Discrete Control 

As a simulation example for the discrete controller it is 

shown control of a system which represents a linear model of a 
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coupled drives process obtained by the recursive identification 

for a particular steady state [13]. 
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The step response of the system is in Fig. 2. 

 
Fig. 2 Step response of the discrete system 

 

The tuning parameter is the matrix M.  A suitable pole-

placement (matrix M) was chosen experimentally. At first, a 

multiple pole was chosen on the real axis. A suitable position 

of the multiple pole was chosen by experiments and 

comparison of control results. Then it was searched a suitable 

combination of various poles in the neighbourhood of the 

multiple pole. 
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The time responses of the control are shown in Fig. 3-4 

. 

Fig. 3 Adaptive control with discrete controller 

 
Fig. 4 Adaptive control with discrete controller-manipulated 

variables 

B. Simulation of Continuous-Time Control 

A continuous-time model in the form of the matrix fraction 

obtained by a possible conversion of the discrete model does 

not need to have the structure on which it is based the 

computation of the control law. The model obtained by this 

way would by then unusable.  

 It is shown control of the following continuous-time system 
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Fig. 5 shows the system‘s step response 
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Fig. 5 Step response of the continuous-time system 

 

The matrix M was obtained as follows 
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The time responses of the control are shown in Fig. 6-7. 

 
Fig. 6 Adaptive control with continuous-time controller 

 
Fig. 7 Adaptive control with continuous-time controller-

manipulated variables 

 

From the courses of the variables in Fig.4-7 it is obvious 

that the basic requirements on control were satisfied. The 

system was stabilized and the asymptotic tracking of the 

reference signals was achieved. 

VI. CONCLUSION 

 

The main content of this paper is utilization of algebraic 

methods for design of multivariable control system for the 

system with two inputs and two outputs. System with two 

inputs and two outputs is the most simple and the most 

common case of a multivariable system. Many industrial 

processes have character of a system with two inputs and two 

outputs.  The design of the controller is based on a linear 

model of the controlled system in the form of matrix fraction. 

The structure of the model is chosen in advance. The method 

of pole assignment was used. The method of polynomial 

synthesis was utilized which lead to solution of the 

Diophantine matrix equation. 

Algorithms based on the apparatus and terms of linear 

algebra have a number of advantages and are widely used. 

They are simple and easily programmable. The synthesis lies 

in the formulation of the Diophantine equation. A great 

advantage of this method is its simple applicability for 

multivariable systems. In the framework of this paper were 

designed both continuous-time and discrete versions of the 

control system based on 2DOF configuration. 

In the identification part of the self-tuning controller 

recursive least squares method with the directional forgetting 

was applied. In the continuous-time version the method was 

modified for estimation of a continuous-time model using 

filtering of continuous-time variables. The regression vector 

was filled with the filtered values as derivatives of the 

controlled and manipulated variables are not possible to be 

directly obtained. The designed controller was implemented in 
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the Matlab/Simulink environment and verified by simulation.  
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