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Abstract—Predictive sliding mode controller have been succe-
fully implemented in the last 10 years overcoming the drawbacks
of the traditional sliding mode control and the generalized
predictive control strategies. This paper investigates the stability
analysis of the new Discrete Predictive Sliding Mode Controller
(DPSMC) for multivariable systems. The basic objective of the
controller is to approximate the predictive sliding function vector
Sp MIMO to the sliding reference function vector Sr MIMO ,
penalizing at the same time the variation in the control signal.
The designed control strategy is more robust and has a chattering
reduction property and a faster convergence on the system state.
Finally, a numerical example is given to illustrate the effectiveness
of the proposed control, in comparaison with the classical sliding
mode control.

Keywords—Multivariable systems, Sliding Mode Control, Model
Predictive Control, Predictive Sliding Mode Control, Chattering
phenomenon.

I. INTRODUCTION

Many complex engineering systems are equipped with
several actuators that may influence their static and dynamic
behavior. Commonly, in cases where some form of automatic
control is required over the system, also several sensors are
available to provide measurement information about impor-
tant system variables that may be used for feedback control
purposes. Systems with more than one actuating control input
and more than one sensor output may be considered as mul-
tivariable systems or multi-input-multi-output (MIMO). The
control objective for multivariable systems is to obtain a de-
sirable behavior of several output variables by simultaneously
manipulating several input channels. withal, the presence of
external disturbances, parameters uncertainties and time delays
make difficult the design of an exact mathematical model and
the development of a suitable control.
Research in this area continues to grow. In fact, over the last
20 years much research has been developed, particularly, in
Sliding Mode Control (SMC) and in Model based Predictive
Control (MPC)[1].
Sliding mode control is one of the powerful control meth-
ods for systems containing uncertainties and unknown distur-
bances. The first step in SMC is to define a sliding surface. At
the second step, a feedback control law is designed to provide
convergence of a system trajectory to the sliding surface, in

finite time.
Sliding Mode Control is well used for multivariable systems
[2], [3], [4], [5]. However, in spite of the robustness of the
sliding mode control, the chattering phenomenon, caused by
the discontinuous term of the control law, is still the main
problem of the SMC which consists in a sudden and rapid
variation of the control signal leading to undesirable results [1].
Many approaches have been proposed to solve this problem
such as high order sliding mode control [6], [7], [8].
On the other hand, in recent years model based predictive
control(MPC) has received a lot of attention in the control
theory and applications. It has been successfully implemented
in many industrial applications, showing good performances.
The main idea behind Model Predictive Control is to calculate
a sequence of future control signals in such a way that it
minimizes a multistage cost function defined over a prediction
horizon. The index to be optimized is a difference between
the predictive system output and predictive reference sequence
over the prediction horizon plus a quadratic function measuring
control effort [9], [10], [11], [12], [13].
Nevertheless the control law is model dependent, so a perfect
model is required to guarantee the success of MPC control
strategies. Because of the finite horizon, the stability and the
robustness of the process is difficult to analyze and guarantee,
especially when constraints are present [14], [15].
As a solution, we have proposed in [16], [17], [18], [19], [20],
[21] a controller which combine the design of SMC and MPC
for single input single output systems. This combination im-
proves the performances of the two control laws and overcome
most of their specific drawbacks.
This work deals with the extension of our previous works,
concerning the Discrete Predictive Sliding Mode Control
(DPSMC), to multivariable systems. Moreover, it investigates
the stability analysis of the proposed controller for multivari-
able systems.
The paper is organized as follows: Section II gives the synthe-
sis of the classical discrete multivariable sliding mode control
and the synthesis of the multivariable predictive sliding mode
controller. The stability analysis is given at section III. In
the following section the proposed controller is tested on a
simulation example, and compared to SMC control. Finally,
section V draws conclusions of the paper.
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II. DISCRETE MULTIVARIABLE PREDICTIVE SLIDING
MODE CONTROL

Consider a discrete multivariable system subjected to ex-
ternal disturbances and parameters variation, defined by [22]:
{

x(k + 1) = (A + ∆A)x(k) + (B + ∆B)(u(k) + v(k))
y(k) = Hx(k) + Du(k)

(1)
where:

• x(k) ∈ <n is the state vector at the instant k,

• u(k) ∈ <m is the input vector at the instant k,

• y(k) ∈ <p is the output vector at the instant k,

• v(k) ∈ <m is the disturbance input vector at the
instant k,

• The matrices A ∈ <n×n, B ∈ <n×m, H ∈ <p×n and
D ∈ <p×m are the nominal model matrices.

• ∆A ∈ <n×n and ∆B ∈ <n×m are the parameter
uncertainties matrices.

The system (1) can be presented by the following form:
{

x(k + 1) = Ax(k) + Bu(k) + w(k)
y(k) = Hx(k) + Du(k) (2)

with:

w(k) = ∆Ax(k) + ∆Bu(k) + (B + ∆B) v(k) (3)

where w(k) ∈ <n.

A. Synthesis of classical discrete multivariable sliding mode
control

The sliding function is defined as [23]:

S(k) = Cx(k) = [s1(k) · · · sm(k)]T (4)

where the dimension of the matrix C are (m,n).
The sliding function vector is chosen in order to verify the
following reaching law [5], [24]:

S(k + 1) = ΦS(k)−




m1sign(s1(k))
m2sign(s2(k))

...
mmsign(sm(k))


 (5)

where Φ is a diagonal matrix with (m,m) dimension and
verifying 0 ≤ Φi,i < 1 and mi > 0 for i ∈ [1 m].
and sign is the signum function defined as :

sign(si(k)) =
{ −1 if si(k) < 0

+1 if si(k) > 0 ; i ∈ [1 m]

Thus, using equation (5), the control law ensuring the quasi-
sliding mode is calculated as follows [25]:

u(k) = (CB)−1


−CAx(k) + ΦS(k)−




m1sign(s1(k))
m2sign(s2(k))

...
mmsign(sm(k))







(6)
(CB) is inversible.

B. Synthesis of discrete multivariable predictive sliding mode
control

The principle of the Discrete Predictive Sliding Mode
Controller (DPSMC) is given by the block diagram shown
in Fig.1, where the primary loop is a Sliding Mode Control
(SMC) and the secondary loop is a Model Predictive Control
(MPC)[16], [20].

Sliding
Mode Control

(SMC)

Model
Predictive Control

(MPC)

x
S̃p MIMO

Sr MIMO

δu

Fig. 1. DPSMC Controller bloc diagram.

The main purpose is to approximate the predictive sliding
functions vector Sp MIMO to the sliding reference functions
vector Sr MIMO, penalizing at the same time the variation in
the control signal.
We consider, now, the sliding mode control problem for
multivariable system (1). The objective is to design a predictive
sliding mode controller taking the reaching law (5). The
reference sliding mode trajectory is chosen as:





Sr(k + 1) = ΦSr(k)−




m1sign(sr1(k))
m2sign(sr2(k))

...
mmsign(srm(k))




Sr(k) = S(k)

(7)

We consider that w(k) is equal to null matrix.
The sliding functions vector at the instant k + 1, k + 2 and
k + 3 can be written as:

S(k + 1) = Cx(k + 1)
= CAx(k) + CB(u(k)− u(k − 1)) + CBu(k − 1)
= CAx(k) + CBδu(k) + CBu(k − 1)

S(k + 2) = Cx(k + 2)
= CA2x(k) + CBδu(k + 1) + CBδu(k)
+CABδu(k) + CBu(k − 1) + CABu(k − 1)
= CA2x(k) + CBδu(k + 1)
+C(A + I)Bδu(k) + C(A + I)Bu(k − 1)

S(k + 3) = Cx(k + 3)
= CA [A [Ax(k) + Bu(k)]] + CABu(k + 1)
+CBu(k + 2)
= CA3x(k) + CBδu(k + 2) + C(A + I)Bδu(k + 1)
+C(A2 + A + I)Bδu(k) + C(A2 + A + I)Bu(k − 1)

Then, S(k + p) can be calculated as:

S(k + p) = CApx(k) + CBδu(k + p− 1)

+C(A + I)Bδu(k + p− 2) + · · ·+ C

[
p−1∑
j=0

Aj

]
Bδu(k)

+C

[
p−1∑
j=0

Aj

]
Bu(k − 1)

(8)
where:
δu(k) = u(k) − u(k − 1) ; I is the identity matrix with the
dimension n× n.
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We introduce, then the predictive sliding functions vector of
multivariable system Sp MIMO as:

Sp MIMO(k+1) =




S(k + 1)
S(k + 2)

...
S(k + N)


 =







s1(k + 1)
s2(k + 1)

...
sm(k + 1)







s1(k + 2)
s2(k + 2)

...
sm(k + 2)




...


s1(k + N)
s2(k + N)

...
sm(k + N)







(9)
With N is prediction horizon.
Equation (9) can be described as follows::

Sp MIMO(k + 1) = ΓMIMOx(k) + ΩF
MIMO∆U(k)

+ΩP
MIMOu(k − 1) (10)

where:

∆U(k) =


δu(k), δu(k + 1), · · · , δu(k + M − 1), 0 , · · · , 0︸ ︷︷ ︸

m×(N−M+1)




With M is control horizon.

ΓMIMO =




CA
CA2

...
CAN


 (11)

ΩF
MIMO =




CB 0 · · · · · · 0
C(A + I) CB 0 · · · 0

...
...

...
...

...

C(
M−1∑
j=0

Aj)B C(
M−2∑
j=0

Aj)B · · · · · · CB

C(
M∑

j=0

Aj)B C(
M−1∑
j=0

Aj)B · · · · · · · · · C(A + I)B

...
...

...
...

...

C(
N−1∑
j=0

Aj)B C(
N−2∑
j=0

Aj)B · · · · · · C(
N−M∑
j=0

Aj)B




ΩP
MIMO =




CB
C(A + I)B

...

C(
M−1∑
j=0

Aj)B

...

C(
N−1∑
j=0

Aj)B




(12)

In practice, to make correction to the future predictive sliding
function vector Sp MIMO(k + p), we introduce the error
between the sliding functions vector S(k) and the predictive
sliding functions vector S(k/k− p). Therefore, the predictive
sliding functions vector is given as follows:

S̃p MIMO(k + p) = S(k + p) + hpe(k)

= CApx(k) + CBδu(k + p− 1) + C (A + I) δu(k + p− 2)

+ · · ·+ C

[
p−1∑
j=0

Aj

]
Bδu(k) + C

[
p−1∑
j=0

Aj

]
Bu(k − 1)+hpe(k)

(13)
hp is a correct coefficient.
The equation (13), can be given as:

S̃p MIMO(k + 1) = Sp MIMO(k + 1) + HpE(k) (14)

where:

S̃p MIMO(k + 1) =
[
S̃p(k + 1), S̃p(k + 2), ..., S̃p(k + N)

]T

Hp = diag [h1Im, h2Im, ..., hNIm]
E(k) = Sv(k)− Smp(k)
Sv(k) = [S(k), S(k), ..., S(k)]
Smp(k) = [S(k/k − 1), S(k/k − 2), ..., S(k/k −N)]T

Knowing that:

S(k/k − p) = CApx(k − p) +
p∑

j=1

CAj−1Bu(k − j)

(15)
The following corresponding optimization cost function is
defined by:

jDPSMC =
N∑

j=1

qj

[
S̃p(k + j)− Sr(k + j)

]2

+
M∑
l=1

gl [δu(k + l − 1)]2
(16)

where Sr(k + j) is the sliding mode references trajectories
vector, qj and gl are weight coefficients.
In order to simplify the synthesis of the controller, we con-
sider qj = q and gl = g. So, the following corresponding
optimization cost function (16) is written by:

jDPSMC =
N∑

j=1

q
[
S̃p(k + j)− Sr(k + j)

]2

+
M∑

l=1

g [δu(k + l − 1)]2

(17)
The equation (17) can be rewritten as:

JDPSMC =
∥∥∥S̃p MIMO(k + 1)− Sr MIMO(k + 1)

∥∥∥
2

Q

+ ‖∆U(k)‖2G
=

[
ΓMIMOx(k) + ΩF

MIMO∆U(k) + ΩP
MIMOu(k − 1)

+HpE(k)− Sr MIMO(k + 1)]T Q [ΓMIMOx(k)
+ΩF

MIMO∆U(k)) + Ωp
MIMOu(k − 1) + HpE(k)

−Sr MIMO(k + 1)] + ∆U(k)T G∆U(k)
(18)

where

Sr MIMO(k + 1) = [Sr(k + 1), Sr(k + 2), ..., Sr(k + N)]T

G = [gIm, gIm, ..., gIm]
Q = [qIm, qIm, ..., qIm]
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The optimal control law can be obtained by:
∂JDPSMC

∂∆U(k)
= 0

So,

∆U(k) = −((ΩF
MIMO)T ΩF

MIMO + G)−1(ΩF
MIMO)T

[ΓMIMOx(k) + HpE(k) + Ωp
MIMOu(k − 1)

−Sr MIMO(k + 1)]
(19)

Only the m present increment of control input signals vector
are implemented, the next time increment of control signals
vector δu(k) will be calculated recursively by:

δu(k) = [1, 1, ..., 1, 0, ...0]T ∆U(k) (20)

So, we have:

u(k) = u(k − 1) + δu(k) (21)

III. ROBUSTNESS ANALYSIS

We consider the system (2) and the sliding mode function
(4). The following is given:

S(k + 1) = Cx(k + 1)
= C [Ax(k) + Bu(k) + w(k)]
= C [Ax(k) + Bu(k)]
+C [∆Ax(k) + ∆Bu(k) + (B + ∆B)v(k)]

(22)

The sliding function value at time (k + p) is:

S(k + p) =




s1(k + p)
s2(k + p)

...
sm(k + p)


 = CApx(k)

+
p∑

j=1

CAj−1Bu(k + p− j) +
p∑

i=1

CAi−1w(k + p− i)

(23)
We consider then, the predictive sliding function vector of
multivariable systems, Sp MIMO(k + 1) defined by equation
(9)

Using ∆U(k) given by equation (19),we can express the
predictive sliding function vector by:

Sp MIMO(k + 1) = ΓMIMOx(k) + ΩF
MIMO∆U(k)

+ΩP
MIMOu(k − 1) + KW (k) (24)

with:

K =




C 0 · · · 0
CA C · · · 0

...
...

. . .
...

CAN−1 CAN−2 · · · C




and
W (k) = [w(k), w(k + 1), ..., w(k + N − 1)]T

Or, we have:

∆U(k) = −((ΩF
MIMO)T ΩF

MIMO + G)−1(ΩF
MIMO)T×

[ΓMIMOx(k) + HpE(k) + Ωp
MIMOu(k − 1)

−Sr MIMO(k + 1)]

So:
Sp MIMO(k + 1) = ΓMIMOx(k) + ΩF

MIMO [− (ΩF
MIMO)T×

(ΩF
MIMO + G)−1(ΩF

MIMO)T [ΓMIMOx(k) + HpE(k)
+Ωp

MIMOu(k − 1)− Sr MIMO(k + 1)]] + Ωp
MIMOu(k − 1)

+KW (k)

The action of the weight coefficient matrix G is used to
limit the control input ∆U . So, we can suppose that G is equal
to null matrix, i.e., there is no limitation for control input ∆U .

Sp MIMO(k + 1) = ΓMIMOx(k)− [ΓMIMOx(k) + HpE(k)
+Ωp

MIMOu(k − 1)− Sr MIMO(k + 1)]]
+Ωp

MIMOu(k − 1) + KW (k)
= Sr MIMO(k + 1)−HpE(k) + KW (k)

(25)
or:

E(k) = Sv(k)− Smp(k)

with:
Sv(k) = [S(k), S(k), ..., S(k)]1×N

and:

Smp(k) = [S(k/k − 1), S(k/k − 2), ..., S(k/k −N)]T

knowing that:

S(k) = CApx(k − p) +
p∑

j=1

CAj−1Bu(k − j)

+
p∑

i=1

CAi−1w(k − i)

and
S(k/k − p) = CApx(k − p) +

p∑
j=1

CAj−1Bu(k − j)

e(k) = S(k)− S(k/k − p) =
p∑

i=1

CAi−1w(k − i)

then we can conclude that:

E(k) = K̃W̃ (k)

with:

K̃ =




C 0 · · · 0
C CA · · · 0
...

...
. . .

...
C CA · · · CAN−1




W̃ (k) = [w(k − 1), w(k − 2), ..., w(k −N)]T

Because of rolling optimization, only the m present control
input signal are implemented. The practical sliding mode
function can be described as follows:

S(k + 1) = [1, 1 · · · 1, 0 · · · 0]
[
Sr −HpK̃W̃ + KW

]
(26)

Equation(35) can be re-written to:

S(k + 1) = Sr(k + 1) + C [w(k)− h1w(k − 1)] (27)

From the viewpoint of practice, usually, we choose h1 = 1
[26].
Then equation(27) can be re-written to:

S(k + 1) = Sr(k + 1) + C [w(k)− w(k − 1)] (28)

Or, we have:




Sr(k + 1) = Sr(k)−




m1sign(sr1(k))
m2sign(sr2(k))

...
mmsign(srm(k))




Sr(k) = S(k)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 455



That’s why:

S(k+1) = ΦSr(k)−




m1 sign(sr1(k))
m2 sign(sr2(k))

...
mm sign(srm(k))


+C [w(k)− w(k − 1)]

(29)
So, we have:

S(k+1) = ΦS(k)−




m1 sign(s1(k))
m2 sign(s2(k))

...
mm sign(sm(k))


+C [w(k)− w(k − 1)]

(30)
then we have ∀i ∈ [1 m]:

si(k+1) = Φi,isi(k)−misign(si(k))+C [wi(k)− wi(k − 1)]
(31)

In discrete time sliding mode control, a quasi sliding mode
is considered in the vicinity of the sliding surface, such
that |s(k)| < ε where s(k) is the sliding function and ε is a
positive constant called the quasi sliding mode band width
[27].
The stability of the proposed control can be given by the
following theorem:

Theorem 1. Consider the system (2) to which the discrete
Predictive Sliding Mode Control is applied (20).
This system verifies a convergent quasi-sliding mode, if the
following conditions C1, C2 and C3 are satisfied [28].
C1 :

|si(k + 1)| < |si(k)| , if |si(k)| > εi , i ∈ [ 1 m ] (32)

C2 :

|si(k + 1)| < εi, if |si(k)| = εi , i ∈ [ 1 m ] (33)

C3 :

|si(k + 1)| < εi, if |si(k)| < εi , i ∈ [ 1 m ] (34)

where:

∀k, C[wi(k)− wi(k − 1)] is bounded such that:
|C(wi(k)− wi(k − 1))| < w0 , 0 < w0 < mi,
and Φi,i >

(
mi

εi

)

Proof.
Firstly, we should begin by the condition (32).
Consider the case 1: si(k) > εi

The difference between si(k + 1) and si(k) is given by:

si(k + 1)− si(k) = (Φi,i − 1)si(k)−mi+
C [wi(k)− wi(k − 1)]
< −mi + C [wi(k)− wi(k − 1)]
< 0

The sum of si(k + 1) and si(k) is given by:

si(k + 1) + si(k) = (Φi,i + 1)si(k)−mi

+C [wi(k)− wi(k − 1)]
> εi + Φi,iεi −mi + C [wi(k)− wi(k − 1)]
> Φi,iεi + C [wi(k)− wi(k − 1)]
> mi + C [wi(k)− wi(k − 1)]
> 0

Then:
|si(k + 1)| < |si(k)|, if si(k) < εi

Consider the case 2: si(k) < −εi

In this case, the difference between si(k + 1) and si(k) can
be calculated as:
si(k + 1)− si(k) = (Φi,i − 1)si(k) + mi + C [wi(k)− wi(k − 1)]

> mi + C [wi(k)− wi(k − 1)]
> 0

The sum of si(k + 1) and si(k) is given by:

si(k + 1) + si(k) = (Φi,i + 1)si(k)−mi + C [wi(k)− wi(k − 1)]
< −εi − Φi,iεi + mi + C [wi(k)− wi(k − 1)]
< −Φi,iεi + C [wi(k)− wi(k − 1)]
< −mi + C [wi(k)− wi(k − 1)]
< 0

Then:
|si(k + 1)| < |si(k)|, if si(k) < −εi

Using cases 1 and 2, the condition C1 is verified.

Secondly, we consider the condition (33).
Consider the case 3:si(k) = εi

We have:
si(k + 1) = Φi,isi(k)−mi + C [wi(k)− wi(k − 1)]

< Φi,iεi −mi + C [wi(k)− wi(k − 1)]
< εi

The sliding function si(k + 1) can be written as follows:

si(k + 1) = Φi,isi(k)−mi + C [wi(k)− wi(k − 1)]
> Φi,iεi −mi + C [wi(k)− wi(k − 1)]
> C [wi(k)− wi(k − 1)]
> −mi

> −Φi,iεi

> −εi

Then:
|si(k + 1)| < εi, if si(k) = εi

Consider the case 4: si(k) = −εi

In this case, si(k + 1) can be given by:

si(k + 1) = Φi,isi(k) + mi + C [wi(k)− wi(k − 1)]
< C [wi(k)− wi(k − 1)]
< mi

< Φi,iεi

< εi

Thus:
|si(k + 1)| < εi, if si(k) = −εi

Using cases 3 and 4, we obtain the condition C2.
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Finally, we consider the third condition (34).
Consider the case 5: 0 ≤ si(k) < εi

Using this condition, the sliding function si(k + 1) can be
expressed as:

si(k + 1) = Φi,isi(k)−mi + C [wi(k)− wi(k − 1)]
< Φi,iεi −mi + C [wi(k)− wi(k − 1)]
< Φi,iεi

< εi

The sliding function si(k + 1) can be given as follows:

si(k + 1) = Φi,isi(k)−mi + C [wi(k)− wi(k − 1)]
> C [wi(k)− wi(k − 1)]
> −mi

> −Φi,iεi

> −εi

Then:
|si(k + 1)| < εi, if 0 ≤ si(k) < εi

Consider the case 6: −εi < si(k) ≤ 0 The sliding
function si(k + 1) can be calculated as:

si(k + 1) = Φi,isi(k) + mi + C [wi(k)− wi(k − 1)]
> −Φi,iεi + mi + C [wi(k)− wi(k − 1)]
> −Φi,iεi

> −εi

We have:
si(k + 1) = Φi,isi(k) + mi + C [wi(k)− wi(k − 1)]

< C [wi(k)− wi(k − 1)]
< mi

< Φi,iεi

< εi

|si(k + 1)| < εi, if −εi < si(k) ≤ 0

Using cases 1, 2, 3, 4, 5 and 6 the three conditions
(32), (33) and (34) are verified. Therefore, the discrete
multivariable predictive sliding mode controller is stable.

IV. SIMULATION RESULTS

In order to prove the effectiveness of the proposed mul-
tivariable DPSMC, we choose to apply the classical discrete
SMC and the proposed DPSMC, in the presence of constant
or periodic disturbances and parameters uncertainties, to the
process described by the following equation, :

x(k + 1) = (A + ∆A)x(k) + (B + ∆B)(u(k) + v(k))

where:

A =
[

0 1
0.24 0.2

]
; B =

[
1.5 0
0 1

]

The retained synthesis parameters are:

C =
[

0.6667 0
0 1

]

and m1 = 0.01, m2 = 0.01, Φ = [0.01 0; 0 0.01],
N = 10, M = 5, Hp = 0.001I(N,N),
and G = 0.001I(N, N)
The sliding functions vector is given by:

S(k) = Cx(k) = C =
[

0.6667 0
0 1

] [
x1(k)
x2(k)

]
=

[
s1(k)
s2(k)

]

A. Case of constant disturbances

In presence of constant disturbances, given as follows , the
results presented in this section are obtained.

v(k) =
[

0.15
0.2

]
, ∀k ≥ 100

The parameters variation are applied at the instant k = 300 :

∆A = 0.1
[

5 sin(− 2kπ
10 ) 6 sin(− 2kπ

10 )
3 sin(− 2kπ

10 ) 3 sin(− 2kπ
10 )

]

∆B = 0.1
[

2 sin(− 2kπ
10 ) 5 sin(− 2kπ

10 )
3 sin(− 2kπ

10 ) 5 sin(− 2kπ
10 )

]
,∀k ≥ 300

The evolution of the states x1(k) and x2(k), the control inputs
u1(k) and u2(k) and the sliding mode functions s1(k) and
s2(k) with DPSMC and SMC are given, respectively, in figures
2 to 7.

0 100 200 300 400
−1

−0.5

0

0.5

1

 

 

SMC
DPSMC

x1(k)

k

Fig. 2. Evolution of the state x1(k).

0 100 200 300 400
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−0.5

0

0.5

1

 

 

SMC
DPSMC

k

x2(k)

Fig. 3. Evolution of the state x2(k).

It can be seen that the performances of the DPSMC are
better then the classical SMC, not only, for rejecting constant
disturbances, but also, for eliminating chattering and fast
convergence.
In fact, without disturbances and parameters uncertainties, the
results of SMC and DPSMC are comparable. But, in presence
of constant disturbances (k ≥ 100), we find that the proposed
control law ensure good performances in term of rejection of
external disturbances and fast convergence.
When we add parameters uncertainties, at the instant (k ≥
300), the oscillation encountered, in the case of classical SMC,
are reduced.
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Fig. 4. Evolution of the control signal u1(k).

0 100 200 300 400
−0.4

−0.2

0

0.2

0.4

 

 

SMC
DPSMC

k

u2(k)

Fig. 5. Evolution of the control signal u2(k).
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Fig. 6. Evolution of the sliding function s1(k).
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Fig. 7. Evolution of the sliding function s2(k).

B. Case of periodic disturbances

The results presented in this section are obtained with
the presence of disturbances, whose evolutions are given in
figures 8 and 9, and with the following parameters variation:

∆A = 0.1
[

5 sin(− 2kπ
10 ) 6 sin(− 2kπ

10 )
3 sin(− 2kπ

10 ) 3 sin(− 2kπ
10 )

]

∆B = 0.1
[

2 sin(− 2kπ
10 ) 5 sin(− 2kπ

10 )
3 sin(− 2kπ

10 ) 5 sin(− 2kπ
10 )

]
,∀k ≥ 300
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Fig. 8. Evolution of the disturbances v1(k).
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Fig. 9. Evolution of the disturbance v2(k).

The evolution of the states x1(k) and x2(k), the sliding
mode functions s1(k) and s2(k) and the control inputs u1(k)
and u2(k) ,with DPSMC and SMC are given, respectively, in
figures 10 to 15.

A comparison between the DPSMC and SMC, in the case
of multivariable systems, reveals that the use of the new control
strategy DPSMC reduces the chattering problem effectively
(k ≥ 300).
Furthermore, the results obtained prove the capability of the
proposed control law to reduce periodic disturbances (k ≥
100) and parameters uncertainties (k ≥ 300).
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Fig. 10. Evolution of the state x1(k).
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Fig. 11. Evolution of the state x2(k).
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Fig. 12. Evolution of the control signal u1(k).
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Fig. 13. Evolution of the control signal u2(k).
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Fig. 14. Evolution of the sliding function s1(k).
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Fig. 15. Evolution of the sliding function s2(k).

V. CONCLUSION

In this paper, a discrete predictive sliding mode controller
for multivariable systems was proposed. This controller com-
bines the design technique of the SMC and MPC.
A stability analysis of the proposed controller was studied.
The method was tested on a multivariable system, and com-
pared to the results given by the SMC controller. It is shown
that mixing both control techniques, for multivariable systems,
gives new controller with better robustness properties in reject-
ing disturbances, hard parameters variations and in eliminating
the chattering problem.

ACKNOWLEDGMENT

”This work was supported by the Ministry of the Higher
Education and Scientific Research in Tunisia”

REFERENCES

[1] P. Lopez and A.S. Nouri. Thorie lmentaire et pratique de la commande
par les rgimes glissants. Mathmatiques et application, 2006.

[2] K. Dehri, Ltaief M., and Nouri A. S. Multivariable q-parametrization for
rejection of harmonic disturbances. International Journal of Computer
Applications, 41 (14):10–17, 2012.

[3] K. Dehri, Ltaief M., and Nouri A. S. New discrete multivariable
sliding mode control for multi-periodic disturbances rejection. In
8th International Multi- Conference on Systems, Signals and Devices,
Tunisia, 2011.

[4] X. Chen. Adaptative sliding mode control for discrete-time mult-input
multi-output systems. Automatica, 42:427–435, 2006.

[5] J. L. Chang. Discrete sliding-mode control of mimo linear systems.
Asian Journal of Control, 2:10–15, 2002.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 459



[6] M. Mihoub, A.S. Nouri, and R. Ben Abdennour. Real-time application
of discrete second order sliding mode control to a chemical reactor.
Control Engeneering Practice, 17:1089–1095, 2009.

[7] A. Cavallo and C. Natale. High-order sliding control of mechnical
systems: theory and experiments. Automatica, 12:1139–1149, 2004.

[8] H. Ben Romdhane, K. Dehri, and A. S. Nouri. Stability analysis of
discrete input output second order sliding mode control. International
Journal of Modelling, Identifiacation and Control, Vol. 22, No 2:159–
169, 2014.

[9] D. Clarke and R. Scattolini. Constrained receding horizon predictive
control. IEEE Transaction automatic control, 23 N2:347–354, 1991.

[10] E. F. Camacho and C. Bordon. Model Predictive Control. Springer,
2004.

[11] R. J. Culi and C. Bordon. Iterative nonlinear model preditive control,
stability robustness and applications. Chemical Engineering Practice,
16:1023–1034, 2008.

[12] C. Yan and Z. Li. Predictive controller design for multivariable process
system based on support vector machine model. International Journal
of Modelling, Identifiacation and Control, Vol. 13, No.3:234 – 240,
2011.

[13] Z. He, C. Liu, and X. Huang Z. Zhang. Dynamic surface adaptive
integral-terminal sliding mode control for theodolite rotating systems.
International Journal of Modelling, Identifiacation and Control, Vol.
23, No.3:222 – 229, 2015.

[14] J. M. Maciejowski. Predictive control with constraints. In Pretice Hall,
Harlow, 2011.

[15] D.W. Clarke, C.Mohtadi, and P.S.Tuffs. Generalised predictive control
i: The basic algorithm. Automatica, 23:137–148, 1987.

[16] H. BenMansour, K. Dehri, and A. S. Nouri. New predictive sliding
mode control for non minimum phase systems. International Journal
of Computer Applications IJCA, 70 - N. 11:1–8, 2013.

[17] H. BenMansour, K. Dehri, and A. S. Nouri. New discrete sliding
mode controller with predictive sliding function. International Review
of Automatic Control, 6 N 4:1–10, 2013.

[18] H. BenMansour and A.S. Nouri. Discrete predictive sliding mode
control of uncertain systems. In Proccedings of the 9th International
Multi-Conference on System, Signals and Devices Germany, 2012.

[19] H. BenMansour and A. S. Nouri. Predictive sliding mode control for
perturbed discrete delay time systems: Robustness analysis. In Interna-
tional Conference on Electrical Engineering and Software Application
ICEESA 2013, 2013.

[20] H. BenMansour and A. S. Nouri. Discrete predictive sliding mode
control of uncertain systems. In Proceeding of the 9th International
Multi-Conference on Systems, Signals and devices, 2012.

[21] N. Abdennabi, H. Ben Mansour, and A. S. Nouri. A new sliding
function for discrete predictive sliding mode control of time delay
systems. International Journal of Computer Applications (IJCA),
10(4):288–295, 2013.

[22] R. BenAbdennour, P. Borne, M. Ksouri, and F. Msahli. Identification
et commande numrique des procds industriels. Technip, Paris, France,
2001.

[23] K. Dehri. Sur le rejet des perturbations harmoniques par les rgimes
glissant. Master’s thesis, Ecole Nationale d’Ingnieurs de Gabs (ENIG),
2013.

[24] G. Monsees. Discrete-time sliding mode control. Master’s thesis, PhD
thesis, Delft University of Technology, 2002.

[25] K. Dehri, Ltaief M., Nouri A. S., and Ben Abdennour R. Rejection
of periodic disturbances with unknown frequency for multivariable
systems. International Journal on Sciences and Techniques of Automatic
control and computer engineering, 5, n1:1458–1471, 2011.

[26] J. Zhao, J. Meng, and L. Zhang. Passivity-based sliding mode predictive
control of discrete-time singular systems with time verying delay.
In Proceeding of International conference on consumer, Electronics,
Communication and Networks (CECNET), 2011.

[27] M. Mihoub, A.S. Nouri, and R. B. Abdennour. Multimodel discret
second order sliding mode control: Stability analysis and real time
application on a chemical reactor. In Tech, pages 473–490, 2011.

[28] A. Bartoszewicz. Discrete-time quasi-sliding-mode control strategies.
IEEE Transaction on Industrial Electronics, 45 (4):633–637, 1998.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 460




