
 

Abstract—The paper deals with comparison of two approaches 

to cascade control of a continuous stirred tank chemical reactor. The 

control is performed in primary and secondary control-loops where 

the primary controlled output of the reactor is a concentration of the 

main reaction product. The secondary output is the reactant 

temperature. A common control input is the coolant flow rate. In the 

first case, the controller in the primary control-loop is a linear P-

controller, and, in the second case a nonlinear P-controller. In both 

cases, the controller in the secondary control-loop is an adaptive 

controller. The results obtained on basis of both proposed 

approaches are verified by control simulations.  

Keywords—chemical reactor, cascade control, external linear 

model, parameter estimation, adaptive control 

I.  INTRODUCTION  

HE cascade control belongs to more complex control 

structures useful for such processes where more output 

variables can be measured and where only one input variable 

is available to the control. Principles of the cascade control 

are described e.g. in [1], [2], [3] and [4]. 

Chemical reactors are typical processes suitable for a use 

of the cascade control. In cases of non-isothermal reactions, 

concentrations of the reaction products mostly depend on the 

temperature of a reactant. Further, it is known that while the 

reactant temperature can be measured almost continuously, 

concentrations are usually measured in longer time intervals. 

Then, the application of the cascade control method can lead 

to good results. In this paper, the procedure for the cascade 

control design of a continuous stirred tank chemical reactor is 

presented.  

Continuous stirred tank reactors (CSTRs) are units 

frequently used in chemical industry. From the system theory 

point of view, CSTRs belong to the class of nonlinear 

systems. Their mathematical models are described by sets of 

nonlinear differential equations (ODEs). The methods of 

CSTRs modelling and simulation can be found e.g. in [5], [6] 

and [7].  

In this paper, the CSTR control strategy is based on the fact 

that concentrations of components of reactions taking place 

in the reactor depend on the reactant temperature. Then, the 

main product concentration is considered as the primary 

controlled variable, and, the reactant temperature as the 

secondary controlled variable. The coolant flow rate 

represents a common control input. Two types of primary 

controllers determining the set point for the secondary (inner) 

control-loop are considered. In the first case, the standard 

linear P-controller with an adjustable gain is used. In the 

second case, the nonlinear P-controller is designed on the 

basis of steady-state characteristics of the process. With 

respect to nonlinear dynamics of the reactor, the secondary 

adaptive controller is applied. On behalf of its development, 

the nonlinear model of the CSTR is approximated by a CT 

external linear model (ELM). For the CT ELM parameter 

estimation, the direct estimation in terms of filtered variables 

is used, see e.g. [8], [9] and [10]. The method is based on 

filtration of continuous-time input and output signals where 

the filtered variables have in the s-domain the same properties 

as their non-filtered counterparts. The resulting adaptive CT 

controller is derived on the basis of the polynomial approach 

and the pole placement method, see e.g. [11], [12] or [13]. 

Application of this method in the adaptive control is used e.g. 

in [14] – [17].  

The control is tested by simulations of nonlinear model of 

the CSTR with a consecutive exothermic reaction. 

II. NONLINEAR MODEL OF THE CSTR 

Consider a CSTR with exothermic reactions according to the 

scheme
1k

A B , 
2

2
k

B C  and with a perfectly mixed cooling 

jacket. The desired product is the component B. Using usual 

simplifications, the model of the CSTR is described by four 

nonlinear differential equations 
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1 1 2 2A Br k c r k c   (5) 

 1 1 2A Br r r r r     (6) 

and, with initial conditions (0) s
A Ac c , (0) s

B Bc c , 

(0) s
r rT T and (0) s

c cT T . Here, t stands for the time, c for 

concentrations, T for temperatures, V for volumes,  for 

densities, cp for specific heat capacities, q for volumetric flow 

rates, r for reaction rates, Ah is the heat exchange surface area 

and U is the heat transfer coefficient. Subscripts denoted r 

describe the reactant mixture, c the coolant, f the inlet values 

and the superscript s steady-state values. 

 The reaction rates and the reaction heat are expressed as 

 0 exp , 1,2
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 1 1 2 2rh h r h r   (8) 

where k0 are pre-exponential factors, E are activation energies 

and h are reaction enthalpies. The values of all parameters, 

inlet values and their steady-state values are given in Table 1.  

 

Table 1: Parameters and Inlet Values  

 

Vr = 1.7 m3 

Vc = 0.64 m3 

r = 985 kg m-3 

c = 998 kg m-3 

cpr = 4.05 kJ kg-1K-1 

cpc = 4.18 kJ kg-1K-1 

Ah = 5.65 m2 

U = 43.5 kJ m-2min-1K-1 

k10 = 5.616 . 1016 min-1 

k20 = 1.128 . 1018 min-1 

h1 = 4.8 . 104 kJ kmol-1 

E1/ R = 13500 K 

E2/ R = 15400 K 

h2 = 2.2 . 104 kJ kmol-1 
s
Afc  = 2.85 kmol m-3 

s
rfT  = 323 K 

s
Bfc = 0 kmol m-3 

s
cfT = 293 K 

s
rq  = 0.1 m3min-1 

 

III. THE CONTROL SYSTEM DESIGN 

A basic scheme of the cascade control is in Fig. 1. 

 

 
Fig. 1 Cascade nonlinear control scheme. 

 

Here, PC stands for the primary linear (LPC) or nonlinear 

(NPC) proportional controller, AC for the secondary adaptive 

controller and CSTR for the reactor. 

The control objective is to achieve a concentration of the 

component B as the primary controlled output near to its 

maximum. A dependence of the concentration of B on the 

reactant temperature is in Fig. 2. 

 

Fig. 2 Steady-state dependence of the product B concentration on 

           the reactant temperature. 

 

There, an operating area consists of two intervals. In the 

first interval, the concentration cB increases with increasing 

reactant temperature, in the second interval it again decreases. 

Both intervals are limited to values  

1.004 1.59Bc 
,  

321.73 332.4rT 
 

for the first interval, and, 

1.59 1.034Bc 
,
336.15 350.33rT 

 

for the second interval. In both intervals, the maximum value 
max
Bc = 1.59 kmol/m2 is considered. It can be seen that the 

maximum value of cB can be slightly higher then max
Bc . 

However, with respect to some following procedures, the 

maximum desired value of cB will be limited just by max
Bc .  

IV. THE PRIMARY CONTROLLERS 

The primary P-controllers realize the relation between the 

deviation of desired and actual concentration cB and the 

corresponding desired reaction temperature.  

A. Linear P-controller 

The LPC produces at each interval of measurement of cB  

a desired reaction temperature according to the equation 

rw w BwT G c   (9) 

where Gw is an adjustable gain. 

B. Nonlinear P-controller 

The procedure in the design of the NPC appears from a 

gradual elaboration of computed or measured steady-state 

characteristics shown in Fig. 2. 

In the first step, the temperature interval is transformed as 

min

max min

r r

r r

T T

T T






,  0,1   (10) 

where  
min 321.73KrT  , 

max 350.3KrT  . 

The steady-state characteristics with transformed reactant 

temperature is shown in Fig. 3. 

 

 
Fig 3 Steady-state dependence of component B  

         concentration on transformed reactant tempereature. 

 

In the next step, the inverse characteristics in both intervals 

are obtained changing axis in Fig. 3 as shown together with 

their approximations in Fig. 4. Then, characteristics in both 

intervals are approximated by polynomials in the form 

2

3 4
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B B

B B

c c
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 
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in the first interval, and, 

2 34.775 8.157 6.061 1.643B B Bc c c       (12) 
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in the second interval. 

Derivatives of inverse steady-state characteristics 

according to (11) and (12) then are calculated as 

2 326.649 67.646 56.172 15.54B B B
B

d
c c c

dc


       (13) 

in the first interval, and, 

28.157 12.122 4.922B B
B

d
c c

dc


      (14) 

in the second interval. The derivatives are shown in Fig. 5. 

 

 

  
Fig. 4 Inverse steady state characteristics with approximation. 

 

 

 
Fig. 5 Derivatives of inverse steady-state characteristics. 

 

The desired value of the reactant temperature in the NPC 
output can be computed for each cB as 

max min( )

B

r w w r r Bw
B c

d
T K T T c

dc




 
   

 
  (15) 

where 
s

Bw Bw Bc c c   , 
s

r w r w rT T T   , and Kw is a 

selectable gain coefficient. 

V. THE SECONDARY CONTROLLER DESIG 

As previously introduced, the secondary controller is an 

adaptive linear controller. Nonlinearity of the reactor is 

evident from the shape of the steady-state dependence of the 

reactant temperature on the coolant flow rate shown in Fig. 6. 

Here, intervals for qc corresponding to the above intervals for 

Tr are  

0.118 0.216cq   in the first interval, and, 

0.04 0.1cq   in the second interval. 

 

Note that all of the following control simulations are 

performed in intervals shown in Fig.6. 

 

 
Fig. 6 Dependence of the reactant temperature on the coolant flow  

          rate in the steady-state. 

 

For the AC controller design, a continuous-time external linear 

model (CT ELM) of the CSTR with recursively estimated 

parameters is used. Further, the design procedure uses the 

polynomial approach with the pole assignment method. 

 

A. CT external linear model of CSTR 

The adaptive feedback control system is depicted in Fig. 7.  

 

 

Fig. 7 Control system with CT external linear model.  

 

For the control purposes, the controlled output and the 
control input are defined as 

( ) ( ) ( ) s
c c cu t q t q t q    , ( ) ( ) ( ) s

r r ry t T t T t T     (16) 

and, rww T . 

The CT ELM is proposed in the time domain on the basis 

of not shown here preliminary simulated step responses in the 

form of the second order differential equation 

1 0 0( ) ( ) ( ) ( )y t a y t a y t b u t    (17) 

or, in the complex domain, as the transfer function 

0

2
1 0

( )
b

G s
s a s a


 

  (18) 

B. CT ELM parameter estimation 

The method of the CT ELM parameter estimation can be 

briefly carried out as follows. 

Since the derivatives of both input and output cannot be 

directly measured, filtered variables uf and yf are established 

as outputs of filters  

( ) ( ) ( )fc u t u t   (19) 

( ) ( ) ( )fc y t y t   (20) 
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where d dt   is the derivative operator, c() is a stable 

polynomial in  that fulfills the condition 

deg ( ) deg ( )c a  .  

Note that the filter time constants must be smaller than the 

time constants of the process. Since the latter are unknown at 

the beginning of the estimation procedure, it is necessary to 

make the filter time constants, selected a priori, sufficiently 

small. 

With regard to (17), the polynomial a takes the concrete 

form 2
1 0( )a a a      , and, the polynomial c can be 

chosen as 2
1 0( )c c c      . Subsequently, the values of 

the filtered variables can be computed during the control by a 

solution of (19) and (20) using some standard integration 

method. 

It can be easily proved that the transfer behavior among 

filtered and among unfiltered variables are equivalent.  

Filtered variables including their derivatives can be 

sampled from filters (19) and (20) in discrete time intervals tk 

= k TS , k = 0,1,2, ...   where TS is the sampling period. Now, 

the regression vector is defined as 

 ( ) ( ) ( ) ( ) 1k f k f k f kt y t y t u t  Φ   (21) 

and, the vector of parameters  

 0 1 0( )T
kt a a bΘ  (22) 

can be estimated from the ARX model   

( ) ( ) ( ) ( )T
f k k k ky t t t e t Θ Φ  .(23) 

Here, the recursive identification method with exponential 

and directional forgetting was used according to [18]. 

C. Adaptive Controller 

The feedback controller design is based on the polynomial 

approach. A procedure for designing can be briefly described 

as follows: 

The transfer function of the AC controller in Fig. 7 is 

( )
( )

( )

q s
Q s

p s
   (24) 

where q and p are coprime polynomials satisfying the 

condition of properness deg ( ) deg ( )q s p s .  

The reference w is considered as a sequence of step 

functions with transform 

0( ) k
k

w
W s

s
 .  (25) 

In this paper, the disturbance is not considered. 

As known, the problem is solved by controller whose 

polynomials are given by a solution of the polynomial 

equation 

( ) ( ) ( ) ( ) ( )a s p s b s q s d s    (26) 

with a stable polynomial d(s) on the right side, with roots 

representing poles of the closed-loop, and where 

( ) ( )p s s p s  for step references. 

For deg a = 2, the controller transfer function (24) takes the 

form 

2
2 1 0

0

( )
( )

( ) ( )

q s q s qq s
Q s

s p s s s p

 
 


 (27) 

The controller parameters then follow from solution of the 

polynomial equation (26) and depend upon coefficients of the 

polynomial d.  

In this paper, the polynomial d with roots determining the 

closed-loop poles is chosen as 

2( ) ( ) ( )d s n s s    (28) 

where n is a stable polynomial obtained by spectral 

factorization 

( ) ( ) ( ) ( )a s a s n s n s   (29) 

and  is the selectable parameter that can usually be chosen 

by way of simulation experiments. Note that a choice of d in 

the form (28) provides the control of a good quality for 

aperiodic controlled processes. The polynomial n has the 

form 
2

1 0( )n s s n s n    with coefficients 

2
0 0n a ,  

2
1 1 0 02 2n a n a   . (30) 

The controller parameters can be obtained from solution of 

the matrix equation 

 

1 0

0 0

0

1 0 0 0

0 0

0 0

0 0 0

a b

a b

b

 
 
 
 
 
 

 

0

2

1

0

p

q

q

q

 
 
 
 
 
 

 = 

3 1

2 0

1

0

d a

d a

d

d

 
 

 
 
 
 

 (31) 

where 

2
3 1 2 1 0

2 2
1 0 1 0 0

2 , 2

2 ,

d n d n n

d n n d n

  

  

    

  
. (32) 

Evidently, the controller parameters can be adjusted by the 

selectable parameter .  

 

VI. SIMULATION RESULTS 

All simulations were performed on nonlinear model of the 

CSTR. Concentrations cB are measured in periods ts (min). 

The aim of simulations is to compare control responses 

obtained by using linear and nonlinear primary controller. 

The some gains of both controllers were calculated at start 

of all simulations. For the direct recursive parameter 

estimation, the sampling period TS = 1 min was chosen. The 

value of the selectable closed-loop pole   = 0.1 has been 

chosen in all simulations. Values of other parameters are 

listed below figures. 

All simulations in the first operating interval started from 

the point 1.11s
Bc  kmol/m3, 323.05s

rT  K and 0.186s
cq   

m3/min. The desired value of cB has been chosen as 

1.58Bwc   kmol/m3. The simulation results are shovn in 

Figs. 8 – 14. 
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Fig. 8  Reference signal courses (Kw = 0.15, Gw = 2.05, ts = 10). 

 

 

 
Fig. 9  Reactant temperature responses (Kw = 0.15, Gw = 2.05,  

           ts = 10). 

 

 

 
Fig. 10 Concentration cB responses (Kw = 0.15, Gw = 2.05, ts = 10). 

 

 

 
Fig. 11 Reference signal courses (Kw = 0.12, Gw = 1.645, ts = 8). 

 

 
Fig. 12 Concentration cB responses (Kw = 0.12, Gw = 1.645, ts = 8). 

 

 

 
Fig. 13 Reference signal courses (Kw = 0.12, Gw = 1.645, ts = 12). 

 

 

 

 
Fig. 14 Concentration cB responses (Kw = 0.12, Gw = 1.645, 

             ts = 12). 

 

It can be seen that a use of the NPC leads to faster signal 

courses. For example, the value cB = 1.55 kmol/m3 is reached 

by the NPC in tN = 142 min, but by LPC in tL = 222 min, as 

shown in Fig. 10. This fact is given by increasing trend of the 

derivative 
B

d

dc

 
 
 

 in the first interval, see, Fig. 5. 

Simulations in the second operating interval started from 

the point 1.11s
Bc  kmol/m3, 348.63s

rT  K and 0.046s
cq   

m3/min. The desired value of cB has been again chosen as 

1.58Bwc   kmol/m3. The simulation results are shovn in 

Figs. 15 – 17. 
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Fig. 15 Reference signal courses (Kw = 0.1, Gw = - 2.206, ts = 8). 

 

 

 
Fig. 16 Reactant temperature responses (Kw = 0.1, Gw = - 2.206,  

            ts = 8). 

 

 

 
Fig. 17 Concentration cB responses (Kw = 0.1, Gw = - 2.206, ts = 8). 

 

Here, a difference between LPC and NPC is not significant. 

This fact is again determined by the shape of the inverse 

characteristics derivative in the second interval as shown in 

Fig. 5. 

 For interest, the time course of the coolant flow rate is 

shown in Fig. 18. 

VII. CONCLUSIONS 

The article presents a comparison of two ways to the 

cascade control of a continuous stirred tank reactor. In both 

cases, the control is performed in the external (primary) and 

inner (secondary) closed-loop where the concentration of a 

main product is the primary and the reactant temperature the 

secondary controlled variable. A common control input is the 

coolant flow rate. 

In the first case, the controller in the external control-loop 

is a  linear P-controller with an adjustable gain. In the second  

 
Fig. 18 Coolant flow rate courses (Kw = 0.1, Gw = - 2.206, ts = 8). 

 

 

case, this gain of the nonlinear P-controller depends on the 

derivative of an inverse steady-state characteristics. The 

controller in the inner control-loop is an adaptive controller 

which of derivation the recursive parameter estimation, the 

polynomial approach and the pole placement method were 

applied. 

The control was tested by simulations on the nonlinear 

model of the CSTR. 
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