
 

 

  
Abstract— Sizing analog circuits is a complicated and delicate 

process activity and time consuming task in the entire design, 
generally based on the experience of the designer. Ant Colony 
Optimization (ACO) had been recently proposed and successfully 
applied for finding the optimal performance of analog circuits and 
hence the transistors sizes for the integrated circuit design. However, 
this algorithm needs an intensive execution time to converge toward 
optimal solutions. To improve the speed and even the efficiency of 
the algorithm, the concept of backtracking search is combined with 
the ACO algorithm. The performances of the improved ACO 
algorithm, named BA-ACO, are highlighted through the optimal 
design of a two stage Operational Amplifier (Op-Amp) and an 
Operational Transconductance Amplifier (OTA). SPICE simulation 
results are given to show the validity of the proposed algorithm. 
 

Keywords— Metaheuristic; Ant Colony Optimization; 
Backtracking Search Technique; Analog Design; Op-Amp; OTA. 

I. INTRODUCTION 
NTEGRATED circuit design is a complicated and delicate 
process activity due to the number of variables involved, to 

the number of required objectives to be optimized and to the 
constraint functions restrictions. Generally, the circuit sizing is 
carried out thanks to the experiment and the intuition of the 
designer or according to the approaches based on fixed 
topologies and/or statistical techniques [1]. However, these 
techniques are time consuming and do not guarantee reaching 
the global optimum solution. 

To efficiently resolve circuits sizing optimization problems, 
some (meta-)heuristics and algorithms were proposed in the 
literature and are used by the designers, such as Tabu Search 
[2], [3], Simulated Annealing [4], Genetic Algorithms (GA) 
[4], [5], local search (LS) [6]. However, the metaheuristics that 
gave the best results are those that are nature inspired. They 
are inventive, resourceful, efficient, easy to use and known as 
SI: ‘Swarm Intelligence Techniques’ [7].The SI techniques 
focus on animal conduct in order to develop some meta-
heuristics which can mimic their problem resolution abilities, 
namely Wasp Nets (WN) [8], Bacterial Foraging Optimization 
(BFO) [9], Particle Swarm Optimization (PSO) [10] and Ant 
Colony Optimization (ACO) [11], [12]. 

In our previous works, we have presented, successfully, the 

 
 

ACO technique to deal with analog circuits design and sizing 
[11]–[15]. This optimization technique leads to the best 
optimum qualities, but the ACO requires a significant 
execution time compared to other metaheuristics [16], [17]. 

To enhance the quality of the solution, several modifications 
to the original ACO were introduced [18]–[23]. Despite these 
changes, which have improved the performance of the ACO 
algorithm, they have not tackled the problem of excessive 
accumulation of pheromone which entraps ACO in local 
optima. 

The BA-ACO presents a way to overcome this problem. By 
using the principle of the Backtracking algorithm [24] to the 
ACO, in order to reduce the search space, to solve the problem 
of excessive accumulation of pheromones which increases the 
speed of convergence and improves the overall research 
capacity. The Backtracking technique is a method that 
optimizes the search by returning back to new selection if it 
fails to achieve the objectives.  

We have presented and applied the BA-ACO successfully 
for RF circuits [25]. In this work, we focus on the use of the 
BA-ACO algorithm to solve typical analog circuit sizing 
problems. The application examples considered is a two-stage 
CMOS operational amplifier and an Operational 
Transconductance Amplifier (OTA). The rest of the paper is 
structured as follows: The second part presents an overview of 
the BA-ACO technique. The third part deals with the 
application of the proposed algorithm to the optimal design of 
two CMOS analog circuits, a sizing/optimization problems are 
showcased; namely the two stage operational amplifier and an 
Operational Transconductance Amplifier. Simulation results 
and a comparison with the basic ACO are provided to show 
the validity of the proposed algorithm. The fourth section 
shows the improvements provided by the BA-ACO regarding 
the robustness and the execution times relative to the 
application to the optimization problems. Finally, section five 
provides some concluding remarks. 

II. THE BACKTRACKING ANT COLONY OPTIMIZATION 
TECHNIQUE: AN OVERVIEW 

A.  The basic ACO algorithm 
The ACO is an evolutionary stochastic computational 

discipline well adaptable for solving hard combinatorial 
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optimization problems. Inspired from the natural behavior of 
ants in finding the shortest distance between their nests and 
food sources, it’s based on indirect communication within a 
colony of simple agents, called (artificial) ants which exchange 
information about good routes through a chemical substance 
called pheromone that accumulates for short routes and 
evaporate for long routes [26], [27].  

ACO was initially used to solve graph related problems, 
such as the traveling salesman problem (TSP) [28], vehicle 
routing problem [29]... For solving such problems, ants 
randomly select the vertex to be visited. When ant k is in 
vertex i, the probability of going to vertex j is given by 
expression (1) [26], [27]. 
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where k

iJ  is the set of neighbors of vertex i of the kth ant, k
ijτ  

is the amount of pheromone trail on edge (i,j), α and β are 
weightings that control the pheromone trail and the visibility 
value, i.e. ijη , which expression is given by (2) : 
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ijd   is the distance between vertices i and j. 

The pheromone values are updated each iteration by all the 
m ants that have built a solution in the iteration itself. The 
pheromone ijτ , which is associated with the edge joining 

vertices i and j, is updated as follows: 
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where ρ is the pheromone evaporation rate, m is the number 

of ants, and )(tk
ijτ∆  is the quantity of pheromone laid on 

edge (i, j) by ant k: 

 

 
if ant k used edge (i, j) in its tour, 

 
(4) 

otherwise                                  

Q  is a constant and  Lk is the length of the tour constructed by 
ant k. 

Each ant k will randomly choose a path according to the 
probability given by expression (1), and form a directed graph 
while randomly generating a rate of pheromone at the formed 
graph edges. At each iteration, the path giving the minimum 
value of the objective function (OF) sees its rate increase, in 
contrast with the other paths which pheromone rates are 
partially evaporated with respect to expression (3). 

The ACO algorithm conducts research intelligently to 
perform global optimizations, it is characterized by good 
strength, positive feedback, distributed calculation, and it can 
easily combine with other algorithms. Therefore, ACO 
provides a powerful tool for the optimization of many fields 
[30]. This algorithm did not cease to be developed and 
improved continuously, but there are still some gaps of 
consuming time, easy to stagnation and easily fall into local 
optima [31]. 

In the ACO algorithm, pheromones are the means for 
indirect communication between ants; they are the bracket 
passage of information which directly affects the convergence 
and the efficient resolution of the ACO algorithm [32]. 

B.  The BA-ACO algorithm 
In the ACO algorithm, when a trail is preferred it 

automatically has continuous accumulation of pheromones as 
iterations go on. Actually, this easily leads the algorithm to be 
trapped in a local optimum. 

In order to overcome this drawback, the backtracking 
technique which is an algorithm that is back slightly on 
decisions to get out of a blocking [25], [33]: Backtrack the 
pheromone to the initial value each time the algorithm is 
trapped in a local optimum. The update has to be performed 
once it is noted that the current ‘optimal’ value does not 
change for a certain number of iterations.  

The improved algorithm operates according to the ACO 
technique by including the following detailed points: 
 
• When the optimal value does not change for N-time, the 

pheromone are updated on the optimal path, in each 
backtracking period 
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where LL  is the length of current local optimal tour. 
 
• When the optimal value does not change for M-time, it gets 

back to the backtracking point, and it re-initializes the 
pheromone value. 

• To improve the convergence speed, pheromones are 
updated with respect to updating rules, in the proposed 
algorithm, using local and global updating rules, as given 
by expressions (3) and (6), respectively. 
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where GL is the length of the current global optimal tour. 
The rule of updating pheromones reduces the solution 

search space, so it can lessen the number of ‘bad’ solutions 
reached so far and thus can improve the quality of solutions 
and enhance the algorithm’s performances. The proposed 
algorithm operates with respect to the flowchart seen in Figure 
1. 
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Fig.1  Flowchart “BA-ACO” 

III. APPLICATION EXAMPLES 
The abovementioned algorithm was used to optimize 

performances of two analog CMOS circuits: an Operational 
Amplifier (Op-Amp) and an Operational Transconductance 
Amplifiers (OTA). We give optimization results and present 
comparison with results obtained using the basic ACO 
technique. 

The algorithm's parameters are given in Table 1 with a 
generation algorithm of  200 (Ncmax). The optimization 
techniques work on MATLAB codes and are able to link 
SPICE (using the technology of 0.35 µm CMOS from AMS) 
to measure performances. 

TABLE 1  THE ALGORITHMS’ PARAMETERS 
Number of Ants 40 
Evaporation rate (ρ) 0.1 
Quantity of deposit pheromone 
(Q) 0.2 

Pheromone Factor (α) 1 
Heuristics Factor (β) 1 
N-time 3% of NCmax 
M-time 10% of NCmax 

 

A.  Performance optimization of an Op-Amp 
In this section we applied the BA-ACO algorithm to 

perform optimization of a two stage CMOS operational 
amplifier (Op-Amp), including constraints like saturation 
conditions [16].  

A. 1 Circuit Descriptions 
The implementation of a two stage CMOS operational 

amplifier (Op-Amp) is shown in Figure 2.  
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Fig.2  A two stage CMOS operational amplifier (Op-Amp) 
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The follow parameters are considered fixed, e.g., the 
compensation resistor (RC=800Ω), the compensation capacitor 
(CC=3pF) and the capacitive load (CL=10pF). All channel 
lengths L are considered the same for all the transistors. 
Performances of an Op-Amp are evaluated via several 
parameters such as: 

 
• The open-loop voltage gain Av:  
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• The power dissipation P:  
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• The Common Mode Rejection Ratio CMRR:  
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• The die Area A:  

∑
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≈
8
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                            (10) 
 
Those expressions (7) and (9) were obtained by considering 

the small signal equivalent transistor’s models. VDD and VSS 
are respectively the positive and the negative supply voltages; 
W1-W8 and L1-L8 are the gates widths and the channels lengths 
of the transistors M1-M8 respectively. Ibias is the bias current, 
Cox, λn, λp, μn and μp are technological parameters.  

Determining the optimal dimensions of the transistors for a 
specific design involves a tradeoff among all these 
performance measures. Each transistor must be in saturation. 
Expressions (11)-(14) give the corresponding constraints that 
have to be satisfied when computing optimal sizes of the 
transistors M1(and M2), M5, M6 and M7 respectively. 
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while respecting the expression (15):   
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where, VTP and VTN are the PMOS and the NMOS threshold 

voltages, respectively. 
 
The BA-ACO algorithm was applied to optimize the MOS 

transistors sizes: W1,…,W8, L and the value of the bias current 
Ibias. 

A. 2  Optimization results 
Table 2 gives optimal results obtained using the BA-ACO 

and the ACO for the parameters and the circuit’s 
performances. 

TABLE 2 OPTIMIZATION AND PERFORMANCE RESULTS 

Specifications ACO BA-ACO 

W1,2 (μm) 215.08 215.82 

W3,4 (μm) 260.94 259.13 

W5 (μm) 57.80 58.38 

W6 (μm) 459.47 455.48 

W7 (μm) 50.92 51.02 

W8 (μm) 9.64 9.51 

L (μm) 0.35 0.35 

Ibias (µA) 10.00 10.00 

Av (dB) 127.22 127.25 

CMRR (dB) 124.72 124.71 

A (µm2) 535.4 533.5 

P (mW) 1.2 1.2 

 
The optimum channels lengths and gates widths obtained 

after optimization are used in SPICE simulations to measure 
the circuit performances. The simulation results are collected 
in the following table: 
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TABLE 3 PERFORMANCE AND SIMULATION RESULTS 

 Av 
(dB) 

CMRR 
(dB) 

A  
(µm2) 

P  
(mW) 

Opt. 127.25 124.71 533.5 1.2 
Sim. 117.94 116.42 --- 1.7 

 

B.  Performance optimization of an OTA 

B. 1 Circuit Descriptions 
Figure 3 shows the architecture of a Folded Cascode 

Operational Transconductance Amplifier [11], which  has a 
differential stage consisting of NMOS transistors M9 and M10. 
Mosfets M11 and M12 provide the DC bias voltages to M1-M2 
and M3-M4 transistors. While cascode transistors M5-M6-M7-
M8 are controlled respectively by transistors M13 and M14. 
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Fig.3  Folded Cascode OTA Topology 

 
The circuit’s OFs under consideration are as follows. The 

open-loop voltage gain (Av), the unity-gain frequency (Fc), the 
power-supply rejection ratio (PSRR) and the common mode 
rejection ratio (CMRR): 

 
• Open-loop voltage gain Av: 

                outm R9v gA =  (16) 
• Unity-gain frequency Ft: 
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• Common Mode Rejection Ratio CMRR: 
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(22) 

 
gm3, gm5 and gm9 are respectively the transconductances of 
transistors M3, M5 and M9. r01, r03, r05, r07, r09, r013 and r014 are 
respectively the drain-source resistances of transistors M1, M3, 
M5, M7, M9, M13 and M14 and CL is the load capacitance. 

In addition to the modeling equations of the different 
characteristics we need to give the main constraints that have 
to be satisfied, i.e. each transistor should remain in saturation 
for all possible values of the input common-mode voltage and 
the output voltage. 

These conditions are imposed to ensure that the different 
transistors are in the inversion mode of operations as follows: 
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(26) 

The supply voltages used (VDD/VSS) are 1.8V/-1.8V. The 
capacitive load (CL=0.1pF) is considered as fixed parameter. 
The BA-ACO algorithm was used to compute the optimal 
values of the geometric dimensions of the MOS transistors 
forming the OTA: W1,…,W16, L and the value of the bias 
currents Ibias1 and Ibias2. 
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B. 2  Optimization  results 
Table 4 gives optimal results obtained using the BA-ACO 

for the parameters and the circuit’s performances. 

TABLE 4  OPTIMIZATION AND PERFORMANCE RESULTS 

Specifications ACO BA-ACO 
W1,2,11,12  (μm) 46.82 46.85 

W3,4 (μm) 30.91 30.89 

W5,6,7,8,13,14,15,16 (μm) 50.00 50.00 

W9,10 (μm) 50.00 50.00 

L (μm) 1.00 1.00 

Ibias1 (μA) 60.00 60.00 

Ibias2 (μA) 90.00 90.00 

Av (dB) 84.14 84.16 

Fc (MHz) 534 534 

CMRR (dB) 94.81 94.82 

PSRR (dB) 84.56 84.55 

 
The SPICE simulation results are collected in the following 

table: 

TABLE 5 PERFORMANCE AND SIMULATION RESULTS 

 Av 
(dB) 

Fc  
(MHz) 

CMRR  
(dB) 

PSRR  
(dB) 

Opt. 84.16 534 94.82 84.55 
Sim. 84.02 507 93.71 79.28 

 
From Tables 2 and 4, we note that the proposed algorithm 

BA-ACO presents the same quality of the optimum compared 
to the ACO. 

IV. ROBUSTNESS AND COMPUTING TIME 

A. Robustness 
In order to check and compare the convergence rate of the 

BA-ACO algorithm, a robustness test was performed. i.e. the 
algorithm are applied a hundred times for optimizing all the 
objectives of each circuit. In Figures 4 and 5, we present in a 
boxplot representation the obtained results (respectively for 
Op-Amp and OTA) for both the ACO and BA-ACO 
algorithms. 
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Fig.4  Box plots for 100 runs of the BA-ACO and the ACO 
algorithms for the Op-Amp  

(a) for the Av (dB); (b) for the CMRR (dB); (c) for the A (µm2); (d) for the P 
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Fig.5  Box plots for 100 runs of the BA-ACO and the ACO 
algorithms for the OTA  

(a) for the Av (dB); (b) for the Fc (MHz); (c) for the CMRR (dB); (d) for the 
PSRR (dB) 
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The good convergence ratio can be easily noticed, despite 
the probabilistic aspect of the two algorithms. We can also 
notice that the robustness of the BA-ACO algorithm is better 
than the ACO’s one. The convergence rates to the same 
optimal value for ACO and BA-ACO are shown in the Table 6 
which summarizes also the convergence rate improvement.  

TABLE 6  CONVERGENCE RATE AND IMPROVEMENT 
  Convergence rate (%)  
  ACO BA-ACO Improvement 

  O
p-A

m
p 

Av 44 53 20% 
CMRR 37 46 24% 
A 38 46 21% 
P 41 49 19% 

     O
TA

 

Av 41 50  22% 
GBW 43 51 18% 
CMRR 40 48 20% 
PSRR 37 47 27% 

 
B.  Computing time 
Table 7 summarizes a comparison between computing times 

for the ACO and the BA-ACO algorithms. A (2 GHz, 2 Go 
RAM) core 2 DUO PC was used for this purpose. 

TABLE 7 EXECUTION TIME AMELIORATION (%) 
 Execution Time (s)  
 ACO BA-ACO Improvement 
Op-Amp 61.5 44.7 54% 
OTA 38.6 31.8 35% 
  
From the above table, we clearly notice that the BA-ACO 

presents a significant improvement of the execution time. 

V. CONCLUSION 
The presented work proposes an application of the enhanced 

version of the classical ant colony optimization technique 
(ACO) for dealing with the optimal sizing of a CMOS analog 
circuits. A backtracking technique is integrated into the ACO 
algorithm in order to improve its performances. The BA-ACO 
algorithm was successfully applied to optimize performances 
of a two stage Operational Amplifier and of an Operational 
Transconductance Amplifier. Performances were compared to 
the ones obtained by using the classical ACO algorithm, and 
then checked via SPICE simulations. The optimization results 
show that the BA-ACO algorithm offers better results in terms 
of robustness and computing time than the basic ACO 
technique. Now, we are focusing on transforming the proposed 
BA-ACO mono-objective algorithm into a multiobjective one. 
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