
 

 

  
Abstract—To fully explore the potential features of traditional 

Quantum-inspired Evolution Algorithms (QEA) in optimizing design 
problems, this paper proposed a novel quantum-inspired evolution 
algorithm with co-evolutionary mechanism (NCQEA). In the 
proposed new structure, the quantum state population is firstly divided 
into multiple sub-populations which can complete the evolution 
process independently. In the course of evolution, every 
sub-population will produce an elitist individual; then these elitist 
individuals from every sub-population are selected to construct an elite 
library and the individual in this elite library can be used to help the 
poor sub-population to find the global optimal solution or 
near-optimal solution. In addition, this algorithm is also to define a 
new diversity indicator for every sub-population which can be used to 
measure its corresponding population diversity on the basis of 
characteristic information of every sub-population. As for the 
sub-population with poor diversity, the mutation strategies are 
implemented in order to give the algorithm the power to explore its 
search space. Finally, simulation experiments are performed on global 
numerical optimization functions and Knapsack problems, and the 
results indicate that the new co-evolutionary algorithm develops better 
performance than the traditional QEA. 
 

Keywords—Co-evolutionary; Elitist individual; Global numerical 
optimization; Knapsack problem. 

I. INTRODUCTION 
OWADAYS the intelligent optimization algorithms are 

usually used as the first candidates to solve some complex 
optimization problems. These traditional intelligent 
optimization algorithms (TIOAs), represented by Genetic 
algorithms (GAs), often applied the Darwin’s theory of 
evolution, such as the survival of the fittest, natural selection 
and competition. These algorithms have many advantages in the 
actual optimization application, such as quick convergence, 
robustness and high efficiency capability of searching the 
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optimal solution within the whole defined space, which make 
them be widely used in many fields [1]. However, these 
traditional intelligent optimization algorithms have some 
demerits when they are in the process of evolution; for example, 
they are often easy to fall into local optimum, and the 
corresponding populations have poor diversity at the end of 
iteration which will lead to premature. These demerits have 
drawn much attention to the research in improving the 
performance of intelligent optimization algorithm by using 
co-evolutionary mechanism. As a new evolutionary algorithm 
framework, co-evolutionary mechanism has been a hot research 
topic of computational intelligence in recent years. 
Co-evolution is inspired by the practical ecosystem, and had 
firstly proposed by Ehrlich and Raven [2]. The co-evolution 
emphasizes the mutual influence or co-ordination among the 
different populations and the environments. The 
co-evolutionary algorithms (CEAs) focus on the interaction and 
mutual influence among different populations to achieve the 
co-evolution and improve the optimization performance. 

There are a lot of differences between TIOAs and CEAs in 
terms of operation mechanisms. The TIOAs, such as genetic 
algorithm and particle swarm optimization algorithm, start their 
evolution process from generating a random variable 
population, and then take the evolutionary strategy of "survival 
of the fittest" to solve global optimization problems; while the 
co-evolution process is broadly defined based on the population 
density, the population itself and the evolution of genetic 
composition between interacting populations. Comparing with 
TIOAs, CEAs have a better search capability, progressive 
learning ability to overcome premature convergence and 
robustness properties [3]. As for the co-evolutionary 
individuals, they are often affected by the following three 
factors when they are in the evolutionary process: the individual 
fitness, located environment and the competition with each 
other. These three factors coordinating with each other can 
effectively solve the singleness problem of the traditional 
evolutionary model, thus can maintain the diversity of the 
population better, and avoid premature and slow convergence 
issues [4]. 

Meanwhile, K. H. Han et al. firstly proposed Genetic 
Quantum Algorithm (GQA) in 2000, which is also considered to 
be one of the earliest models of quantum evolution algorithm 
(QEA); and soon afterward, they expanded the GQA and 
presented quantum-inspired evolutionary algorithm. QEA 
utilizes the concepts of quantum bit (Q-bit), superposition of 
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states and collapse of states based on GQA [5]. Although many 
scholars had tried to improve the quantum evolution algorithm 
and proved its performance was better than traditional 
evolutionary algorithms, quantum evolution algorithm is still 
easy to fall into local optimum, especially for complex global 
numerical optimization problems. Therefore, how to ensure 
QEA overcomes above disadvantage has been a hotspot but also 
a difficulty [6]. 

Some researchers began to combine co-evolutionary 
mechanism with QEA and then proposed some improved QEAs 
in recent years. Gu et al. proposed a novel competitive 
co-evolutionary quantum genetic algorithm (CCQGA) which 
included three new strategies named as competitive hunter, 
cooperative surviving and the big fish eating small fish. This 
algorithm could not only increase the diversity of genes and 
avoid premature convergence, but also accelerate the 
convergence. The experiment results show that CCQGA has 
better feasibility and effectiveness than quantum inspired 
genetic algorithm (QGA) and standard genetic algorithm (GA) 
[7]. Xiong, Gui et al. proposed a double population 
co-evolution algorithm based on the quantum evolution 
algorithm and difference evolution algorithm. In their new 
algorithm, these two populations complete different 
evolutionary process. One population is used for global 
searching; the other one is for partial searching [8]. Zhang 
proposed an elite collaborative quantum evolution algorithm. 
His new algorithm divided the entire population into several 
sub-populations. Two sub-populations were selected randomly. 
Subsequently, the corresponding elite individuals from the 
selected two sub-populations would construct a mutually 
beneficial relationship in order to implement co-evolutionary 
operation, and guide the individual populations evolve toward 
the optimal solution [9]. 

In general, the existing improved QEAs based on 
co-evolutionary mechanism often include the following two 
main design ideas: (1) Focusing on the co-evolution between the 
two sub-populations; (2) Using the elite individual to guide the 
entire population toward the global optima. These two 
improvement strategies based on the multiple sub-populations 
are attempting to find the current global optima individual at the 
end of each iteration, and then apply the global optima to help 
these sub-populations. However, they ignore the evolutionary 
characteristics of individual sub-population, which may include 
some useful information for the optimization process. In this 
paper, the co-evolutionary mechanisms are introduced into 
QEA in order to propose a novel co-evolutionary 
quantum-inspired evolutionary algorithm (NCQEA). This 
NCQEA will construct its own elite library which includes 
multiple elite individuals from the different sub-populations. In 
the course of evolution, the elite individual will guide the 
selected individual sub-population instead of the entire 
population. In addition, the NCQEA will extract the 
characteristic information of every sub-population to get a 
better performance of evolution for the corresponding 
sub-population. 

The rest of this paper is organized as following. Section 2 
describes the fundamental theory of co-evolutionary algorithm 
and quantum evolution algorithm; section 3 gives the details of 
the proposed algorithm; section 4 shows the experimental 
simulation using the novel algorithm; finally, conclusions are 
drawn in section 5. 

II. PRELIMINARY KNOWLEDGE 

A. Co-Evolutionary Algorithm 
Definition 2.1 [10]: An evolutionary algorithm is called a 

co-evolutionary algorithm, If and only if it satisfies the 
following conditions: 

[1] This algorithm can maintain multiple sub-populations 
simultaneously； 

[2] As for the individuals in this algorithm, their fitness 
values depend on the individuals in the other sub-populations; 

[3] As for the individuals in this algorithm, the evolutionary 
operations of individuals (including insert, delete, and update) 
will lead to the fitness landscape of other sub-populations 
fitness change. 

The genetic algorithm here uses co-evolutionary strategy to 
improve its optimizing performance, and its essence of 
co-evolution is to change the evaluation method of individual 
viability. The fitness of every individual will not only depend on 
itself, but also on the other individuals which is in the other 
sub-populations. When the population is divided into two 
sub-populations, its co-evolutionary process can be described as 
following [11]. 

Now there are two structural forms for CEAs to implement 
evolution. One is Competitive Co-evolutionary Algorithm 
(Com-CEA) and the other one is Cooperative Co-evolutionary 
Algorithm (Coo-CEA) [12][13]. In Coo-CEA, the fitness of 
individual is not evaluated separately. It is firstly in accordance 
with the prior knowledge of solving problem; subsequently, it 
combines the "representatives" individuals from the other 
sub-populations to construct a solution vector of solving 
problem and then to evaluate the fitness of individuals. This 
process is called "cooperation". As for Com-CEA, the 
individual fitness in a sub-population is determined by the 
competition results which include a series of competition with 
the individuals in other sub-population. At this time, these two 
sub-populations always take the role of "Host" population and 
"Parasite". The evolutionary operations will use these 
populations to produce new sub-populations. With the 

 
Fig. 1 a diagram of the co-evolutionary process between two 

sub-populations  

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 10, 2016

ISSN: 1998-4464 143



 

 

development of the evolution, these different sub-populations 
will show different genetic characteristics. 

B. Quantum evolution Algorithm 
Quantum evolution Algorithm (QEA) has advantages of 

quantum computing and evolutionary computation. It uses 
quantum bit (Q-bit) as a probabilistic representation to improve 
the diversity of population. It also uses quantum rotation gate 
(Q-gate) as the update operation instead of select, crossover and 
mutation operations in GA, which can guide the search direction 
of individual to the optimal area, and increase the algorithm’s 
convergence speed. Han K. pointed out that QEA could show 
better performance when dealing with the optimization 
problems compared with traditional evolutionary algorithms 
[14].  

In the general QEA, a Q-bit may be in the “1” state, “0” state, 
or any superposition of these two states. It can be represented as 
following:  

0 1α βΨ = +  (1) 

Where α  and β  are complex numbers that specify the 
corresponding probability amplitudes of the states “0” and “1”. 
Normalization of the two states to unity always guarantees: 

2 2 1α β+ =           (2) 

So a Q-bit in QEA can be defined with a pair of numbers: 
T][ βα . In general, a quantum individual   is defined as a string 

of Q-bits. Since the Q-bits representation is able to express as a 
linear superposition of states probabilistically, evolutionary 
computing with the Q-bit representation is often has a better 
performance than traditional approaches. Meanwhile, QEA uses 
Q-gate as a variation operator that drives the probability of 
Q-bits converge either to "1" (or "0") and the quantum 
individuals toward better solutions [15]. Further details about 
QEA can be seen in paper [5]. 

III. THE NOVEL CO-EVOLUTIONARY QUANTUM EVOLUTION 
ALGORITHM 

A. Evolutionary Strategy 
Evolutionary strategy 1: Elite individual generally 

corresponds to the individual with a better fitness and contains 
corresponding evolutionary characteristic information. 
Maintaining best Q-bit individuals as elite individual in every 
generation can avoid the possibility of losing high quality 
individuals. At the same point, it is even more powerful if the 
elitism is further strengthened and the solutions are spread out 
by quantum mechanism [16]. In this case, every sub-population 
will produce an elite individual which actually contains the 
characteristics information of current sub-population in the 
implementation process of algorithm. Thus, these elite 
individuals can be collected to construct an elite library. 
Accompanied by the evolution of the whole population, this 
elite library is also constantly updated. Subsequently, this new 
elite library can be used to judge the evolution performance of 
each sub-population between superiority and inferiority to a 

certain extent. The NCQEA could rely on the individuals in elite 
library as one of the standards to evaluate its corresponding 
sub-populations. Here the best individual with highest fitness in 
the elite library will be used to guide the worst sub-population 
instead of the whole. In this respect, we use Evolutionary 
strategy 1 to complete the following two goals. 

Firstly, every elite individual corresponds to a sub-population, 
and it is equivalent to using a simple and efficient method to 
determine which sub-population has evolved a better result. 
Secondly, as for these multiple sub-populations, the best 
individual in the elite library will be used to guide the worst 
sub-population, which is actually equivalent to build up an 
information exchange mechanism between the best 
sub-population   and the worst sub-population.  

Evolutionary strategy 2: Current experience has shown that 
the population diversity is very important in giving the 
algorithm the power to explore the search space and not get 
trapped in local optima [17]. Normally, when the optimization 
algorithms use the co-evolutionary strategy, its sub-populations 
are relatively independent. If the diversity of sub-populations is 
not identified at the end of each iteration, it would be gradually 
reduced in the later iterative process of the algorithm. This 
could result in a gene decrease for effective individuals, affect 
the optimization process of the algorithm and finally cause a 
premature convergence. Therefore, it is necessary to design a 
mechanism to maintain the diversity of the population. 

Here a modified indicator of degree of population diversity is 
introduced to measure the diversity of sub-populations based on 
the reference [18]. The modified indicator includes the 
characteristic information of every individual in each 
sub-population and also is a parameter involved in the evolution 
of the population. 

Definition 3.1 When the Q-bits are applied to optimization 
problems, they will converge to the corresponding binary 
encoding space L1}{0， , where  L  is the length of binary code, 
the population size is n . A group of individuals in this 
population can be described: },...,,{ 21 nqqqQ = , where 

},...,,{ 21 Ljjjj qqqq = , and nj ,...,2,1= . The degree of 

population diversity is defined as the following formula (3):  

)
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where sizepop  is the scale of individuals in population, and 
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 represent the numbers of binary 

code “1” of all the individuals in their l th bit in the population; 

while  ∑
=
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1
)1(   represent the numbers of binary code “0” 

of all the individuals in their  l th bit in the population. The 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 10, 2016

ISSN: 1998-4464 144



 

 

result of calculating 







−− ∑∑∑∑

= == =

L

l

n

j
lj

L

l

n

j
lj qq

1 11 1
)1(  indicates 

that the distribution of binary code “0” and “1” of all the 
individuals in the population. In each iteration, the greater the 
result, the more unbalanced distribution between the binary 
code “1” and “0”, which also means the population diversity is 
in reducing. Finally, when the result of )(Qdiv  becomes 
smaller, it shows the diversity of the population is getting worse. 
As mentioned in above formula (3), when the NCQEA divides 
the population into many sub-populations, every sub-population 
will has its own div  as an indicator to measure the 
sub-population diversity during the entire evolutionary process. 

Evolutionary strategy 3: In addition, mutation operator can 
produce a random disturbance for the candidate solution in 
order to get new generations. In general, the efficiency of 
evolutionary algorithm relies strongly on the performance of 
mutation operation [19]; and the value of mutation probability is 
fixed [20]. The NCQEA in this section will implement mutation 
operation for the worst sub-population in order to improve its 
diversity. It should be noted that the change of div  is related to 
the probability of mutation. Therefore, when the div  becomes 
smaller, it means the diversity of population is getting worse, 
while the probability of mutation will increase. With this 
operation, the diversity of population and global searching 
abilities would be improved by adaptively changing of the 
mutation probability. 

Here the evolutionary structure has been changed by using 
above proposed evolutionary strategies. As shown in Figure 2, 
three sub-populations A, B, C are implementing the evolution in 
the same solution space. Every sub-population evolves 
independently and continuously updates its corresponding 
characteristic information; meanwhile, a characteristic 
information sharing mechanism based on the indicator   and 
mutation operation between selected two sub-populations in 
order to ensure the poor sub-population has a better 
optimization performance. 

 

B. Pseudo -code of the NCQEA 
Begin 

Set the number of iterations is t  and let 0=t ; the number of 
sub-populations is i ;  

Step 1 Generate the initial sub-population of )(tQi , and 

construct an elite library )(tE , for all },...,2,1{ ni ∈ ; 

Step 2 Make )(tPi   by observing the states of  )(tQi ; 

Step 3 Evaluate )(tPi ; 

Step 4 Store the best solutions among )(tPi   into )(tE ; 
Step 5 While (not termination-condition) do 
           Begin 
           Set  1+= tt  
Step 5.1 Make )(tPi  by observing the states of )1( −tQi  ; 

Step 5.2 Evaluate )(tPi ; 

Step 5.3 Update )(tQi  using Q-gates; 

Step 5.4 Store the best solutions among )(tPi  and )1( −tE  

into )(tE ; 

Step 5.5 The best individual in the elite library )(tE  will be 
used to guide the worst sub-population, which is 
correspondence to the worst individual in the elite library 

)(tE ; 
Step 5.6 Find the sub-population with worst diversity 

according to its div  and complete the mutation operation. 

IV. NUMERICAL EXAMPLES 

A. Numerical optimization functions 
In order to illustrate the effectiveness of the proposed 

NCQEA, we compare it with the classic QEA: GQA [21]. The 
maximum number of the iteration of these two algorithms is 
100, and the initial population size is 200. The population of 
NCQEA is divided into four sub-populations with size of 50 
each. Global numerical optimization problems arise in many 
fields such as engineering, business management. Solving these 
numerical optimization function problems does not require 
specialized knowledge in a particular field of study, and can 
reflect the actual performance of the algorithms. This section 
using some existing numerical optimization benchmark 

functions selected from literature [22] to evaluate the 
performance of the above two algorithms. These test functions 
are listed as following: 

Function 4: Multi-peaks function 1 

1522

22

4

106

)6sin(

)4sin()4sin(1),(

−++

+
+

+−+=

yx

yx

yyxxyxf πππ

 

Function 4 has four global maximum points with 
corresponding value 2.11876. These maximum points are 
distributed on (0.64, 0.64), (-0.64, -0.64), (0.64, -0.64), (-0.64, 
0.64) symmetrically. Here the ranges of the independent 
variables are restricted to (-1, 1). Function 4 has a large number 

 
Fig. 2 the proposed evolutionary strategy of the co-evolutionary process 

between three sub-populations 
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of local maximum points. When the optimized result is greater 
than 2.1180, it can be considered that the algorithm converges 
globally. 

Function 6: Shaffer’s F1 function 

20

)2cos(10)2cos(10),(
22

6

−−−
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Function 6 has a lot of local maximum points, among which 
only one 0 is the global maximum value. Here the ranges of the 
independent variables are restricted in (-5.12, 5.12). When the 
optimized result is greater than -0.005, it can be considered that 
the algorithm converges globally. 

Function 7: Shaffer’s F5 function 
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4,...,1,0=k . 
Function 7 has a lot of local maximum points. Only one 1.002 

is the global maximum value. Here the ranges of the 
independent variables are restricted to (-65.536, 65.536). When 
the optimized result is greater than 1.000, it can be considered 
that the algorithm converges globally. 

Function 8: Bohachevsky function 
3.04cos3.03cos3.0),( 22

8 −−−−= yxyxyxf ππ  
Function 8 has two global maximum points with value 

0.24003441039434. These maximum points are distributed on 
(0, -0.23), (0, 0.23) symmetrically. Here the ranges of the 
independent variables are restricted to (-1, 1). Function 8 has a 
large number of local maximum points. When the optimized 
result is greater than 0.24, it can be considered that the 
algorithm converges globally. 

Function 9: Multi-peaks function 3 
)0.1))(50((sin)(-),( 1.022225.022

9 +++= yxyxyxf  
Function 9 has unlimited global maximum points, among 

which only one 0 is the global maximum value on (0, 0). The 
ranges of the independent variables are restricted in (-5.12, 
5.12). When the optimized result is greater than -0.05, it can be 
considered that the algorithm converges globally. 

Function 10: Needle-in-haystack function 

2222
2210 )()

05.0
3(),( yx

yx
yxf ++

++
=  

Function 10 has four local maximum points, which are 
distributed on (5.12, 5.12), (-5.12, -5.12), (5.12, -5.12), and 
(-5.12, 5.12) symmetrically. As for Function 10, only 3600 is 
the global maximum value on (0, 0). Here the ranges of the 
independent variables are restricted to (-5.12, 5.12). When the 

optimized result is greater than 3599, it can be considered that 
the algorithm converges globally. 

Notices that some of the above numerical optimization 
benchmark functions are used to solve the minimum, and we 
will reverse these optimization functions into solving the 
maximum in order to handling uniformity. Each algorithm runs 
10 times independently. The statistical results including the best 
optimal result, the average result, the worst results, and the 
standard deviations are described as following tables.  

 
Tab. 1. Statistical Results of QEA and NCQEA for Optimization 

Functions (with 10 experiments) 

Optimization 
Functions 

QEA 

Best Worst Average Convergenc
e times 

Standard 
Deviation 

4f  2.1188 2.1188 2.1188 10 0 

6f  -1.23e-0
7 -1.49e-06 -7.864e-07 10 4.4311e-0

7 

7f  1.002 0.71087 0.93881 7 0.10143 

8f  0.24003 0.24003 0.24003 10 0 

9f  -0.00537
75 -0.020144 -0.012503 10 0.004769

3 

10f  3600 3599.9993 3599.9997 10 0.000228
25 

Optimization 
Functions 

NCQEA 

Best Worst Average Convergenc
e times 

Standard 
Deviation 

4f  2.1188 2.1188 2.1188 10 0 

6f  -9.46e-0
9 -2.74e-07 -7.372e-08 10 1.0147e-0

7 

7f  1.002 0.83164 0.95089 7 0.078069 

8f  0.24003 0.24003 0.24003 10 0 

9f  -0.00524
3 -0.01289 -0.0060346 10 0.002285

7 

10f  3600 3599.9999 3600 10 3e-05 

 
The results shown in above Table 1 indicate that the NCQEA 

is superior to QEA from the view of quality of solutions when 
these two optimization algorithms perform the same functions. 
The statistical results show that the NCQEA is more efficient in 
finding the global optimal solution and robustness than QEA. 
The standard deviation indicates that NCQEA has a good 
stability and widespread adaptability. Here take the 
evolutionary results for function 4 and function 7 based on 
NCQEA for example. Although each sub-population is evolving 
independently, these four sub-populations will become 
synchronized toward convergence in the later iterative process. 
Here for function 4 and function 7, their corresponding 
sub-populations can converge to their optimal solutions 
throughout the iteration cycle at the same time. As for function 4 
in Figure 3, the optimal solutions in sub-population 1, 2, 3, 4 are 
all (-0.64062, 0.64096) and their corresponding optimal values 
are 2.1188. For function 7 in Figure 4, the optimal solutions in 
sub-population 1, 2, 3, 4 are all (-31.9792, -32.0007) with 
corresponding optimal values 1.002. These results also present 
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the following two conclusions. Firstly, the new evolutionary 
strategies are effective for the Co-evolutionary 
Quantum-Inspired Evolutionary Algorithm to a certain degree. 
On the other hand, the elite individual in the constructing elite 
library just guide the selected sub-population instead of entire 
population toward the global optimum, which is enough to 
complete the optimize search and can improve the operating 
efficiency of the algorithm to some extent.  

 

Our NCQEA can use smaller populations to complete 
complex optimization problems with the help of 
co-evolutionary mechanism and performs better than traditional 
QEA regardless the complexity of test functions. The standard 
deviation results have also shown that NCQEA has better 
computational stability than traditional QEA. 

However, our experiment results show that in some cases 
these four sub-populations do not become synchronized toward 
convergence. For function 6 in Figure 5, the optimal solutions in 
sub-population 1, 2, and 4 are (-4.8828e-006, 4.8828e-006) 
with corresponding optimal values -9.4601e-009; while the 
optimal solutions in sub-population 3 is (-2.4414e-005, 
4.8828e-006) with optimal value -1.2298e-007. 

B. Knapsack problems 
As a well-known combinatorial optimization problem, the 

Knapsack problem is one of the classic NP-Hard problems. It 
can be described as selecting from various items, and the 
selected items are the most profitable items, given that the 
Knapsack has a limited capacity. Here the Knapsack problem 
can be defined as following. 

Select a set of items ix , mi ,...,2,1=  with profits ip , and 

weight iw . Here given a set of  m  items and a Knapsack with 

capacity C , select subset of the items to maximize the profit 
function )(xf . 

∑
=

=
m

i
ii xpxf

1
)(  

Such that Cxw
m

i
ii ≤∑

=1

; and }1,0{∈ix , mi ,...,2,1=  

Here we have selected the following simulation examples 
from literature [23], and then use our new algorithm to test those 
simulation examples. The dimensions of the tested examples are 
from the simple 10 dimensional space to more complex 100 
dimensional spaces. Therefore we can fully test the performance 
of these two algorithms. Notice for every evolutionary run, the 
population size and iteration number are set as m4 , where m  
is the dimensional number of the test examples. The 
corresponding optimal solution of each simulation example is 
illustrated in Table 2. Notice )(xf  is the total profit for the 

Knapsack as selecting from various items; )(weightsum  is 
the total weight for the Knapsack. The simulation results can be 
summarized in the following Table 3. 

The data are averaged over 30 different runs and the 
corresponding statistical results of these runs are shown in 
Table 3. It can be seen from Table 3 that NCQEA have better 
simulation results than QEA for the different Knapsack 
problems and NCQEA has relatively stable computing ability. 
Although numerous calculations occasionally fall into local 
optimal solution such as for P3, P4, P5, and P6, NCQEA is still 
much better than QEA according to the standard deviation 
results. As for more complex Knapsack problems P5 and P6, if 
we set the evolutionary parameters to be m6 , then we get the 

 
Fig. 3 Evolutionary results for Function 4 on the basis of NCQEA 

 
Fig. 4 Evolutionary results for Function 7 on the basis of NCQEA 

 
Fig. 5 Evolutionary results for Function 6 on the basis of NCQEA 
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corresponding results in the following Table 4. 
 

Tab. 2. The Six simulation examples for Knapsack problems 
Problem 
Number 

Number of 
Dimensions with known optimal solution 

P1 10 295)( =xf 269)( =weightSum  

P2 15 481.07)( =xf 354.96)( =weightSum  

P3 50 3103)( =xf 1000)( =weightSum  

P4 60 8362)( =xf 2393)( =weightSum  

P5 80 5183)( =xf 1170)( =weightSum  

P6 100 15170)( =xf 3818)( =weightSum  

 
Tab. 3. Simulation results for Knapsack problems 

Optimization 
Functions 

QEA 

Best Worst Average Convergence 
times 

Standard 
Deviation 

P1 295/289 295/289 295 0 295/289 

P2 481.07/3
54.96 

481.07/35
4.96 481.07 0 

481.07/354
.96 

P3 3103/10
00 

3077/100
0 3091.1667 6.0887 3103/1000 

P4 8362/23
93 

8350/239
4 8359.0667 4.0574 8362/2393 

P5 5183/11
70 

5146/117
1 5175.9 9.7582 5183/1170 

P6 15170/3
818 

15143/38
18 

15164.133
3 7.7835 

15170/381
8 

Optimization 
Functions 

NCQEA 

Best Worst Average Convergen
ce times 

Standard 
Deviation 

P1 295/269 295/269 295 0 295/269 

P2 481.07/3
54.96 

481.07/35
4.96 481.07 0 

481.07/354.9
6 

P3 3103/10
00 

3080/100
0 3091.8 5.9464 3103/1000 

P4 8362/23
93 

8354/239
9 8359.4 3.2311 8362/2393 

P5 5183/11
70 

5146/117
1 5179.5667 9.1056 5183/1170 

P6 15170/3
818 

15145/38
18 

15164.266
7 6.6329 15170/3818 

 
Tab. 4. Analysis results for different Knapsack problems (with 30 

experiments) 

Problem 
Number 

NCQEA 

Best Worst Average Standard Deviation 
P5 5183/1170 5167/1171 5181.4 3.2721 

P6 15170/3818 15151/3812 15167.3333 5.1273 

 
Note that the bigger the evolutionary parameters, the more 

superior solution we get in table 4. The optimization 
performance of NCQEA is more stable than the results in Table 
3 based on the results of standard deviation. Considering the 
initial population is randomly selected for the algorithm, they 
are able to gather from the initial position to the optimal solution 
after a lot of iterations; and the statistic results also suggest that 
NCQEA has persistent optimization ability for more complex 
optimization problems. 

 

V. CONCLUSIONS 
In order to improve the performance of QEA, this paper 

proposes a novel co-evolutionary quantum-inspired 
evolutionary algorithm (NCQEA). In NCQEA, the whole 
population is firstly divided into multiple sub-populations 
which complete the evolution process independently; and then 
makes full use of the characteristic information of each 
sub-population to implement the evolution process. In the 
comparative study, NCQEA is compared with existing QEA 
using the established benchmarks functions and Knapsack 
problems. The convergence performance for NCQEA is 
superior to QEA, and NCQEA is more accurate and stable in 
finding the global value in the testing problems. 
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