
 

 

  
Abstract—The paper deals with control design and verification of 

a robust controller of the Twin Rotor MIMO System – a real-time 
laboratory plant by Feedback Ltd. The plant physical appearance as 
well as its behavior resembles a helicopter. It consists of two 
propellers individually controlled by external controller. An initial 
nonlinear mathematical model is derived using first principles 
modeling and further used for simulation verification of the designed 
controllers. Besides, several linear black box models are identified by 
applying various input courses to the plant. Resulting set of models is 
used for robust control design. The designed robust controllers with 
promising behavior in simulations are verified by real-time control of 
the laboratory model. 
 
Keywords—First principle modelling, Real-time control, Robust 

control 

I.  INTRODUCTION 
OST of current control algorithms are based on a model 
of a controlled plant [1]. It is obvious that some 

information about controlled plant is required to allow for 
design of a controller with satisfactory performance. A plant 
model can be also used to investigate properties and behavior 
of the modeled plant without a risk of damage or violating 
technological constraints of the real plant. The re two basic 
approaches of obtaining plant model: the black box approach 
and the first principles modeling (mathematical-physical 
analysis of the plant). 

The black box approach to the modeling [2], [3] is based on 
analysis of input and output signals of the plant. The main 
advantage of the black box approach consists in the possibility 
of usage the same identification algorithm for wide set of 
various controlled plants [4], [5]. Contrary, the first principle 
modeling provides general models valid for whole range of 
plant inputs and states. A model is created by analyzing the 
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modeled plant and combining physical laws [6]. But, there are 
usually many unknown constants and relations when 
performing analysis of a plant. Therefore first principle 
models are suitable for simple controlled plants with small 
number of parameters. First principle modeling can be also 
used for obtaining basic information about controlled plant 
(rage of gain, rank of suitable sample time, etc.). Some 
simplifications must be used to obtain reasonable results in 
more complicated cases. These simplifications must relate 
with the purpose of the model. The first principle modeling is 
also referred to as white box modeling.  

The paper combines both methods. Basic relations between 
plant inputs and outputs are derived using first principles. The 
obtained model is further improved on the basis of 
measurements. This approach is known as grey box modeling 
[7]. The goal of the work was to obtain a mathematical model 
of the Twin Rotor MIMO System [8], design the model in 
MATLAB-Simulink environment and use this model for 
design of adaptive controller. The Twin Rotor MIMO System 
was developed by Feedback Instruments Ltd. and serves as a 
real-time model of nonlinear multidimensional system. A 
model, which represents the plant well, can considerably 
reduce testing time of different control approaches. Then only 
promising control strategies are applied to the real plant and 
verified. 

The paper is focused on robust control design [9]. Robust 
control approach allows obtaining a stabilizing controller not 
only for a nominal controlled system but also for a wider set 
of controlled systems. The set can be defined in various ways. 
This paper deals with parametric uncertainty, namely interval 
uncertainty [10].  

The paper is organized as follows. Section 2 presents the 
modelled system – Twin Rotor MIMO System. A derivation 
of the nonlinear model and its implementation in the 
MATLAB / Simulink environment carried out in Section 3. 
Robust control design is presented in Section 4. As a part of 
robust design, linear models of the two single input single 
output decoupled subsystems are identified and presented also 
in Section 4. The verification of the designed robust controller 
using both nonlinear Simulink model and the real-time 
laboratory plant is described in Section 5. 

 

II. TWIN ROTOR MIMO SYSTEM 
A photograph of the Twin Rotor MIMO System is 

presented in Fig. 1. The system is used to demonstrate the 
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principles of a non-linear MIMO system, with significant 
cross-coupling. Its behavior resembles a helicopter but 
contrary to most flying helicopters the angle of attack of the 
rotors is fixed and the aerodynamic forces are controlled by 
varying the speeds of the motors. Significant cross-coupling is 
observed between the actions of the rotors, with each rotor 
influencing both angle positions [11].  

There are two propellers driven by DC-motors at both ends 
of a beam, which is pivoting on its base. The joint allows the 
beam to rotate in such a way that its ends move on spherical 
surfaces. There is a counter-weight fixed to the beam and it 
determines a stable equilibrium position. The controls of the 
system are the motors supply voltages. The measured signals 
are position of the beam in the space, i.e. two position angles 
[12]. 

 
Fig. 1. Twin Rotor MIMO System. 

III. MODEL OF THE TWIN ROTOR MIMO SYSTEM 
A nonlinear model of the plant is derived in this section. 

The model is based on first principle modeling [12], [13], and 
[14]. More details concerning modeling of the Twin Rotor 
MIMO System can be found in [15]. 

There are two outputs of the plant: position angle in the 
vertical plane – elevation (i.e. angle with respect to horizontal 
axis) and position in the horizontal plane – azimuth (i.e. angle 
with respect to vertical axis). First vertical plane will be 
considered, and then the horizontal angle will be focused on. 
A schematic front view of the free beam and connected parts 
of the Twin Rotor MIMO System is depicted in Fig. 2. The 
gravitation forces taking effect are presented as well.  

 
 

 
Fig. 2. Schematic front view of the Twin Rotor MIMO System with 
gravitation forces. 
 

Constant g represents gravitational acceleration, parameters 
lt, lm and lcb stand for the length of the tail part of the beam, the 
length of the main part of the beam and the length of the 
counter-weight beam respectively. The mass of the tail motor 
with tail rotor, the mass of the tail shield and the mass of the 
tail part of the beam are represented by mtr, mts, and mt 
respectively. Constants mb and mcb represent the mass of the 
counter-weight beam and the mass of the counter-weight 
respectively. The mass of the main motor with tail rotor, the 
mass of the main shield and the mass of the main part of the 
beam are represented by mmr, mms, and mm respectively. Finally 
αv stands for the pitch angle of the beam – elevation 

A. Initial model 
The derivation of moments in the vertical plane is based on 

Newton’s second law of motion: 
2

v
v v

d
M J

dt
α

=  (1) 

where Mv is a sum of components of moment of forces and 
Jv is a sum of moments of inertia relative to horizontal axis of 
individual parts of the plant: 

 

v viM M= ∑  (2) 

v viJ J= ∑  (3) 
 

The moments present in the horizontal plane can be derived 
in the similar way as the moments in the horizontal plane.  

It is possible to derive state equations of the whole system: 
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corresponding linear models were identified. 

A. Identification of main rotor – elevation subsystem 
Step changes of the control voltage of main rotor usually 

lead an oscillatory response of the elevation output. This 
system was modeled by a 3rd order linear system: 
 

( ) 0
3 2

3 2 1 1
h

h
h h h

b
G s

a s a s a s
=

+ + +
 (13) 

 
Identification was performed in least squares sense using 

MATLAB function fminsearch. Results are summarized in 
Table I. 

TABLE I.  INTERVALS OF THE MAIN ROTOR – ELEVATION MODEL 

Parameter Minimal value Maximal value 

0hb  60 157 

3ha  0.23 1.30 

2ha  0.22 2.35 

1ha  0.81 2.74 

 
Common notation for writing transfer functions of systems 

with interval uncertainties uses square brackets: 
 

( ) [ ]
[ ] [ ] [ ]3 2

60;157
0.23;1.30 0.22; 2.35 0.81;2.74 1hG s

s s s
=

+ + +
 (14) 

 
Model behavior especially its stability is defined by position 

of transfer function poles – i.e. roots of the denominator. The 
interval model was obtained from 29 linear models which 
were identified from step responses. Poles of these 29 models 
are presented in Fig. 4. The poles are marked by asterisk and 
poles of each model are connected by a line.  
 

 
Fig. 4. Poles of the main rotor – elevation models 
 

It can be seen that all models are stable (real parts are 
smaller than zero). Moreover all models are oscillatory 
because each model has a pair of complex conjugated poles. 

Intervals of denominator of the interval model (14) form a 

box in the 3D space. Contrary to experiments not all transfer 
functions formed from the parameters inside this box are 
stable. The situation is presented in Fig. 5. 
 

 
Fig. 5. Stability of interval model of the main rotor – elevation subsystem 
 

Four crosscuts of the box are presented. The crosscuts are 
parallel to a1h x a2h plane. The upper and the lower crosscut 
correspond to the maximal and the minimal value of the a3h 
parameter respectively. The other two crosscuts correspond to 
one third and two thirds between the minimum and maximum 
of a3h. The red areas correspond to unstable systems while 
green areas correspond to stable systems. The magenta circles 
correspond to models identified from step responses. 

B. Identification of tail rotor – azimuth subsystem 
The tail rotor – azimuth subsystem was identified in the 

similar way as the main rotor – elevation subsystem. The main 
difference consists in fact that 2nd order models were used, 
because their accuracy was good enough. 
 

( ) 0
2

2 1
v

v
v vt

b
G s

a s a s
=

+ +
 (15) 

 
 The step responses where the plant reached a backstop 

were omitted from the identification. The positions of poles 
are presented in Fig. 6. As all the poles presented in Fig. 6 are 
in the left half-plane, all the models are stable and most of 
them are oscillatory. Limits of the model parameters are 
summarized in Table II. 

TABLE II.  INTERVALS OF THE TAIL ROTOR – AZIMUTH MODEL 

Parameter Minimal value Maximal value 

0vb  75 716 

2va  2.63 6.04 

1va  2.49 4.55 

 
 
Resulting interval model can be written in the following 

form: 
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[ ] [ ]2

75; 716
2.63; 6.04 2.49; 4.55 1vG s

s s
=

+ +
 (16) 

 
Intervals of the denominator define a rectangle in a1v x a2v 

plane. As the denominator is a 2nd order degree polynomial 
and both a1v, a2v are always positive roots of denominator have 
always negative real part and therefore all the models are 
stable. Some of the models are oscillatory while the others are 
aperiodic. The situation is presented in Fig. 7. The magenta 
circles correspond to models identified from step responses. 
 

 
Fig. 6. Poles of the tail rotor – azimuth models 
 
 

 
Fig. 7. Behavior of interval model of the tail rotor – azimuth subsystem 
 

C. Design of robust 2DOF controller 
Several controller types were tested and results of the 2DOF 

(Two Degree Of Freedom) controllers are presented in this 
paper. The scheme of the control loop with 2DOF controller is 
presented in Fig 8. 

 

 
Fig. 8. 2DOF controller 
 

Control signal is calculated according to the following 
equation:  
 

( ) ( )
( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1

R Q

R s Q s
U s W s Y s

K s P s P s

G s W s G s Y s

⎡ ⎤
= − =⎢ ⎥

⎢ ⎥⎣ ⎦
= −

 (17) 

 
where U(s), W(s), and Y(s) are Laplace transforms of u(t), 

w(t), and y(t) signals respectively. Pole-placement method was 
used to calculate controllers’ polynomials R(s), P(s), Q(s) and 
K(s). Detail can be found for example in [1]. 

Pole placement method is based on fixing poles of closed 
loop to the desired positions. For robust control of a system 
with interval uncertainties the controller is required to 
guarantee stability of closed loop for any combination of 
parameters from the given intervals. Unfortunately 
coefficients of the characteristic polynomial of the closed loop 
are not independent. Therefore Kharitonov polynomials 
cannot be used for stability testing [17]. 

Solving the robust closed loop stability is theoretically 
complicated task. Hence simplified approach was used: 
1. Controller polynomials were calculated with respect to 

given position of poles and a nominal system.  
2. Coefficient values equally spread through an interval were 

generated for each uncertainty interval. 
3. Stability of the closed loop was tested for each 

combination of coefficient values. 
Coefficients of the nominal system were defined as 

midpoints of the uncertainty intervals. Five coefficient values 
were generated for each interval. It leads to 54=625 
combinations (systems) for the main rotor – elevation 
subsystem and 53=125 combinations (systems) for the tail 
rotor – azimuth subsystem. 

Pole positions were defined in the simplest possible way. 
One multiple real pole was used. Hence the characteristic 
polynomial of the closed loop has the following form: 
 

( ) ( )nD s s α= +  (18) 
 
Whole task of computing the robust controller can be seen 

as an optimization problem with the goal of stabilizing all the 

+ 
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generated systems and the pole position as a tuning parameter. 
This approach does not guarantee stability of all possible 

coefficient combinations but its results in real-time 
environment were good no unstable behavior of the closed 
loop was observed. 

V. REAL-TIME EXPERIMENTS 
This section presents several real-time experiments from a 

huge set of experiments performed. A sampling period of T0 = 
0.01s was used for sensors and actuators in all experiments. 
Elevation control and azimuth control was performed 
simultaneously to verify effect of cross-couplings. 

Control design consists in funding optimal position of the 
closed loop poles – i.e. find optimal coefficient α presented in 
equation (18). The goal of the optimization procedure was to 
stabilize all the 625 systems for the main motor – elevation 
subsystem and all 125 systems for the tail motor – azimuth 
subsystem as mentioned in the previous section. 

Optimal value of pole position for elevation control was 
2.7391vα =  (i.e. multiple pole in position -2.7391) and 

optimal value for azimuth control was 0.6hα =  (i.e. multiple 
pole in position -0.6). Courses of elevation control are 
presented in Fig. 9. Control of both real-time plant and 
nonlinear model derived in Section 3 are presented. 
 

 
Fig. 9. Elevation control αv = 2.7391, αh = 0.6 
 

It can be seen that a very good reference tracking was 
reached but course of control signal was very oscillatory in 
real-time conditions contrary to simulation. 

 Courses of azimuth control are presented in Fig. 10. 
Control of both real-time plant and nonlinear model derived in 
Section 3 are presented. 

 
Fig. 10. Azimuth control αv = 2.7391, αh = 0.6 

 
It can be observed, that cross-coupling plays important role 

in the azimuth control.  
Pole position defined by parameter αv was changed to 

obtain smoother course of control signal for the main motor. A 
value of αv= 1.7 was used and the control courses of the 
elevation control are presented in Fig. 11. 

  

 
Fig. 11. Elevation control αv = 1.7, αh = 0.6 
 

Reference tracking was slightly worse comparing to Fig. 9 
but course of control signal was much smoother. 

Courses of azimuth control of this experiment are presented 
in Fig. 12.  
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Fig. 12. Azimuth control αv = 1.7, αh = 0.6 

 
A satisfactory control behavior with a good reference 

tracking was observed. The greatest difference between 
nonlinear model and real-time plant was obtained for control 
signal of the tail rotor where non-modeled behavior was 
observed. 

Control courses were compared not only by a visual 
comparison of figures but also by quadratic criteria. The 
results are presented in Table III.  

TABLE III.  COMPARISON OF CONTROL COURSES 

Controller Elevation Azimuth 

 2e∑  2uΔ∑  2e∑  2uΔ∑  

2.7391vα =  
Simulation  

(Fig. 9,  Fig. 10) 
1.2470e+7 0.0707 4.3537e+8 0.0193 

1.7vα =  
Simulation  

(Fig. 11, 12) 
1.9766e+7 0.0206 4.5529e+8 0.0211 

2.7391vα =  
Real plant 

(Fig. 9,  Fig. 10) 
1.3246e+7 3.4017e+3 4.5479e+8 0.2325 

1.7vα =  
Real plant  

(Fig. 11, 12) 
1.9948e+7 42.2463 4.5542e+8 0.1557 

 
In real-time experiments, changing a value of the parameter 

αv led to lower values of criterion which sums squares of 
control signal differences while reference tracking criterion 
remained almost unchanged. 

VI. CONCLUSION 
A model of nonlinear real time system Twin Rotor MIMO 

System was derived using first principle modeling and then 
enhanced to correspond better with the real plant.  

A simple robust control technique was presented and 
successfully verified in real-time conditions. Further 
improvement can be acquired by implementing better pole 
placement. Usage of several different poles would lead to even 
better control courses than the courses presented in the paper. 

Further work will be focused on obtaining even better 
performance of a robust control and subsequent comparison of 
results of a robust control and an adaptive control. Moreover, 
the presented model will be used to design and verify model 
based predictive control of the Twin Rotor MIMO System. 
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