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Design and verification of a robust controller for
the twin rotor MIMO system

Petr Chalupa, Jakub Novak, Jan Ptikryl

Abstract—The paper deals with control design and verification of
a robust controller of the Twin Rotor MIMO System — a real-time
laboratory plant by Feedback Ltd. The plant physical appearance as
well as its behavior resembles a helicopter. It consists of two
propellers individually controlled by external controller. An initial
nonlinear mathematical model is derived using first principles
modeling and further used for simulation verification of the designed
controllers. Besides, several linear black box models are identified by
applying various input courses to the plant. Resulting set of models is
used for robust control design. The designed robust controllers with
promising behavior in simulations are verified by real-time control of
the laboratory model.

Keywords—First principle modelling, Real-time control, Robust
control

L

OST of current control algorithms are based on a model

of a controlled plant [1]. It is obvious that some
information about controlled plant is required to allow for
design of a controller with satisfactory performance. A plant
model can be also used to investigate properties and behavior
of the modeled plant without a risk of damage or violating
technological constraints of the real plant. The re two basic
approaches of obtaining plant model: the black box approach
and the first principles modeling (mathematical-physical
analysis of the plant).

The black box approach to the modeling [2], [3] is based on
analysis of input and output signals of the plant. The main
advantage of the black box approach consists in the possibility
of usage the same identification algorithm for wide set of
various controlled plants [4], [S]. Contrary, the first principle
modeling provides general models valid for whole range of
plant inputs and states. A model is created by analyzing the
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modeled plant and combining physical laws [6]. But, there are
usually many unknown constants and relations when
performing analysis of a plant. Therefore first principle
models are suitable for simple controlled plants with small
number of parameters. First principle modeling can be also
used for obtaining basic information about controlled plant
(rage of gain, rank of suitable sample time, etc.). Some
simplifications must be used to obtain reasonable results in
more complicated cases. These simplifications must relate
with the purpose of the model. The first principle modeling is
also referred to as white box modeling.

The paper combines both methods. Basic relations between
plant inputs and outputs are derived using first principles. The
obtained model is further improved on the basis of
measurements. This approach is known as grey box modeling
[7]. The goal of the work was to obtain a mathematical model
of the Twin Rotor MIMO System [8], design the model in
MATLAB-Simulink environment and use this model for
design of adaptive controller. The Twin Rotor MIMO System
was developed by Feedback Instruments Ltd. and serves as a
real-time model of nonlinear multidimensional system. A
model, which represents the plant well, can considerably
reduce testing time of different control approaches. Then only
promising control strategies are applied to the real plant and
verified.

The paper is focused on robust control design [9]. Robust
control approach allows obtaining a stabilizing controller not
only for a nominal controlled system but also for a wider set
of controlled systems. The set can be defined in various ways.
This paper deals with parametric uncertainty, namely interval
uncertainty [10].

The paper is organized as follows. Section 2 presents the
modelled system — Twin Rotor MIMO System. A derivation
of the nonlinear model and its implementation in the
MATLAB / Simulink environment carried out in Section 3.
Robust control design is presented in Section 4. As a part of
robust design, linear models of the two single input single
output decoupled subsystems are identified and presented also
in Section 4. The verification of the designed robust controller
using both nonlinear Simulink model and the real-time
laboratory plant is described in Section 5.

II. TwWIN ROTOR MIMO SYSTEM

A photograph of the Twin Rotor MIMO System is
presented in Fig. 1. The system is used to demonstrate the
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principles of a non-linear MIMO system, with significant
cross-coupling. Its behavior resembles a helicopter but
contrary to most flying helicopters the angle of attack of the
rotors is fixed and the aerodynamic forces are controlled by
varying the speeds of the motors. Significant cross-coupling is
observed between the actions of the rotors, with each rotor
influencing both angle positions [11].

There are two propellers driven by DC-motors at both ends
of a beam, which is pivoting on its base. The joint allows the
beam to rotate in such a way that its ends move on spherical
surfaces. There is a counter-weight fixed to the beam and it
determines a stable equilibrium position. The controls of the
system are the motors supply voltages. The measured signals
are position of the beam in the space, i.e. two position angles
[12].

Fig. 1. Twin Rotor MIMO System.

III. MODEL OF THE TWIN ROTOR MIMO SYSTEM

A nonlinear model of the plant is derived in this section.
The model is based on first principle modeling [12], [13], and
[14]. More details concerning modeling of the Twin Rotor
MIMO System can be found in [15].

There are two outputs of the plant: position angle in the
vertical plane — elevation (i.e. angle with respect to horizontal
axis) and position in the horizontal plane — azimuth (i.e. angle
with respect to vertical axis). First vertical plane will be
considered, and then the horizontal angle will be focused on.
A schematic front view of the free beam and connected parts
of the Twin Rotor MIMO System is depicted in Fig. 2. The
gravitation forces taking effect are presented as well.
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Fig. 2. Schematic front view of the Twin Rotor MIMO System with
gravitation forces.

Constant g represents gravitational acceleration, parameters
l,, I, and [, stand for the length of the tail part of the beam, the
length of the main part of the beam and the length of the
counter-weight beam respectively. The mass of the tail motor
with tail rotor, the mass of the tail shield and the mass of the
tail part of the beam are represented by m,, m, and m,
respectively. Constants m,, and m,, represent the mass of the
counter-weight beam and the mass of the counter-weight
respectively. The mass of the main motor with tail rotor, the
mass of the main shield and the mass of the main part of the
beam are represented by m,,,, m,,, and m,, respectively. Finally
a, stands for the pitch angle of the beam — elevation

A. Initial model

The derivation of moments in the vertical plane is based on
Newton’s second law of motion:
2
da, 0
dt
where M, is a sum of components of moment of forces and
J, is a sum of moments of inertia relative to horizontal axis of
individual parts of the plant:

M, =J,

Mv :ZMW

Jv = Z Jw'

The moments present in the horizontal plane can be derived
in the similar way as the moments in the horizontal plane.
It is possible to derive state equations of the whole system:

2
3)

ds, g[(A—B)cosav —Csinav]+l”,E,(wm)
dr J

v

1., . “4)
—Q; (A+B+C)sin2a, +Q k,
2

J
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ds, LF,(o)cosa, -Q,k, )
di J,

J i
Q=8+ =5, + 2w 0 6)

where 4, B, and C are constants derived from the physical
parameters of the plant; S, and S, are the angular momentum
in vertical plane for the beam and the angular momentum in
horizontal plane for the beam respectively. The moment of
inertia in DC-motor — tail propeller subsystem and the moment
of inertia in DC-motor — main propeller subsystem are
represented by J,, and J,,, respectively.

These equations describe dependence of output angles

(elevation «,and azimuth ¢, ) on rotations of the main and
the tail motors — @, and @, respectively. The motors are

controlled by control voltage according to the following
combinations of linear dynamics and static non-linearity:

duvv — L(_uw —+ uv )’

a T, (7
a)m = Pv (uw)
duhh _ L

d —7;( uhh+uh)’ ®)
o, =F, (”hh )

where T, and T}, are the time constant of the main motor —
propeller system and the time constant of the tail motor —
propeller system. Functions P,() and P;() describe the static
nonlinearity of the main motor — propeller system and the
static nonlinearity of the tail motor — propeller system. Inputs
u, and u;, represent the control voltage of the maim motor and
the control voltage of the tail motor respectively.

B. Enhanced model

Documentation [12] provides parameters and relations of
the Twin Rotor MIMO System which were presented in
previous subsection. However real-time experiments showed
that these parameters and equations should be refined or
revised. This subsection is focused on modification of the
initial model and parameters given in [12] in order to obtain
better correspondence of the mathematical model and real
time system.

1)  Refinement of the dimensions

The dimensions of the modeled Twin Rotor MIMO System
were measured to refine constants given in documentation
[12]. Especially the length of the counter-weight beam is
different from the value given in documentation.

2) Nonlinear static functions

The mode contains several nonlinear functions — e.g.
equations (4), (5), (7) and (8). These functions have to be
determined to design the final model. A phenomenological
approach was used for their identification. A polynomial
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approximation was used without deep study of the physical
fundamentals of the relation:

P (u,,)=90.99uS, +599.73u’, ~126.26u" — o)
~1238.64u, +63.45u7, +1283.41u,,

F,(@,)=3.187-10"0} —4.096-10” o} + (10
+1.385-10° 0’ +1.234-107 & +0.7990),

P, (u,,) = 2020u3, —194.696u}, — o
—4283.15), +262.27u?, +3796.83u,,

F(@,)=9.496-10"2 0} —9.844-10” o + -

+2.785-107 @’ +1.730-10" &} +0.7290,

3) Cross coupling transfers

The cross coupling can be observed in the Twin Rotor
MIMO System. The rotation of the tail motor slightly affects
elevation angle while main motor strongly affects not only
elevation but also azimuth. The influence of tail motor to
elevation was modeled as linear function of tail rotor rotations.

The dependence of azimuth on rotations of the main motor
is more complicated to model. An exponential function of the
M,, moment was used to cope with this problem. A Simulink
scheme of this relation is presented in Fig. 3.

Saturation

M_v2

Fig. 3. Model of influence of main motor to the azimuth.

4) Cableways

A cableway between the fixed base of the Twin Rotor
MIMO System and its beam plays a significant role especially
in case of low rotation speed of the tail motor. Due to the
cable way the system does not behave as an integrative but
proportional behavior can be observed. The effect of the
cableway is modelled as a nonlinear function of the azimuth.

IV. DESIGN OF ROBUST CONTROLLER

A design of robust controllers for the Twin Rotor MIMO
System is based on parametric uncertainty approach. The
parametric uncertainty can be used for both continuous-time
and discrete systems [16].

The controlled plant was analyzed to obtain an interval
uncertainty of the linear model of the system. For the control
purposes, the Twin Rotor MIMO System was considered as
two independent systems

e control voltage of the main rotor (input) — elevation
(output)
control voltage of the tail rotor (input) — azimuth
(output)

The cross-couplings are considered as disturbances in this
case.

Various step changes of the control input were applied to
the plant, time responses of plant were measured and
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corresponding linear models were identified.

A. Identification of main rotor — elevation subsystem

Step changes of the control voltage of main rotor usually
lead an oscillatory response of the elevation output. This
system was modeled by a 3" order linear system:

bO h

G, (s)z

3 2
ay,S” +ay,s” +a;,s+1

(13)

Identification was performed in least squares sense using

MATLAB function fminsearch. Results are summarized in

Table 1.
TABLE L. INTERVALS OF THE MAIN ROTOR — ELEVATION MODEL
Parameter Minimal value Maximal value
by 60 157
a, 0.23 1.30
a,, 0.22 2.35
a,, 0.81 2.74

Common notation for writing transfer functions of systems
with interval uncertainties uses square brackets:

[60;157]
[0.23;1.30]s* +[0.22; 2.35]s* +[0.81;2.74]s +1

G, (s)= (14)

Model behavior especially its stability is defined by position
of transfer function poles — i.e. roots of the denominator. The
interval model was obtained from 29 linear models which
were identified from step responses. Poles of these 29 models
are presented in Fig. 4. The poles are marked by asterisk and
poles of each model are connected by a line.

imag

real

Fig. 4. Poles of the main rotor — elevation models

It can be seen that all models are stable (real parts are
smaller than zero). Moreover all models are oscillatory
because each model has a pair of complex conjugated poles.

Intervals of denominator of the interval model (14) form a
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box in the 3D space. Contrary to experiments not all transfer
functions formed from the parameters inside this box are
stable. The situation is presented in Fig. 5.

| +  stable +  unstable @ mD[:E\S|

al
Fig. 5. Stability of interval model of the main rotor — elevation subsystem

Four crosscuts of the box are presented. The crosscuts are
parallel to a;; X ay; plane. The upper and the lower crosscut
correspond to the maximal and the minimal value of the a3,
parameter respectively. The other two crosscuts correspond to
one third and two thirds between the minimum and maximum
of as,. The red areas correspond to unstable systems while
green areas correspond to stable systems. The magenta circles
correspond to models identified from step responses.

B. Identification of tail rotor — azimuth subsystem

The tail rotor — azimuth subsystem was identified in the
similar way as the main rotor — elevation subsystem. The main
difference consists in fact that 2" order models were used,
because their accuracy was good enough.

b
G S)= —OV 15
(s) a,,s* +a,s+1 (1)

The step responses where the plant reached a backstop
were omitted from the identification. The positions of poles
are presented in Fig. 6. As all the poles presented in Fig. 6 are
in the left half-plane, all the models are stable and most of
them are oscillatory. Limits of the model parameters are
summarized in Table II.

TABLE II. INTERVALS OF THE TAIL ROTOR — AZIMUTH MODEL
Parameter Minimal value Maximal value
by, 75 716
a,, 2.63 6.04
a, 2.49 4.55

Resulting interval model can be written in the following
form:
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~ [75;716]
©[2.63;6.04]s% +[2.49; 4.55] s +1

G, (s) (16)

Intervals of the denominator define a rectangle in a;, x a,,
plane. As the denominator is a 2™ order degree polynomial
and both a,, a,, are always positive roots of denominator have
always negative real part and therefore all the models are
stable. Some of the models are oscillatory while the others are
aperiodic. The situation is presented in Fig. 7. The magenta
circles correspond to models identified from step responses.
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Fig. 6. Poles of the tail rotor — azimuth models
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Fig. 7. Behavior of interval model of the tail rotor — azimuth subsystem

C. Design of robust 2DOF controller

Several controller types were tested and results of the 2DOF
(Two Degree Of Freedom) controllers are presented in this
paper. The scheme of the control loop with 2DOF controller is
presented in Fig 8.
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Fig. 8. 2DOF controller

Control signal is calculated according to the following
equation:

1 |R

K (s

Ez W (s)-

)W (s)

where U(s), W(s), and Y(s) are Laplace transforms of u(?),
w(?), and y(¢) signals respectively. Pole-placement method was
used to calculate controllers’ polynomials R(s), P(s), O(s) and
K(s). Detail can be found for example in [1].

Pole placement method is based on fixing poles of closed
loop to the desired positions. For robust control of a system
with interval uncertainties the controller is required to
guarantee stability of closed loop for any combination of
parameters from the given intervals. Unfortunately
coefficients of the characteristic polynomial of the closed loop
are not independent. Therefore Kharitonov polynomials
cannot be used for stability testing [17].

Solving the robust closed loop stability is theoretically
complicated task. Hence simplified approach was used:

0(s)
o

=G (s)Y¥(s)

U(s):

v

)

R

amn

—

1. Controller polynomials were calculated with respect to
given position of poles and a nominal system.

2. Coefficient values equally spread through an interval were
generated for each uncertainty interval.

3. Stability of the closed loop was tested for each

combination of coefficient values.

Coefficients of the nominal system were defined as
midpoints of the uncertainty intervals. Five coefficient values
were generated for each interval. It leads to 5*=625
combinations (systems) for the main rotor — elevation
subsystem and 5°=125 combinations (systems) for the tail
rotor — azimuth subsystem.

Pole positions were defined in the simplest possible way.
One multiple real pole was used. Hence the characteristic
polynomial of the closed loop has the following form:

D(s)=(s+a)’ (18)

Whole task of computing the robust controller can be seen
as an optimization problem with the goal of stabilizing all the
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generated systems and the pole position as a tuning parameter.

This approach does not guarantee stability of all possible
coefficient combinations but its results in real-time
environment were good no unstable behavior of the closed
loop was observed.

V. REAL-TIME EXPERIMENTS

This section presents several real-time experiments from a
huge set of experiments performed. A sampling period of 7=
0.01s was used for sensors and actuators in all experiments.
Elevation control and azimuth control was performed
simultaneously to verify effect of cross-couplings.

Control design consists in funding optimal position of the
closed loop poles — i.e. find optimal coefficient a presented in
equation (18). The goal of the optimization procedure was to
stabilize all the 625 systems for the main motor — elevation
subsystem and all 125 systems for the tail motor — azimuth
subsystem as mentioned in the previous section.

Optimal value of pole position for elevation control was
o, =2.7391 (i.e. multiple pole in position -2.7391) and

optimal value for azimuth control was «, = 0.6 (i.e. multiple

pole in position -0.6). Courses of elevation control are
presented in Fig. 9. Control of both real-time plant and
nonlinear model derived in Section 3 are presented.

200 T T T T T

150

100

]

L], MU ]

o

e

Yreal

model

S00

1
200 &00

1
100

1 1 T
300 400 00
t[s]

0.6

1 1
u] 100 200 &00

Fig. 9. Elevation control a, = 2.7391, a;,

It can be seen that a very good reference tracking was
reached but course of control signal was very oscillatory in
real-time conditions contrary to simulation.

Courses of azimuth control are presented in Fig. 10.
Control of both real-time plant and nonlinear model derived in
Section 3 are presented.
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Fig. 10. Azimuth control o, =2.7391, o, = 0.6
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It can be observed, that cross-coupling plays important role
in the azimuth control.

Pole position defined by parameter «, was changed to
obtain smoother course of control signal for the main motor. A
value of a,= 1.7 was used and the control courses of the
elevation control are presented in Fig. 11.

200 T T T T T
180 B
= 100
=
&
=
B w
ESis Yreal
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_1 DD 1 1 1 1 I
u} 100 200 300 400 500 00
t[s]
oL i
1
= of .
=
1 i
Yreal
ol H
Urnadel
1 1 1 1 T
u} 100 200 300 400 500 00

t[s]
Fig. 11. Elevation control a, = 1.7, a;, = 0.6

Reference tracking was slightly worse comparing to Fig. 9
but course of control signal was much smoother.

Courses of azimuth control of this experiment are presented
in Fig. 12.
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Fig. 12. Azimuth control a, = 1.7, o, = 0.6
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A satisfactory control behavior with a good reference
tracking was observed. The greatest difference between
nonlinear model and real-time plant was obtained for control
signal of the tail rotor where non-modeled behavior was
observed.

Control courses were compared not only by a visual
comparison of figures but also by quadratic criteria. The
results are presented in Table III.

TABLE III. COMPARISON OF CONTROL COURSES
Controller Elevation Azimuth
Z ¢’ z A’ Z e’ Z Au?
a, =2.7391
Simulation 1.2470e+7 0.0707 | 4.3537¢+8 0.0193
(Fig. 9, Fig. 10)
a,=1.7
Simulation 1.9766e+7 0.0206 | 4.5529e+8 0.0211
(Fig. 11, 12)
a,=2.7391
Real plant 1.3246e+7 3.4017et3 | 4.5479¢e+8 0.2325
(Fig. 9, Fig. 10)
a,=1.7
Real plant 1.9948e+7 42.2463 | 4.5542¢+8 0.1557
(Fig. 11, 12)

In real-time experiments, changing a value of the parameter
a, led to lower values of criterion which sums squares of
control signal differences while reference tracking criterion
remained almost unchanged.

VI. CONCLUSION

A model of nonlinear real time system Twin Rotor MIMO
System was derived using first principle modeling and then
enhanced to correspond better with the real plant.
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A simple robust control technique was presented and
successfully verified in real-time conditions. Further
improvement can be acquired by implementing better pole
placement. Usage of several different poles would lead to even
better control courses than the courses presented in the paper.

Further work will be focused on obtaining even better
performance of a robust control and subsequent comparison of
results of a robust control and an adaptive control. Moreover,
the presented model will be used to design and verify model
based predictive control of the Twin Rotor MIMO System.

REFERENCES

V. Bobal, J. Bohm, J. Fessl and J. Machacek. Digital Self-tuning
Controllers: Algorithms, Implementation and Applications. London:
Springer-Verlag, 2005.

(1]

G. P. Liu, Nonlinear identification and control — A neural network
Approach. London: Springer-Verlag, 2001.

L. Ljung, System identification: theory for the user. Upper Saddle River,
NJ: Prentice Hall PTR, 1999.

J. Mikle$ and M. Fikar. Process modelling, identification, and control.
Berlin: Springer-Verlag, 2007.

(4]
[5S] B. Codrons, Process modelling for control: a unified framework using
standard black-box techniques. London: Springer-Verlag, 2005.

[6] D.M. Himmelblau and J. B. Riggs, Basic principles and calculations in
chemical engineering. Upper Saddle River, N.J.: Prentice Hall, 2004.

[71 K.C. Tan and Y. Li, “Grey-box model identification via evolutionary
computing”, Control Engineering Practice, vol. 10, pp. 673—684, 2002.

[8] Twin Rotor MIMO System 33-007-PCI,

Feedback Instruments,
Crowborough, 2013.

M. Morari and E. Zafiriou. Robust process control. Englewood Cliffs,
N.J.: Prentice Hall, 1989.

R. S. Sanchez-Pefia and M. Sznaier. Robust systems theory and
applications. New York: Wiley, 1998.

Twin Rotor MIMO. Feedback [online]. Available: http://www.feedback-
instruments.com/products/education/control_instrumentation/
twin_rotor_mimo.

(9]
[10]

[11]

[12] Feedback, Twin Rotor Mimo System — Advanced Teaching Manual 1 —

33-007-4MS5.

D. Rotondo, F. Nejjari and V. Puig, “Quasi-LPV modeling,
identification and control of a twin rotor MIMO system”, Control
Engineering Practice, vol. 21, pp. 829-846, 2013.

A. Rahideha, M.H. Shaheed and H. J.C. Huijberts, “Dynamic modelling
of a TRMS using analytical and empirical approaches”, Control
Engineering Practice, vol. 16, pp. 241-259, 2008.

P. Chalupa, J. Ptikryl and J. Novék “Modelling of Twin Rotor MIMO
System”, Procedia Engineering, vol. 100, pp. 249-258, 2015.

R. Matusi “Robust Stability Analysis of Discrete-Time Systems with
Parametric Uncertainty: A Graphical Approach”, International Journal
of Mathematical Models and Methods In Applied Sciences, vol. 8, pp.
95-102, 2014.

R. Matusi and R. Prokop. “Control of Interval Systems Using 2DOF
Configuration”, Procedia Engineering, vol. 100, pp. 340 — 344, 2015.

[13]

[14]

[15]

[16]

[17]





