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Abstract– In this paper, we solve an important
problem in Systems Theory: We obtain the eigen-
value intervals of the infinite-point fractional bound-
ary value problem. Fractional Eivenvalue Problems
are important in Decentralized Systems, Decentral-
ized Control, Robotics, Distributed Systems, Electro-
magnetic Fields, Eleasticity Theory, 1-D and 2-D Sys-
tems etc. We prove its existence of at least one or two
positive solutions for the fractional equations arising
in control. The results can describe the corresponding
control system accurately.
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1 Introduction
System and control theory has long been a rich source
of problems for the numerical linear algebra commu-
nity. In some problems, conditions on analytic func-
tions of a complex variable are usually evaluated by
solving a special generalized eigenvalue problem. Our
principal contribution in this paper is to demonstrate
the eigenvalue problem of some fractional equations.
In last few decades, researchers found that fractional
order differential equations could model various ma-
terials more adequately than integer order ones and
provide an excellent tool for describing dynamic pro-
cess [1][2][3]. The fractional order models need frac-
tional order controllers for more effective control of
dynamic systems [4]. This necessity motivated re-
newed interest in various applications of fractional or-
der control. And with the rapid development of com-
puter performances, modeling and realization of frac-
tional order control systems also became possible and
much easier than before.

Fractional differentiation’s applications in auto-
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matic control is now an important issue for the inter-
national scientific community. The first Symposium
on Fractional Derivatives and Their Applications of
the 19th Biennial Conference on Mechanical Vibra-
tion and Noise was held from September 2 to Septem-
ber 6, 2003. 29 papers concerning Fractional Deriva-
tives and Their Applications in Automatic Control,
Automatic Control and System, Robotics and Dy-
namic Systems, Analysis Tools and Numerical Meth-
ods, Modeling and Thermal Systems were presented
in the symposium.

In the research of fractional order low pass fil-
ter, in order to achieve a proper controller, which is
neither conservative nor aggressive, a fractional or-
der low-pass filter 1

(Ts+1)α is introduced. By choosing
proper fractional orderα, the tradeoff between stabil-
ity margin loss and vibration suppression strength can
be adjusted in a clear-cut way.

We propose a generalization of the PID-
controller, which can be called thePIλDµ-controller
because it involves an integrator of orderλ and dif-
ferentiator of orderµ. The transfer function of such a
controller has the form:

Gc(s) =
U(s)
E(s)

= KP + KIs
−λ + KDsµ.

The equation for thePIλDµ-controller’s output in the
time domain is:

u(t) = KP e(t) + KID
−λe(t) + KDDµe(t).

Takingλ = 1 andµ = 1, we obtain a classical PID-
controller,λ = 1 andµ = 0 give a PI-controller,λ =
0 andµ = 1 give a PD-controller,λ = 0 andµ = 0
give a gain.

All these classical types of PID-controllers are the
particular cases of the fractionalPIλDµ-controller.
However, thePIλDµ-controller is more flexible and
gives a11 opportunity to better adjust the dynamical
properties of a fractional-order control system. We
can also see that the use of the fractional-order con-
troller leads to the improvement of the control of the
fractional-order system. The use of fractional-order
derivatives and integrals in control theory leads to bet-
ter results than integral-order approaches, in addition,
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it provides strong motivation for further development
of control theory in generalizing classical methods of
study and the interpretation of results.

In this paper, we solve an important problem in
control systems theory:

(φp(Dα
0+u(t)))′ + λf(u(t)) = 0, 0 < t < 1, (1)

u(0) = 0, u′(0) = 0, u(1) =
∞∑

i=1

αiu(ξi), (2)

whereφp(s) = |s|p−2s, p > 1, φq = (φp)−1, 1
p +

1
q = 1, 2 < α ≤ 3, Dα

0+ is the standard Riemann-
Liouville differentiation andαi ≥ 0, 0 < ξ1 <
ξ2 < · · · < ξi−1 < ξi < · · · < 1, (i =
1, 2, · · ·), with

∑∞
i=1 αiξ

α−1
i < 1, λ > 0, f(u) ∈

C([0,+∞), [0,+∞)).
In section 4, we consider the following problem

in control systems theory:

(φp(Dα
0+u(t)))′ + q(t)f(t, u(t)) = 0, 0 < t < 1,

(3)

u(0) = 0, u′(0) = 0, u(1) =
∞∑

i=1

αiu(ξi), (4)

whereφp(s) = |s|p−2s, p > 1, φq = (φp)−1, 1
p +

1
q = 1, 2 < α ≤ 3, Dα

0+ is the standard Riemann-
Liouville differentiation andαi ≥ 0, 0 < ξ1 < ξ2 <
· · · < ξi−1 < ξi < · · · < 1, (i = 1, 2, · · ·), with∑∞

i=1 αiξ
α−1
i < 1, q(t) ∈ C([0, 1], [0,+∞)), f may

besingular about both the time and space variables.

2 Preliminaries and Lemmas

Definition 1 [22] The Riemann-Liouville fractional
integral of orderα > 0 of a functionf : (0,+∞) →
R is given by

Iα
0+f(t) =

1
Γ(α)

∫ t

0
(t− s)α−1f(s)ds,

provided the right side integral is pointwise defined on
(0,+∞).

Definition 2 [22] The Riemann-Liouville fractional
derivative of order α > 0 of a function f :
(0,+∞) → R is given by

Dα
0+f(t) =

1
Γ(n− α)

(
d

dt
)n

∫ t

0

f(s)
(t− s)α+1−n

ds,

wheren = [α] + 1, provided the right side integral is
pointwise defined on(0,∞).

Lemma 3 [22] Let α > 0. If we assumeu ∈
C(0, 1)∩L(0, 1), then the fractional differential equa-
tion

Dα
0+u(t) = 0

has a unique solution

u(t) = c1t
α−1 + c2t

α−2 + · · ·+ cN tα−N ,

whereci ∈ R, i = 1, 2, · · · , N, N = [α] + 1.

Lemma 4 [22] Assume thatu ∈ C(0, 1) ∩ L(0, 1)
with a fractional derivative of orderα > 0 that be-
longs toC(0, 1) ∩ L(0, 1). Then

Iα
0+Dα

0+u(t) = u(t)+c1t
α−1+c2t

α−2+· · ·+cN tα−N

for someci ∈ R, i = 1, 2, · · · , N.

Lemma 5 Let y ∈ C[0, 1], and 2 < α ≤ 3, the
unique solution of

(φp(Dα
0+u(t)))′ + y(t) = 0, 0 < t < 1, (5)

u(0) = 0, u′(0) = 0, u(1) =
∞∑

i=1

αiu(ξi), (6)

is given by

u(t) =
∫ 1
0 G(t, s)φq

(∫ s
0 y(τ)dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 y(τ)dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

tα−1,

(7)
where

G(t, s) =





[t(1− s)]α−1 − (t− s)α−1

Γ(α)
,

0 ≤ s ≤ t ≤ 1,
[t(1− s)]α−1

Γ(α)
,

0 ≤ t ≤ s ≤ 1.
(8)

Proof: Integrating both sides of the equation (5), we
can get

φp(Dα
0+u(t)) = −

∫ t

0
y(s)ds,

hence

Dα
0+u(t) = −φq

(∫ t

0
y(s)ds

)
.
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From Lemma 4, it follows that

u(t) = − 1
Γ(α)

∫ t

0
(t− s)α−1φq

(∫ s

0
y(τ)dτ

)
ds

+ C1t
α−1 + C2t

α−2 + C3t
α−3,

condition (6) imply thatC2 = 0, C3 = 0.

C1 =
1

Γ(α)(1−
∞∑
i=1

αiξ
α−1
i )

∫ 1
0 (1− s)α−1φq

(∫ s
0 y(τ)dτ

)
ds

−

∞∑
i=1

αi

Γ(α)(1−
∞∑
i=1

αiξ
α−1
i )

∫ ξi
0 (ξi − s)α−1φq

(∫ s
0 y(τ)dτ

)
ds.

Therefore, the unique solution of problem (5), (6) is

u(t) = − 1
Γ(α)

∫ t

0
(t− s)α−1φq

(∫ s

0
y(τ)dτ

)
ds

+
1

Γ(α)(1−
∞∑
i=1

αiξ
α−1
i )

∫ 1

0
(1− s)α−1tα−1

φq

(∫ s
0 y(τ)dτ

)
ds

−

∞∑
i=1

αi

Γ(α)(1−
∞∑
i=1

αiξ
α−1
i )

∫ ξi

0
(ξi − s)α−1tα−1

φq

(∫ s
0 y(τ)dτ

)
ds

= − 1
Γ(α)

∫ t

0
(t− s)α−1φq

(∫ s

0
y(τ)dτ

)
ds

+
1

Γ(α)

∫ 1

0
(1− s)α−1tα−1φq

(∫ s

0
y(τ)dτ

)
ds

+

∞∑
i=1

αiξ
α−1
i

Γ(α)(1−
∞∑
i=1

αiξ
α−1
i )

∫ 1

0
(1− s)α−1tα−1

φq

(∫ s
0 y(τ)dτ

)
ds

−

∞∑
i=1

αi

Γ(α)(1−
∞∑
i=1

αiξ
α−1
i )

∫ ξi

0
(ξi − s)α−1tα−1

φq

(∫ s
0 y(τ)dτ

)
ds

=
1

Γ(α)

∫ t

0
[(1− s)α−1tα−1 − (t− s)α−1]

φq

(∫ s
0 y(τ)dτ

)
ds

+
1

Γ(α)

∫ 1

t
(1− s)α−1tα−1φq

(∫ s

0
y(τ)dτ

)
ds

+

∞∑
i=1

αit
α−1

Γ(α)(1−
∞∑
i=1

αiξ
α−1
i )

{∫ ξi
0 [(1− s)α−1ξα−1

i − (ξi − s)α−1]φq

(∫ s
0 y(τ)dτ

)
ds

+
∫ 1
ξi

(1− s)α−1ξα−1
i φq

(∫ s
0 y(τ)dτ

)
ds

}

=
∫ 1
0 G(t, s)φq

(∫ s
0 y(τ)dτ

)
ds

+

∞∑
i=1

αit
α−1

∫ 1
0 G(ξi, s)φq

(∫ s
0 y(τ)dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

.

This completes the proof.

Lemma 6 [40] Let 2 < α ≤ 3. The functionG(t, s)
defined by (8) has the following properties.
(i) For any(t, s) ∈ [0, 1]× [0, 1], G(t, s) ≥ 0;
(ii) Fix s ∈ [0, 1], then for anyt ∈ [0, 1],

G(t, s) ≤ G(t0, s) =
sα−1(1− s)α−1

Γ(α)[1− (1− s)
α−1
α−2 ]α−2

,

(9)
wheret0 =

s

1− (1− s)
α−1
α−2

∈ [s, 1).

(iii) Fix s ∈ [0, 1], then for anyt ∈ [0, 1], G(t, s) ≥
ρ(t)G(t0, s) ≥ ρ(t)tα−1G(t0, s), where

ρ(t) =

{
t(1− t), 1

2 ≤ t ≤ 1,
t2, 0 ≤ t ≤ 1

2 .
(10)

(iv) Fix s ∈ [0, 1], then for anyt ∈ [14 , 3
4 ],

G(t, s) ≥ 1
16

G(t0, s).

Lemma 7 [40] Let y ∈ C([0, 1], [0,+∞)), thenthe
solution u(t) of the boundary value problem (5),(6)
satisfies:

min
1
4
≤t≤ 3

4

u(t) ≥ 1
16
‖u‖. (11)

Lemma 8 [26] Let P be a cone in real Banach space
E, andΩ1, Ω2 two bounded open sets ofE centered
at the origin withΩ1 ⊂ Ω2. Assume thatT : P ∩
(Ω2\Ω1) → P is a completely continuous operator
such that, either
(i) ‖Tx‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1, and ‖Tx‖ ≥
‖x‖, x ∈ P ∩ ∂Ω2 or
(ii) ‖Tx‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1, and ‖Tx‖ ≤
‖x‖, x ∈ P ∩ ∂Ω2,
holds. ThenT has at least one fixed point inP ∩
(Ω2\Ω1).
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3 Eigenvalue intervals for problem
in control systems theory (1), (2)

The following assumptions will be used in this sec-
tion.
(H1) f ∈ C([0,+∞], [0,+∞)), and there exists
tn → 0 such thatf(tn) > 0, n = 1, 2, · · ·;
(H2) αi ≥ 0, 0 < ξ1 < ξ2 < · · · < ξi−1 < ξi <
· · · < 1, (i = 1, 2, · · ·), with

∑∞
i=1 αiξ

α−1
i < 1;

(H3) supb>0 min b
16
≤t≤b f(t) > 0;

(A1) lim
t→0

f(t)
φp(t) = ∞;

(A2) lim
t→∞

f(t)
φp(t) = ∞;

(A3) lim
t→0

f(t)
φp(t) = 0;

(A4) lim
t→∞

f(t)
φp(t) = 0.

Set

A =
∫ 1

0
G(t0, s)ds +

∞∑
i=1

αi
∫ 1
0 G(ξi, s)ds

1−
∞∑
i=1

αiξ
α−1
i

,

B =

∞∑
i=1

αi
∫ 3

4
1
4

G(ξi, s)(s− 1
4)q−1ds

1−
∞∑
i=1

αiξ
α−1
i

(
1
4
)α−1,

λ∗ =
1

φp(A)
sup
r>0

φp(r)
max
0≤t≤r

f(t)
,

λ∗∗ =
1

φp(B)
inf
r>0

φp(r)
min

b
16
≤t≤b

f(t)
.

In this section, letE = C[0, 1] be endowed with the
maximum norm

‖u‖ = max
0≤t≤1

|u(t)|,

thenE is a Banach space. LetP ⊂ E be defined as

P = {u ∈ E | u(t) ≥ 0, 0 ≤ t ≤ 1, min
1
4
≤t≤ 3

4

u(t) ≥ 1
16
‖u‖},

(12)
thenP is a cone inE.

If u ∈ E, u(t) ≥ 0, t ∈ [0, 1] and satisfies the
boundary value problem (1), (2), we callu is a non-
negative solution of the problem (1), (2).

If u is a nonnegative solution of boundary value
problem (1), (2) with‖u‖ > 0, then we callu is a
positive solution of the problem (1), (2).

Define an operatorT : P → C[0, 1] as

(Tu)(t) =
∫ 1
0 G(t, s)φq

(∫ s
0 λf(u(τ))dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 λf(u(τ))dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

tα−1,

(13)
whereG(t, s) is given by (8).

For r > 0, let

Ωr = {u ∈ P |‖u‖ < r},

∂Ωr = {u ∈ P |‖u‖ = r}.
Lemma 9 The operatorT : P → P is completely
continuous.

Proof: The proof is similar to Lemma 3.1 in [26], so
we omit it.

Lemma 10 Assume that(H1)− (H3) hold, and there
exist two positive constantsa, b such that

max
0≤t≤a

f(t) ≤ 1
λ

φp(
a

A
), min

b
16
≤t≤b

f(t) ≥ 1
λ

φp(
b

B
).

(14)
Then problem (1), (2) has at least one positive solution
u∗ ∈ P such that

min{a, b} ≤ ‖u∗‖ ≤ max{a, b}.

Proof: Without loss of generality, we assume thata <
b. Foru ∈ ∂Ωa, 0 ≤ t ≤ 1, one has

f(u(t)) ≤ 1
λ

φp(
a

A
),

then

(Tu)(t) ≤ ∫ 1
0 G(t0, s)φq

(∫ 1
0 λ 1

λφp( a
A)dτ

)
ds

+

∞∑
i=1

αi

1−
∞∑
i=1

αiξ
α−1
i

∫ 1

0
G(ξi, s)φq

(∫ 1

0
λ

1
λ

φp(
a

A
)dτ

)
ds

=
∫ 1
0 G(t0, s) a

Ads

+

∞∑
i=1

αi

1−
∞∑
i=1

αiξ
α−1
i

∫ 1

0
G(ξi, s)

a

A
ds

=
a

A




∫ 1

0
G(t0, s)ds +

∞∑
i=1

αi
∫ 1
0 G(ξi, s)ds

1−
∞∑
i=1

αiξ
α−1
i




=
a

A
A = a,
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this implies‖Tu‖ ≤ ‖u‖, for u ∈ ∂Ωa.
Foru ∈ ∂Ωb,

1
4 ≤ t ≤ 3

4 , there is

f(u(t)) ≥ 1
λ

φp(
b

B
),

so

(Tu)(t) ≥ ∫ 3
4
1
4

G(t, s)φq

(∫ s
1
4
λf(u(τ))dτ

)
ds

+

∞∑
i=1

αi

1−
∞∑
i=1

αiξ
α−1
i

∫ 3
4
1
4

G(ξi, s)φq

(∫ s
1
4
λf(u(τ))dτ

)
ds(1

4)α−1

≥

∞∑
i=1

αi

1−
∞∑
i=1

αiξ
α−1
i

∫ 3
4
1
4

G(ξi, s)φq

(∫ s
1
4
φp( b

B )dτ
)

ds(1
4)α−1

=
b

B




∞∑
i=1

αi
∫ 3

4
1
4

G(ξi, s)(s− 1
4)q−1ds

1−
∞∑
i=1

αiξ
α−1
i

(
1
4
)α−1




=
b

B
B = b,

this implies‖Tu‖ ≥ ‖u‖, for u ∈ ∂Ωb.
As a consequence of Lemma 7, there existsω∗ ∈
Ωb\Ωa, such thatTω∗ = ω∗. This meansω∗ is a
solution of problem (1), (2) anda ≤ ‖ω∗‖ ≤ b.
‖ω∗‖ ≥ a > 0 implies thatω∗(t) > 0 for t ∈ [14 , 3

4 ].
This combines with(H1) andω∗ = Tω∗, we can get
ω∗(t) > 0, 0 < t < 1.

Theorem 11 Assume that(H1) − (H3), (A1), (A2)
hold. Then for every0 < λ < λ∗, problem (1), (2)
has at least two positive solutions.

Proof: Let

q(r) = φp

(
r

A

)
1

max
0≤t≤r

f(t)
,

condition(H1) implies thatq : (0, +∞) → (0,+∞)
is continuous. So for0 < λ < λ∗, there exists0 <
r0 < +∞ such that

f(t) ≤ 1
λ

φp

(
r0

A

)
, t ∈ [0, r0].

On the other hand, since(A1) and (A2) hold, there
exist0 < b1 < r0 < b2 < +∞ such that

f(t)
φp(t)

≥ 1
λ

φp

(
4
B

)
, t ∈ [0, b1] ∪ [

b2

4
,+∞).

Therefore,

f(t) ≥ 1
λ

φp

(
b1

B

)
, t ∈ [

b1

4
, b1],

f(t) ≥ 1
λ

φp

(
b2

B

)
, t ∈ [

b2

4
, b2].

By the application of Lemma 10, the proof is com-
plete.

Theorem 12 Assume that(H1) − (H3), (A3), (A4)
hold. f(t) > 0 for t > 0. Then for everyλ∗∗ <
λ < +∞, problem (1), (2) has at least two positive
solutions.

Proof: Denote function

p(r) =
φp(r)

φp(B) min
r
16
≤t≤r

f(t)
.

It is obvious that the functionp : (0, +∞) →
(0,+∞) is continuous. Forλ∗∗ < λ < +∞, there
exists0 < r1 < +∞ such that

f(t) ≥ 1
λ

φp

(
r1

B

)
, t ∈ [

r1

4
, r1].

On the other hand, since condition(A3) holds, there
exists0 < a1 < r0 such that

f(t)
φp(t)

≤ 1
λφp(A)

, t ∈ (0, a1].

Then

f(t) ≤ φp(t)
λφp(A)

≤ 1
λ

φp

(
a1

A

)
.

By condition(A4), there existsr1 < a < +∞, such
that

f(t)
φp(t)

≤ 1
λφp(A)

, t ∈ [a,+∞).

DefineM = max
0≤t≤a

f(t). Let a2 > a such thata2 ≥
φq(Mλ)A. Then

f(t) ≤ 1
λ

φp

(
a2

A

)
, t ∈ [0, a2].

As an application of Lemma 10, the proof is complete.

4 Positive solutions of singular frac-
tional problem in control systems
theory (3), (4)

In this section, we consider the following singu-
lar fractional differential equation with infinite-point
boundary value conditions

(φp(Dα
0+u(t)))′ + q(t)f(t, u(t)) = 0, 0 < t < 1,
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u(0) = 0, u′(0) = 0, u(1) =
∞∑

i=1

αiu(ξi),

whereφp(s) = |s|p−2s, p > 1, φq = (φp)−1, 1
p +

1
q = 1, 2 < α ≤ 3, Dα

0+ is the standard Riemann-
Liouville differentiation andαi ≥ 0, 0 < ξ1 < ξ2 <
· · · < ξi−1 < ξi < · · · < 1, (i = 1, 2, · · ·), with∑∞

i=1 αiξ
α−1
i < 1, q(t) ∈ C([0, 1], [0,+∞)), f may

besingular about both the time and space variables.
We make the following conditions.

(L1) f ∈ C((0, 1)× (0,+∞), [0,+∞));
(L2) q(t) ∈ C((0, 1), [0,+∞)), andnot identically
zero on any subinterval of(0, 1);
(L3) for any positive constantsr1 < r2, there exists
a continuous functionφr1,r2 : (0, 1) → [0,+∞) such
that

∫ 1

0
q(t)φr1,r2(t)dt < +∞

andf(t, u) ≤ φr1,r2(t), 0 < t < 1.

Lemma 13 u(t) is a solution of the boundary value
problem (3), (4) if and only ifu(t) is a solution of the
following integral equation

u(t) =
∫ 1
0 G(t, s)φq

(∫ s
0 q(τ)f(τ, u(τ))dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 q(τ)f(τ, u(τ))dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

tα−1,

(15)
whereG(t, s) is given by (8).

Proof: As an immediate result of Lemma 5, we can
easily complete the proof, so we omit it.

Lemma 14 The solution u(t) of boundary value
problem (3), (4) satisfies

min
0≤t≤1

u(t) ≥ ρ(t)tα−1‖u‖. (16)

Proof: From Lemma 13, it follows that

‖u‖ ≤ ∫ 1
0 G(t0, s)φq

(∫ s
0 q(τ)f(τ, u(τ))dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 q(τ)f(τ, u(τ))dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

.

On the other hand,

u(t) ≥ ∫ 1
0 ρ(t)tα−1G(t0, s)φq

(∫ s
0 q(τ)f(τ, u(τ))dτ

)
ds

+ρ(t)tα−1

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 q(τ)f(τ, u(τ))dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

= ρ(t)tα−1

(∫ 1
0 G(t0, s)φq

(∫ s
0 q(τ)f(τ, u(τ))dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 q(τ)f(τ, u(τ))dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

)

= ρ(t)tα−1‖u‖,
which means that

min
0≤t≤1

u(t) ≥ ρ(t)tα−1‖u‖.

Let E = C[0, 1], thenE is a Banach space equipped
with the norm

‖u‖ = max
0≤t≤1

|u(t)|.

Denote

K = {u ∈ C[0, 1]|u(t) ≥ 0, min
0≤t≤1

u(t) ≥ ρ(t)tα−1‖u‖}.
(17)

It is obvious thatK is a cone.
Define an operatorT as follows:

(Tu)(t) =
∫ 1
0 G(t, s)φq

(∫ s
0 q(τ)f(τ, u(τ))dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 q(τ)f(τ, u(τ))dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

tα−1.

(18)
Let

Ω(r) = {u ∈ K : ‖u‖ < r},
∂Ω(r) = {u ∈ K : ‖u‖ = r}.

Lemma 15 Fix 2 < α ≤ 3, then

max
0≤t≤1

ρ(t)tα−1 = max
{

(
1
2
)α+1,

αα

(α + 1)α+1

}
,

whereρ(t) is given by (10).

Proof: For 1
2 ≤ t ≤ 1,

ρ(t)tα−1 = t(1− t)tα−1 = tα − tα+1,

d(ρ(t)tα−1)
dt

= αtα−1−(α+1)tα = tα−1(α−(α+1)t).
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If t = α
α+1 , then

d(ρ(t)tα−1)
dt

= 0,

If 1
2 ≤ t < α

α+1 , then
d(ρ(t)tα−1)

dt
> 0,

If α
α+1 < t ≤ 1, then

d(ρ(t)tα−1)
dt

< 0.

So for 1
2 ≤ t ≤ 1, there is

max
1
2
≤t≤1

ρ(t)tα−1 = ρ(
α

α + 1
)(

α

α + 1
)α−1 =

αα

(α + 1)α+1
,

for 0 ≤ t ≤ 1
2 , ρ(t)tα−1 = t2tα−1 = tα+1, so

max
0≤t≤ 1

2

ρ(t)tα−1 = max
0≤t≤ 1

2

tα+1 = (
1
2
)α+1.

The proof is completed.

Lemma 16 Suppose that(L1)− (L3) hold. ThenT :
K → K is a completely continuous operator.

We give the following height function to control the
growth of nonlinearity.

ϕ(t, r) = max{f(t, u) : ρ(t)tα−1r ≤ u ≤ r},
ψ(t, r) = min{f(t, u) : ρ(t)tα−1r ≤ u ≤ r}.

Theorem 17 Suppose that(L1) − (L3) hold. Fur-
thermore, there exist two positive real numbersa < b
such that one of the following conditions is satisfied:

(a1)

∫ 1
0 G(t0, s)φq

(∫ s
0 q(τ)ϕ(τ, a)dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 q(τ)ϕ(τ, a)dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

≤ a

and

+∞ > max
{

(
1
2
)α+1,

αα

(α + 1)α+1

}

∫ 1
0 G(t0, s)φq

(∫ s
0 q(τ)ψ(τ, b)dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 q(τ)ψ(τ, b)dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

≥ b;

(a2)

+∞ > max
{

(
1
2
)α+1,

αα

(α + 1)α+1

}

∫ 1
0 G(t0, s)φq

(∫ s
0 q(τ)ψ(τ, a)dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 q(τ)ψ(τ, a)dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

≥ a

and
∫ 1
0 G(t0, s)φq

(∫ s
0 q(τ)ϕ(τ, b)dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 q(τ)ϕ(τ, b)dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

≤ b.

Then the problem (3),(4) has at least one positive so-
lution u∗ ∈ K such thata ≤ ‖u∗‖ ≤ b.

Proof: We only prove the case(a1), similarly, we can
prove the case(a2).
If u ∈ ∂Ω(a), then‖u‖ = a andρ(t)tα−1a ≤ u(t) ≤
a, 0 ≤ t ≤ 1.
The definitionϕ(t, a) implies that

f(t, u(t)) ≤ ϕ(t, a), 0 < t < 1,

furthermore,

‖Tu‖ ≤ ∫ 1
0 G(t0, s)φq

(∫ s
0 q(τ)ϕ(τ, a)dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 q(τ)ϕ(τ, a)dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

≤ a = ‖u‖.
If u ∈ ∂Ω(b), then‖u‖ = b andρ(t)tα−1b ≤ u(t) ≤
b, 0 ≤ t ≤ 1.
The definitionψ(t, b) implies that

f(t, u(t)) ≥ ψ(t, b), 0 < t < 1,

furthermore,

‖Tu‖ = max
0≤t≤1

{∫ 1
0 G(t, s)φq

(∫ s
0 q(τ)f(τ, u(τ))dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 q(τ)f(τ, u(τ))dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

tα−1
}

≥ max
0≤t≤1

∫ 1
0 ρ(t)tα−1G(t0, s)φq

(∫ s
0 q(τ)ψ(τ, b)dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 q(τ)f(τ, u(τ))dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

= max
{

(
1
2
)α+1,

αα

(α + 1)α+1

}

∫ 1
0 G(t0, s)φq

(∫ s
0 q(τ)ψ(τ, b)dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 q(τ)ψ(τ, b)dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

≥ b = ‖u‖.
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From Lemma 8, it follows that the operatorT has a
fixed pointu∗ ∈ Ω(b)\Ω(a). Thusa ≤ ‖u∗‖ ≤ b,
sinceu∗ ≥ ρ(t)tα−1‖u‖ ≥ aρ(t)tα−1 > 0, 0 < t <
1, we deduce thatu∗ is a positive solution.

Theorem 18 Suppose that(L1)−(L3) hold. Further-
more, there exist three positive real constantsa < b <
c such that one of the following conditions is satisfied:

(b1)

∫ 1
0 G(t0, s)φq

(∫ s
0 q(τ)ϕ(τ, a)dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 q(τ)ϕ(τ, a)dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

≤ a

+∞ > max
{

(
1
2
)α+1,

αα

(α + 1)α+1

}

∫ 1
0 G(t0, s)φq

(∫ s
0 q(τ)ψ(τ, b)dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 q(τ)ψ(τ, b)dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

> b

and
∫ 1
0 G(t0, s)φq

(∫ s
0 q(τ)ϕ(τ, c)dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 q(τ)ϕ(τ, c)dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

≤ c
;

(b2)

+∞ > max
{

(
1
2
)α+1,

αα

(α + 1)α+1

}

∫ 1
0 G(t0, s)φq

(∫ s
0 q(τ)ψ(τ, a)dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 q(τ)ψ(τ, a)dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

≥ a

∫ 1
0 G(t0, s)φq

(∫ s
0 q(τ)ϕ(τ, b)dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 q(τ)ϕ(τ, b)dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

< b

and

+∞ > max
{

(
1
2
)α+1,

αα

(α + 1)α+1

}

∫ 1
0 G(t0, s)φq

(∫ s
0 q(τ)ψ(τ, c)dτ

)
ds

+

∞∑
i=1

αi
∫ 1
0 G(ξi, s)φq

(∫ s
0 q(τ)ψ(τ, c)dτ

)
ds

1−
∞∑
i=1

αiξ
α−1
i

≥ c

.

Then the problem (3),(4) has at least two positive solu-
tion u∗1, u∗2 ∈ K such thata ≤ ‖u∗1‖ < b < ‖u∗2‖ ≤ c.

5 Conclusion
In this paper we have examined some well known
problems in systems and control theory. Fractional
eigenvalue problems are important Problems in Au-
tomatic Control, Electromagnetic Fields 1-D and 2-D
Systems. We have demonstrated that many of these
problems can be solved with resorting to generalized
eigenvalue problems. We prove its existence of at
least one or two positive solutions for the fractional
eigenvalue problems arising in control. As far as we
know, no work has been done to get existence and pos-
itive solutions of the infinite-point fractional eigen-
value problems with p-Laplacian. The aim of this pa-
per is to fill the gap in the relevant literatures. Such
investigations will provide an important platform for
gaining a deeper understanding of our environment.
Some relevant studies with Engineering Applications
can be found in [41],[42]
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