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Eigenvalue intervals for infinite-point fractional boundary value
problem and application in Systems Theory

Baiyan Xu Yitao Yang

Abstract—In this paper, we solve an important
problem in Systems Theory: We obtain the eigen-
value intervals of the infinite-point fractional bound-
ary value problem. Fractional Eivenvalue Problems
are important in Decentralized Systems, Decentral-
ized Control, Robatics, Distributed Systems, Electro-
magnetic Fields, Eleasticity Theory, 1-D and 2-D Sys-
tems etc. We prove its existence of at least one or two
positive solutions for the fractional equations arising
in control. The results can describe the corresponding
control system accurately.

KeyWords-Systems Theory; Control; Eigenvalue in-
tervals; Infinite-point fractional boundary value prob-
lem; Positive solutions; Fixed point theorem.

1

System and control theory has long been a rich source
of problems for the numerical linear algebra commu-
nity. In some problems, conditions on analytic func-
tions of a complex variable are usually evaluated by
solving a special generalized eigenvalue problem. Our
principal contribution in this paper is to demonstrate
the eigenvalue problem of some fractional equations.
In last few decades, researchers found that fractional
order differential equations could model various ma-
terials more adequately than integer order ones and
provide an excellent tool for describing dynamic pro-
cess [1][2][3]. The fractional order models need frac-
tional order controllers for more effective control of
dynamic systems [4]. This necessity motivated re-
newed interest in various applications of fractional or-
der control. And with the rapid development of com-
puter performances, modeling and realization of frac-

Introduction

matic control is how an important issue for the inter-
national scientific community. The first Symposium
on Fractional Derivatives and Their Applications of
the 19th Biennial Conference on Mechanical Vibra-
tion and Noise was held from September 2 to Septem-
ber 6, 2003. 29 papers concerning Fractional Deriva-
tives and Their Applications in Automatic Control,
Automatic Control and System, Robotics and Dy-
namic Systems, Analysis Tools and Numerical Meth-
ods, Modeling and Thermal Systems were presented
in the symposium.

In the research of fractional order low pass fil-
ter, in order to achieve a proper controller, which is
neither conservative nor aggressive, a fractional or-
der low-pass fiIteW is introduced. By choosing
proper fractional orded, the tradeoff between stabil-
ity margin loss and vibration suppression strength can
be adjusted in a clear-cut way.

We propose a generalization of the PID-
controller, which can be called thel* D*-controller
because it involves an integrator of ordeland dif-
ferentiator of ordey:. The transfer function of such a
controller has the form:

U(s)

— Kp+ K;s 4+ Kpst.
E(s) pt+Kys T+ Kps

Ge(s) =

The equation for thé&* D#-controller’s output in the
time domain is:

u(t) = Kpe(t) + K;D e(t) + KpDFe(t).

Taking A = 1 andp = 1, we obtain a classical PID-
controller,A = 1 andu = 0 give a Pl-controllerh =
0 andyu = 1 give a PD-controllerA = 0 andu = 0
give a gain.

All these classical types of PID-controllers are the

tional order control systems also became possible and particu|ar cases of the fraction&I* D*-controller.

much easier than before.
Fractional differentiation’s applications in auto-
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However, thePI* D#-controller is more flexible and
gives all opportunity to better adjust the dynamical
properties of a fractional-order control system. We
can also see that the use of the fractional-order con-
troller leads to the improvement of the control of the
fractional-order system. The use of fractional-order
derivatives and integrals in control theory leads to bet-
ter results than integral-order approaches, in addition,
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it provides strong motivation for further development
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Lemma3 [22] Let « > 0. If we assumeu €

of control theory in generalizing classical methods of C(0,1)NL(0, 1), then the fractional differential equa-

study and the interpretation of results.
In this paper, we solve an important problem in
control systems theory:

(¢p(Dgyu(t)) + Af(u(t) =0, 0<t<1, (1)

w(0) =0, w(0)=0, u(l) =3 o). @)
=1

whereg,(s) = [s[P7%s,p > 1,04 = (6p) ", 5 +
% = 1,2 < a < 3, Df, is the standard Riemann-
Liouville differentiation anda; > 0, 0 < & <
£ < - < &G < & < < L@@ =
1,2,- - ), with %, ;€1 < 1,A > 0, f(u) €
C([0,+00), [0, +00)).

In section 4, we consider the following problem
in control systems theory:
(p(Dgyu(t)) +qt) f(t,u(t) =0, 0<t<1,

N ®
u(0) =0, /(0) =0, u(l) =Y oqu(&). (@
=1

whereg,(s) = |s|P72s,p > 1,¢, = (d)p)_l,% +

% = 1,2 < a < 3, D§, is the standard Riemann-

Liouville differentiation andy; > 0, 0 < & < & <
<G <G << L =1,2,--4), with

Yy il < 1,q(t) € C((0,1],[0,+00)), f may

besingular about both the time and space variables.

2 Preliminaries and Lemmas

Definition 1 [22] The Riemann-Liouville fractional
integral of ordera: > 0 of a functionf : (0, 4+o00) —
R is given by

1 t a—1
) | =9 ss)as,

I(?Jrf(t) =
provided the right side integral is pointwise defined on
(0, +00).

Definition 2 [22] The Riemann-Liouville fractional
derivative of ordera > 0 of a function f
(0,4+00) — R is given by

«Q — 1 d n ! f(S)
Do+f(t)*m(£) /0 (t_s)md&

wheren = [a] + 1, provided the right side integral is
pointwise defined of0, o).
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tion
Dg,u(t) =0

has a unique solution

u(t) = et et 2 4 et
wherec; € R, i=1,2,--- N, N =[a] + 1.
Lemma 4 [22] Assume thai. € C(0,1) N L(0,1)
with a fractional derivative of orderx > 0 that be-
longs toC'(0,1) N L(0,1). Then
1§, D u(t) = ut)+ert™  eat® 24 eyt

forsomec; € R, i =1,2,--- N.

Lemma5 Lety € C[0,1], and2 < a < 3, the
unique solution of

(9p(Dgu(t))) + y(t) =0, (5)

0<t<l,

W(0) =0, () =0, u(l)=3 awu(&), (©)
=1

is given by

u(t) = [LG(t, )9, ( I y(T)dT> ds

S o i GlE 5)4 (fg’ yde) ds
+ =1 >0 ta717
1— % aig?™!
=1

™
where
U )
F(a) 0<s< ,t <1
8 —_ )
G = - s
M)
0<t<s<1.
®)

Proof: Integrating both sides of the equation (5), we
can get

p(Dfu(t) =~ [ y(s)as,

hence

D) = —ou [ w(s)as ).
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From Lemma 4, it follows that
1 t s
ut:——/ t—s)* ! </ TdT)dS
()= ~ray f, =96 ], v
4 Clta_l 4 Czta_2 4 Cgta_3,

condition (6) imply thatC; = 0,C5 = 0.
1

I(a)(1 - ij €271
0= )0, y(rar ) ds

(&%)

C =

8

I
—

1

P(a)(1— 3 i€ ™)
=1
[6 (6 — 5)° 14, ( I3 y(T)dT> ds.

Therefore, the unique solution of problem (5), (6) is

u(t) = _F(la) /Ot(t —5)* g, </OS y(T)dT)ds
1

+ io / (1 _ S)a—lta—l
D(e)(1— 3 a0
i=1

bq <f(‘)s y(T)dT) ds

_ Z=1OO /gi (gz _ S)a—ltoc—l
D(@)(1 = 3 e ™) 70
i=1

bq <f(‘)s y(T)dT) ds
AT AR S

bq <f(‘)s y(T)dT) ds
+I‘(104) /tl(l — s)o‘_lta_lgbq (/OS y(T)dT)ds
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Oéita_l

Ngks

s
Il
—

+ 5
M)l - £ aig?™)

{10 = 907167 = (6 - 9290, wryar ) as
A= e (J5 y(rdr ) ds)
— LGt 5o, ( Ik yde) ds

S5 it i Gs)o (U r)ar ) ds

+ =
1-— Z:l Oézfiail
1=

This completes the proof.

Lemma 6 [40] Let 2 < a < 3. The functionG(¢, s)
defined by (8) has the following properties.

(1) Forany(t,s) € [0,1] x [0,1], G(t,s) > 0;

(1) Fix s € [0, 1], then for anyt € [0, 1],

Safl(l _ S)afl

G(t,s) < G(to,s) = a—1 )
[(a)[1 = (1 —s)e=2]a2
) ©
wherety = —— 1 € [S, 1)
1—(1—s)a>2

(#i1) Fix s € [0, 1], then for anyt € [0, 1], G(t,s) >
p(t)G(to,s) > p(t)t* G to, s), where

1
> — .
G(t,s) > 16G(t0,5)

Lemma 7 [40] Let y € C([0,1], [0, +0c0)), thenthe
solutionu(t) of the boundary value problem (5),(6)
satisfies:

(11)

Lemma 8 [26] Let P be a cone in real Banach space
E, and ), Q, two bounded open sets Bfcentered
at the origin withQ; C 5. Assume thafl” : P N
(Q2\Q;) — P is a completely continuous operator
such that, either

() Tzl < |z], #e€Pnoy, and |Ta| >
|z, =€ PNoQa or

(1) || Tzl > ||z||, =€ PNoQy, and|Tz| <
|z, x & PnoQs,

holds. Thenl' has at least one fixed point i N
(22\€21).
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3 Eigenvalue intervals for problem Define an operatdf : P — C[0,1] as

in control systems theory (1), (2)
(Tu)(0) = I} Glt,9)0q i Mulr))ar ) ds

The following assumptions will be used in this sec- 00 1

tion. % [} (6,900, J§ A (u(r)r )ds
(Hy) f € C([0,40¢],[0,+0)), and there exists += = oL,
t, — 0 such thatf(t,) > 0,n = 1, 2, 1— > ot
(gaZ20,0<£1<§2< <G <& < =1

) (13)
- <L (= 1,2, with 3532, angf T < 13 whereG(t, s) is given by (8).

(H3) Supb>0 mm%Stsb F(t) > 0; Forr > 0, let
(A1) lim L. = oo;
=0 d’f’ Q= {u € PlJul <r},
(A2) thm ¢p = 00;
(Asz) }5% ¢>p t) = 0; o = {u € Plljul} =r}-
(A4) lim —o. Lem_ma9 The operatorT’ : P — P is completely
t—00 ¢p ) continuous.
Set
Proof: The proof is similar to Lemma 3.1 in [26], SO
Z o fO G(&, s)ds we omit It.
A= / G(to, s)ds + = — Lemma 10 Assume thatH;) — (H3) hold, and there
1- Z a;§; exist two positive constants b such that
1 a 1 b
0 ax f(t) < =¢pp(—), —dp(—=).
> o [} Gl&s)(s — hyrtds | 32, 10 = 3oy i J0 2 39(5)
B="= < (37 (14)
1-3 aiif“_l 4 Then problem (1), (2) has at least one positive solution
' u* € P such that
A — 1 sup dp(r) min{a, b} < ||u*|| < max{a,b}.
¢p(A) r>0 &?}rf( )’

Proof: Without loss of generality, we assume that
b. Foru € 9Q,, 0 <t <1, o0one has
A — 1 inf ¢p(r)

4(B) >0 min F(0) F(u(t) < o

In this section, le? = C|0, 1] be endowed with the  then

maximum norm > X )
(TU)(t) < fo t07 (bq (fo )\)\¢p(z) )dS

lull = max fu(t), S
4+ /Gél, qf)q(/)\gbp dT) s

thenF is a Banach space. Lét C E be defined as 1-— Z ;& !
P Elu(t)>0, 0<t<1, mi =l (to’)ds

{ueBlut)>0, 0<t< ,;;%u()_mnuu} ST )

(12) 2 [ s) s

thenP is a cone ink. 1— > et 70 A

If we E, u(t) >0, t € [0,1] and satisfies the =1
boundary value problem (1), (2), we callis a non- Z Q; fo G(&;,8)ds
negative solution of the problem (1), (2). / G(to,s)ds +*

If u is a nonnegative solution of boundary value
problem (1), (2) with||u|| > 0, then we callu is a
positive solution of the problem (1), (2). = A=a,

1_20(16& 1
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this implies||Tu|| < ||u||, for u € 0€,.
Foru € 9, 1 <t < 2 thereis

1 b
Fu®) = 5 0p(5),

SO

(Tu)(®) 2 [} Gt )0, (i M u(r)dr) ds

[e)
2
_|_l:—
X a—1

1=

[ G600, (Ji A (ulr))dr) ds(hy!
> o
>

1— 3 g

=1

F G690, (17 dptB1ar) ashye
(5o} Gl6s)(s - s |

=5 GO
o0
b 1- 3 aig! !
b i=1
= —B =
B )

this implies||Tu|| > |Ju]|, for u € 0.

As a consequence of Lemma 7, there exists €

Q0 \Qq, such thatTw* = w*. This meansv* is a
solution of problem (1), (2) and < |jw*|| < b.

|w*|| > a > 0 implies thatw*(t) > 0 for ¢t € [1, 3].

This combines with ;) andw* = Tw*, we can get
wi(t) > 0,0 <t <1

Theorem 11 Assume that Hy) — (Hs), (A1), (As2)
hold. Then for every < A < A*, problem (1), (2)
has at least two positive solutions.

Proof: Let

1
max f(t)’

0<t<r

atr) =, (5)

condition(H;) implies thatg : (0, +00) — (0, +00)
is continuous. So fob < A < A\*, there exist®) <
ro < 400 such that

F(t) < §¢p Ci) . te[0,r).

On the other hand, sindegd;) and (As) hold, there
exist0 < by < rg < by < +o00 such that

) 1, (4 by
op(t) - ngp (B> , t€[0,b]U [Z,—l-oo).
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Therefore,

o (). re il

1
X
102 530 () el

By the application of Lemma 10, the proof is com-
plete.

Theorem 12 Assume that{H,) — (Hs), (43), (A4)
hold. f(t) > 0 for ¢ > 0. Then for every\** <

A < +oo, problem (1), (2) has at least two positive
solutions.

Proof: Denote function

p(r) = %l7)

¢p(B) min f(t)

.
16 St<r

It is obvious that the functiorp : (0,+c) —
(0, +00) is continuous. Fon*™* < A < +oo, there
exists0 < rq < +oo such that

1

02560 (). te

On the other hand, since conditigds) holds, there
exists0 < a1 < rg such that

1
ont) = Nopl(A)’

t e (O, al].

Then o) .
al
0= 35,00 = 3% (%)

By condition(A4), there exists; < a < 400, such

that 1) .
< , t€la,+00).
Gplt) = Agyay 10+
Define M = Jnax f(t). Letas > a such thaiay >

¢q(MA)A. Then

f@t) < %¢p ((Z) .t €0, as).

As an application of Lemma 10, the proof is complete.

4 Positive solutions of singular frac-
tional problem in control systems
theory (3), (4)

In this section, we consider the following singu-

lar fractional differential equation with infinite-point
boundary value conditions

(6p(Dgyu(t)) + ) f(t,u(t) =0, 0<t<1,
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u(0)

0, 4/(0)=0, u(l) = Zaiu(&),
i=1

whereg,(s) = |s|P72s,p > 1,9, = (¢p)*1,% +

% = 1,2 < a < 3, Df, is the standard Riemann-

Liouville differentiation andy; > 0, 0 < & < & <
<G <& << 1, (i = 1,2, - +), with
2yt < 1,q(t) € C([0,1],[0, +00)), f may

besingular about both the time and space variables.

We make the following conditions.

(L1) f € C((0,1) x (0, +00), [0, +00));

(L2) q(t) € C((0,1),]0,400)), andnot identically

zero on any subinterval @b, 1);

(Ls) for any positive constants; < 2, there exists

a continuous functiog,, ,, : (0,1) — [0, 4o00) such

that

1
/0 4(E)bry 1, (£)dt < +o00
andf(t,u) < ¢p r(t), 0 <t <1

Lemma 13 u(¢) is a solution of the boundary value
problem (3), (4) if and only if.(¢) is a solution of the
following integral equation

u(t) = I} Glt,9)0, (15 a(r) 7 r,u(r)ar ) ds
5 i i Gl )6 (3 alr) 7 () ) ds

7 ta_l
X a—1
1=
i=1

+

Y

(15)
whereG(t, s) is given by (8).

Proof: As an immediate result of Lemma 5, we can
easily complete the proof, so we omit it.

Lemma 14 The solutionu(t) of boundary value
problem (3), (4) satisfies

min u(t) > p(t)t" " ul|.

0<t<1 (16)

Proof: From Lemma 13, it follows that

Jul < 13 Glto.5)6 (J; a(r)s (. u(r))ar ) ds
gﬁl a; [y G(&i,8)dg (fos q(r) f(r, u(q—))d7> ds

X 1
1— > &
i=1

_|_
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On the other hand,

u(t) = [} o0 G, 5)6 (I a() (7)) ) s
> i i G651y 7 alr) (r ulr))dr ) ds

—11i=1
+p(t)tett = .
L= 3 a&f™

=1

(0 (13 Gt )6y (I alr) 1 u(r)ar ) ds
0 I3 616,904 (i () (7. u(r))ir ) s
1 5 agr! )
1=1

g =

= p(t)t* ul,
which means that

i £) > o)t |l
021%11“( ) > p(t) |

Let E = C]0, 1], thenE is a Banach space equipped
with the norm

Jull = . [u®)]

Denote

K ={uc C[0,1][u(t) >0, min u(t) > p(t)t**|ull}.

0<t<1
17)

It is obvious thatK is a cone.

Define an operatdr” as follows:

(Tu)(t) = J3 6(t.5)6 (I3 a(r) f(rou(r))dr ) ds
13:%1 o fol G(&i,5)04 (fos q(7) f(, U(T))d7'> ds

t&—l
X a—1 ’
1-— Z aifi
i=1

_l’_

(18)
Let
Qry={ue K: |ul| <r},

or)={ue K: |ul|=r}.
Lemma 15 Fix 2 < o < 3, then

1
Joax p(t) max {(2)

ol
wherep(t) is given by (10).
Proof: For} <t <1,

p(t)te L = (1 — )t = ¢ — oL,

d(p(t)t*")

7 = at* ' —(a+1)t* = t* " Ha—(at1)t).
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thenw

If £ = -2, o

1
If s <t< a—ﬂ,then

d
If a%l <t <1,then
Sofori <t <1,thereis

« ) o
a+1" a+1

)a—l

max p(t)t*! = p

l<i<i (a+ 1)atl’

for 0 <t< % p(t)ta_l _ tQtOé—l — toz-i—l’ so

1
max p(t)t* ! = max tott = (o)t
o<t<l

The proof is completed.

Lemma 16 Suppose thatlL;) — (Ls3) hold. Therl :
K — K is a completely continuous operator.

We give the following height function to control the
growth of nonlinearity.

o(t,r) = max{f(t,u) :
Y(t,r) = min{ f(t,u) : p(t)t*tr <u<r}.

Theorem 17 Suppose thatl,) — (Ls) hold. Fur-
thermore, there exist two positive real numbers b
such that one of the following conditions is satisfied:

fol G(to, s)dq (fos q(1)e(T, a)d7> ds
X i Jy 66 5)64 (I3 alr)e(r.ayir ) ds

+= = .
L— 3 a&y™
=1

p(H)t* r <u <7},

(a1)

<a

and

1 o o
oo > ma{ ()", 1=y}
fol G(to, s)bq (fos q(m)Y(r, b)dr) ds
i Qg fol G (&iy8)0q (f(f q(T)(T, b)d7-> ds

+= — .
1= &)™
=1

+00 > max {(;)O‘“,
J1 Glto, 5)éq (fg a(r
S ai i G651y (Ji a(r) (s a)dr ) ds

(Oé +a1)a+1 }
Y(T, a)d7’> ds
(a2)

4= >a

s a—1
-3 aifz‘
=1
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and
Ji Gt )6 (I a(etr b)dT) ds
5 a1 i Gles ) (Ji o)t by ) ds
1- 3 o™

1= <b.

Then the problem (3),(4) has at least one positive so-
lution v* € K such thate < |[u*|| <.

Proof: We only prove the casg ), similarly, we can
prove the caséus).
If u € 92(a), then||u|| = a andp(t)t*la < u(t) <
a, 0<t<1.
The definitiony(t, a) implies that

f(tu(t) < ot a),

furthermore,
ITull < J3 Glto.s)64 (3 alr)e(r,a)dr )ds
% o Iy 66 5)6 (I3 alr)e(rayr )ds

=1
+ X a—1
1 — Zl Oéifi
1=

0<t<l,

<a=ul.

If u € OQ(b), then||lu|| = bandp(t)t*1b < u(t) <
b, 0<t<Il.
The definitiomy) (¢, b) implies that

F(tut) > (t), 0<t<1,
furthermore,

7l = g { 2 Gt 9004 (i atr) s rutr))ar ) ds
% i [} (6900, ()1 ur))ar ) ds

+l— ~ toz—l}
1— > !
=1
> g 3 0060, )a alr ot i ) s

% i fy 66 9)6 (I3 a(r) f(r,u(r))dr ) ds
+z:1

X a—1
1- Z aiéi
=1

-
[LGto, 5), ( [ (), b)dT) ds

5 i i G )6 alr) ot e ) ds
+z:1

X a—1
1-— Z Oéigi
=1

> b= Jull.
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From Lemma 8, it follows that the operatér has a
fixed pomtu € Q0)\Qa). Thusa < |Ju*|| < b,
sinceu® > p(t)t* u| > ap(t)t* 1 >0, 0 <t <

1, we deduce that* is a positive solution.

Theorem 18 Suppose thatL;)—(Ls) hold. Further-
more, there exist three positive real constants b <

¢ such that one of the following conditions is satisfied:

fol G(to, s)¢q (fos q(T)e(T, a)dT)ds
i% i fy G(&i, 8)oq (fos q(m)e(T, a)d7> ds

+z:1 - — <a
1— 21 a;§;
1=

(b1)

a1 o
+00 > max (5) s W

S Glto, 5o, (f; g (r, b)dT) ds
Z Q fO 517 qu <f(f Q(T)IZJ(T, b)dT) ds

+= = >b
1— zl €0
1=

and
Jo G(to, s)oq (fos q(T)p(T, C)dT) ds
Z o7 fo (&, s ¢q<[o )d7'>d :

+5= 5 sc
1= > !
=1

1ot a”
+00 > max (5) s m

Jo Glto, s %(fo Ta)dr>ds
%} 66,9004 a(r)iAra)dr ) ds

+=1 >a

X 1
1= > i
i=1

(b2)

S Gto, s ¢q(/0 a(7)p (T,b)dT)ds
Zazfo G(&ir8)¢ (f q(T)go(T,b)dT)ds

+= <b
1— E o1
=1

and

1 am o
+00 > max (5) s m

fol G(to, )qbq(fo q(T)Y(T, c)dn-)ds
5 i i G516 alr)o(r. ) ) ds

+= R >c
1-— Zlalfl
1=
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Then the problem (3),(4) has at least two positive solu-
tionu},u; € K suchthat < |luj|l <b < ||u3]| < e

5 Conclusion

In this paper we have examined some well known
problems in systems and control theory. Fractional
eigenvalue problems are important Problems in Au-
tomatic Control, Electromagnetic Fields 1-D and 2-D
Systems. We have demonstrated that many of these
problems can be solved with resorting to generalized
eigenvalue problems. We prove its existence of at
least one or two positive solutions for the fractional
eigenvalue problems arising in control. As far as we
know, no work has been done to get existence and pos-
itive solutions of the infinite-point fractional eigen-
value problems with p-Laplacian. The aim of this pa-
per is to fill the gap in the relevant literatures. Such
investigations will provide an important platform for
gaining a deeper understanding of our environment.
Some relevant studies with Engineering Applications
can be found in [41],[42]
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