
  
Abstract—This paper deals with the analytical derivation of 

detection probability of power system harmonics affected by 
frequency instability. Indeed, when the number of data samples is 
small in order to limit the computational burden (e.g., in continuous 
real-time monitoring of voltage/current spectra for power quality 
purposes), contribution of additive noise reduces significantly the 
detection probability of harmonics in the discrete Fourier transform 
domain. If the waveform is affected by frequency instability 
(emphasized for higher order harmonics), the lack of synchronism 
between harmonics and sampling frequencies results in a further 
reduction of detection probability due to the attenuation effect 
introduced by the window used against spectral leakage. The 
analytical model derived in the paper takes into account both additive 
noise and frequency instability to the aim of evaluating detection 
probability of harmonics. Analytical results are validated by means of 
numerical simulations.  
 

Keywords—Additive noise, discrete Fourier transform, Harmonic 
analysis, time-varying frequency.  

I. INTRODUCTION 
ONTINUOUS real-time monitoring of frequency spectra of 
voltage and current waveforms is an important issue in 

modern power systems characterized by a widespread use of 
nonlinear and switched loads and sources [1]-[2]. In general 
terms, digital techniques are well-suited to the purpose of 
spectra evaluations since many sophisticated algorithms have 
been proposed in the technical literature for processing 
waveforms affected by critical characteristics such as time-
varying frequency or amplitude [3]-[4]. However, the use of 
sophisticated algorithms contrasts with the need of continuous 
real-time monitoring because of the requested computational 
burden. Typically, computational burden can be controlled by 
limiting the number of samples in each waveform acquisition 
for analog-to-digital (A/D) and time-to-frequency conversion 
through the discrete Fourier transform (DFT). It is well known 
that the main drawback of a small number of acquisition 
samples is to emphasize the impact of additive noise always 
present in electrical measurements. High noise levels in the 
frequency domain can result in the lack of detection of 
harmonic components in the waveform under analysis. This 
phenomenon is further emphasized in the case of waveforms 
affected by time-varying frequency (or frequency instability) 
because the lack of synchronism between the waveform 
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harmonics and the sampling frequency results in 
underestimation of the measured harmonic amplitude [4]. 
Even in the case of a closed-loop measurement system [1] the 
phenomenon can be significant since a small frequency 
instability in the waveform fundamental frequency is 
magnified by the harmonic order, and therefore significant 
effects can be observed for high-order low-amplitude 
harmonics. 

In the literature, the detection probability of a sine wave in 
additive noise in the frequency domain has been already 
investigated [5], but the effect of the lack of synchronism has 
not been investigated analytically as far as probability of 
detection is concerned. In fact, only the worst case was 
considered, i.e., the case of a sine wave component with 
frequency in the middle point between two adjacent frequency 
bins [6]-[7]. Therefore, the detection probability of a sine 
wave in additive noise taking into account its frequency 
instability in analytical terms is the main objective of this 
paper.  

In this work, frequency instability of harmonic components 
is modeled as a uniformly distributed random variable. An 
approximate analytical representation is introduced for the 
attenuation effect of window functions used against spectral 
leakage [8]. As a result, random behavior of harmonic 
frequency is included in the analytical derivation of the 
detection probability taking into account both additive noise 
and frequency instability effects.  

The paper is organized as follows. In Section II the problem 
statement is presented. In Section III the approximate 
analytical model for the frequency instability effects on the 
measured harmonic magnitude is introduced. In Section IV the 
conventional model for the detection probability in additive 
noise is extended to include the probabilistic model of 
frequency instability effects. In Section V the analytical results 
derived in the previous Sections are validated by means of 
numerical simulations. Concluding remarks are reported in 
Section VI.  

II. PROBLEM STATEMENT 
Measurement of power system harmonics can be effectively 

performed by resorting to digital instrumentation based on A/D 
conversion of voltage and current waveforms, and time-to-
frequency transformation through the DFT (with the efficient 
FFT algorithm) [7], [9]-[10]. Thus, harmonics magnitude at 
each frequency of interest can be readily evaluated by reading 
the amplitude of the relevant spectral lines.  
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Two main sources of uncertainty can be identified in the 
measurement process outlined above. First, the fundamental 
frequency of voltage/current waveforms is typically affected by 
random instability. It means that by repeating the measurement 
process, slightly different values of the waveforms fundamental 
frequency must be expected. Such frequency instability is of 
course emphasized for harmonic components. When the DFT 
is applied, the lack of synchronism between the frequency of 
the waveform sinusoidal components and the sampling 
frequency (i.e., non-coherent sampling) will result in increased 
uncertainty in the amplitude measurements [6], [8]. The second 
main source of uncertainty is additive noise. Indeed, 
voltage/current waveforms are always affected by additive 
noise which propagates through A/D conversion and DFT 
transformation, yielding noisy spectral lines. It is expected that 
the impact of additive noise is larger as the amplitude of the 
involved harmonic spectral lines decreases. Spectral effects of 
additive noise have been investigated in many previous papers 
(e.g., [7]-[13]).  

The time-domain voltage waveform is modelled as a sum of 
N harmonically related sine waves and zero-mean white 
Gaussian noise: 

 
 𝑣𝑣(𝑡𝑡) = ∑ 𝑉𝑉ℎcos(2𝜋𝜋ℎ𝑓𝑓0𝑡𝑡 + 𝜑𝜑ℎ)𝑁𝑁

ℎ=1 + 𝑛𝑛(𝑡𝑡) (1) 
 
A similar expression holds for the current waveform, 

therefore in this paper mathematical derivations will be 
presented for the voltage waveform only.  

After A/D conversion of (1) with sampling frequency 𝑓𝑓𝑠𝑠, and 
weighted time-windowing (𝑁𝑁𝑠𝑠 samples in length) against 
spectral leakage [6]-[8], the DFT transform provides the 
estimates of the complex Fourier coefficients: 

 
 𝑉𝑉�𝑛𝑛 = 2

𝑁𝑁𝑆𝑆NPSG
∑ 𝑣𝑣[𝑘𝑘]𝑤𝑤[𝑘𝑘]exp(−𝑗𝑗2𝜋𝜋𝑘𝑘𝑛𝑛 𝑁𝑁𝑆𝑆⁄ )𝑁𝑁𝑆𝑆−1
𝑘𝑘=0 ,  (2) 

 
where w[k] is the selected time window characterized by the 
related Normalized Peak Signal Gain NPSG (see Tab. I where 
three examples of commonly used windows are reported with 
the parameters exploited in this paper). The frequency index n 
is related to the frequency index h in (1) by 𝑛𝑛 × ∆𝑓𝑓 = ℎ × 𝑓𝑓0, 
where ∆𝑓𝑓 = 𝑓𝑓𝑠𝑠 𝑁𝑁𝑠𝑠⁄  is the DFT frequency resolution. Under 
non-coherent sampling, the relation 𝑛𝑛 × ∆𝑓𝑓 = ℎ × 𝑓𝑓0 is 
intended as an approximate relation where n is the index such 
that 𝑛𝑛 × ∆𝑓𝑓 is the discrete frequency closest to 𝑓𝑓ℎ = ℎ × 𝑓𝑓0.  

In the next Section the statistical properties of �𝑉𝑉�𝑛𝑛 � will be 
derived as functions of the statistical properties of 𝑓𝑓ℎ  treated as 
a random variable (RV). The subscripts n and h will be 
dropped since the derivations hold for any frequency index. 

III. MATHEMATICAL MODELING OF FREQUENCY INSTABILITY 
EFFECTS 

In this Section only the effects of frequency instability are 
investigated. Additive noise effects will be described in Section 
IV.  

If the frequency f of a harmonic component in the voltage 
waveform does not equal one of the DFT discrete frequencies 

(i.e., the integer multiples of the frequency resolution ∆𝑓𝑓), the 
related spectral-line magnitude does not take its ideal value. In 
fact, in this case (i.e., the non-coherent sampling condition) the 
spectral line magnitude is weighted by the Fourier transform of 
the time window 𝑤𝑤[𝑘𝑘] used in (2) against spectral leakage. An 
approximate methodology is here introduced, consisting in the 
approximation of the frequency-domain behavior of each 
specific window by a parabolic function obtained by setting the 
constraint provided by the window Scallop Loss (SL) (see Fig. 
1), i.e., the maximum attenuation introduced by the window at 
the edges ±∆𝑓𝑓 2⁄  of each DFT bin [6]. From Fig. 1, assuming 
the n-th DFT frequency bin as the origin of the frequency axis, 
the attenuation introduced by the window on a waveform 
spectral line can be readily obtained [8]: 

 
 𝑦𝑦 ≅ 1 − 4(1−𝑆𝑆𝑆𝑆)

∆𝑓𝑓2 𝑓𝑓2 (3) 
 
Such attenuation is applied to the actual amplitude V of 

each sinusoidal component in (1). Therefore, the measured 
amplitude of each sinusoidal component can be written: 

 
 𝑀𝑀 = 𝑦𝑦𝑉𝑉 (4) 
 
where V denotes the non-weighted frequency-centered spectral 
line.  

The frequency f will be treated as a RV uniformly 
distributed within an interval 𝛿𝛿𝑓𝑓 < ∆𝑓𝑓 centered on the DFT 
frequency bin 𝑛𝑛 × ∆𝑓𝑓 (see Fig. 1). Thus, the probability density 
function (PDF) of the frequency is 1 𝛿𝛿𝑓𝑓⁄  within the interval 
± 𝛿𝛿𝑓𝑓 2⁄ . It follows that also y is a RV whose mean value and 
variance can be evaluated analytically in a straightforward way 
[14]: 

 

 𝜇𝜇𝑦𝑦 = ∫ 𝑦𝑦 1
𝛿𝛿𝑓𝑓
𝑑𝑑𝑓𝑓 =

+𝛿𝛿𝑓𝑓
2

−𝛿𝛿𝑓𝑓
2

1 − 1
3

(1 − 𝑆𝑆𝑆𝑆) �𝛿𝛿𝑓𝑓
∆𝑓𝑓
�

2
 (5) 

 

 𝜎𝜎𝑦𝑦2 = ∫ �𝑦𝑦 − 𝜇𝜇𝑦𝑦�
2 1
𝛿𝛿𝑓𝑓
𝑑𝑑𝑓𝑓

+𝛿𝛿𝑓𝑓
2

−𝛿𝛿𝑓𝑓
2

= 4
45

(1 − 𝑆𝑆𝑆𝑆)2 �𝛿𝛿𝑓𝑓
∆𝑓𝑓
�

4
 (6) 

 
The cumulative distribution function (CDF) of the RV y 

can be readily evaluated by considering that for a given value y 
the corresponding values of f can be obtained by inversion of 
(3) as 

 

 𝑓𝑓1,2 = ±� 1−𝑦𝑦
4(1−𝑆𝑆𝑆𝑆)

 (7) 

 
Therefore, the CDF of the RV y is given by: 
 

 𝐹𝐹𝑦𝑦(𝑦𝑦) = 1 − ∆𝑓𝑓
𝛿𝛿𝑓𝑓
� 1−𝑦𝑦

1−𝑆𝑆𝑆𝑆
 (8) 

 
The PDF of the RV y can be readily obtained from (8) by 

derivation: 
 

 𝑓𝑓𝑦𝑦(𝑦𝑦) = 𝑑𝑑𝐹𝐹𝑦𝑦
𝑑𝑑𝑦𝑦

= ∆𝑓𝑓
2𝛿𝛿𝑓𝑓�(1−𝑦𝑦)(1−𝑆𝑆𝑆𝑆)

 (9) 
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Finally, by taking into account (4), the following analytical 
results hold for the measured harmonic amplitude [14]: 

 
 𝜇𝜇𝑀𝑀 = 𝜇𝜇𝑦𝑦𝑉𝑉  (10) 
 
 𝜎𝜎𝑀𝑀2 = 𝜎𝜎𝑦𝑦2𝑉𝑉2  (11) 
 

 𝐹𝐹𝑀𝑀(𝑀𝑀) = 1 − ∆𝑓𝑓
𝛿𝛿𝑓𝑓
�1−𝑀𝑀𝑉𝑉

1−𝑆𝑆𝑆𝑆
 (12) 

 
 𝑓𝑓𝑀𝑀(𝑀𝑀) = 1

𝑉𝑉
∆𝑓𝑓

2𝛿𝛿𝑓𝑓��1−𝑀𝑀𝑉𝑉 �(1−𝑆𝑆𝑆𝑆)
 (13) 

IV. DETECTION PROBABILITY TAKING INTO ACCOUNT 
FREQUENCY INSTABILITY AND ADDITIVE NOISE 

A. Background on Detection Probability 
Additive noise n(t) in (1) results in a random behavior of 

the DFT coefficients 𝑉𝑉�𝑛𝑛  in (2). The real and the imaginary 
parts of each 𝑉𝑉�𝑛𝑛  can be approximated as a Gaussian RV with 
unbiased mean value (i.e., the deterministic noise-free values), 
and variance [9]-[13], [15] 

 
 𝜎𝜎2 = 𝐸𝐸𝑁𝑁𝐸𝐸𝐸𝐸 2

𝑁𝑁𝑆𝑆
𝜎𝜎𝑛𝑛2 (14) 

 
where ENBW is the equivalent noise bandwidth of the 
selected window w(t), and 𝜎𝜎𝑛𝑛2 is the variance of the input noise 
n(t). As a result, the only-noise spectral lines (i.e., with zero 
deterministic component) have a Rayleigh probability density 
function (PDF) [7], [9]-[13]: 
 

 𝑔𝑔|𝑉𝑉�|��𝑉𝑉��� = |𝑉𝑉�|
𝜎𝜎2 exp �− |𝑉𝑉�|2

2𝜎𝜎2� (15) 
 

and cumulative distribution function (CDF): 
 

 𝐺𝐺|𝑉𝑉�|��𝑉𝑉��� = 1 − exp �− |𝑉𝑉�|2

2𝜎𝜎2� (16) 
 
Notice that in (15) and (16) the frequency subscript n was 

dropped since the results are independent of n. 
On the other hand, the signal spectral lines (i.e., with non-

zero deterministic component) have Rician PDF [9]-[13], [16]: 
 

 𝑓𝑓|𝑉𝑉�|��𝑉𝑉��� = |𝑉𝑉�|
𝜎𝜎2 exp �− |𝑉𝑉�|2+𝑀𝑀2

2𝜎𝜎2 � 𝐼𝐼0 �
|𝑉𝑉�|𝑀𝑀
𝜎𝜎2 � (17) 

 
 

TABLE I. 
SOME FIGURES OF MERIT OF THREE COMMON WINDOWS. 

Window NPSG ENBW SL 
[dB] 

SL 

Rect. 1 1 3.92 0.637 
Tukey 
(α=0.5) 

0.75 1.22 2.24 0.773 

Hann 0.50 1.50 1.42 0.849 
 

 
Fig. 1. Spectral line weighted by the frequency-domain window. 

 
where M is the related sine wave amplitude weighted by the 
spectrum of the window w(t) (see (4)), and I0 is the modified 
Bessel function of the first kind. If the considered sine wave 
frequency equals an integer multiple of ∆𝑓𝑓 than the weight 
introduced by the window spectrum is equal to one, otherwise 
the weight is less than one. The CDF is given by 
 

 𝐹𝐹|𝑉𝑉�|��𝑉𝑉��� = 1 − 𝑄𝑄1 �
𝑀𝑀
𝜎𝜎

, |𝑉𝑉�|
𝜎𝜎
� (18) 

 
where Q1 is the Marcum Q function. 

By defining a threshold level α, the false alarm probability 
is defined as the probability that an only-noise spectral line is 
larger than α. Thus, from (16) the false alarm probability is 
given by 

 

 𝑃𝑃𝑓𝑓𝑓𝑓 (𝛼𝛼) = exp �− 𝛼𝛼2

2𝜎𝜎2� (19) 
 
The detection probability is defined as the probability that a 

signal spectral line is greater than the threshold. Thus, from 
(18) the detection probability is given by 

 
 𝑃𝑃𝑑𝑑(𝛼𝛼) = 𝑄𝑄1 �

𝑀𝑀
𝜎𝜎

, 𝛼𝛼
𝜎𝜎
� (20) 

 
By solving (19) with respect to α and substituting into (20) 

we obtain [5] 
 

 𝑃𝑃𝑑𝑑�𝑃𝑃𝑓𝑓𝑓𝑓 � = 𝑄𝑄1 �
𝑀𝑀
𝜎𝜎

,�−2log�𝑃𝑃𝑓𝑓𝑓𝑓 �� (21) 

 
Therefore, for a given signal-to-noise ratio 𝑀𝑀 𝜎𝜎⁄ , eq. (21) 

provides the detection probability as a function of the accepted 
false alarm probability. 

B. Impact of Frequency Instability on Detection Probability 
The measured amplitude of a harmonic spectral line is 

affected by both additive noise and frequency fluctuation. 
Therefore, the detection probability for a given threshold level 
α must be obtained from the total probability theorem by 
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combining (20) (representing only the noise contribution for a 
given harmonic amplitude M) and (13) (representing the 
frequency fluctuation contribution) [14]: 

 
 𝑃𝑃𝑑𝑑(𝛼𝛼) = ∫ 𝑃𝑃𝑑𝑑 (𝛼𝛼|𝑀𝑀�)𝑓𝑓𝑀𝑀(𝑀𝑀)𝑑𝑑𝑀𝑀𝑉𝑉

𝑆𝑆𝑆𝑆∙𝑉𝑉 =  
 

 = ∫ 𝑄𝑄1 �
𝑀𝑀
𝜎𝜎

, 𝛼𝛼
𝜎𝜎
� 𝑓𝑓𝑀𝑀(𝑀𝑀)𝑑𝑑𝑀𝑀𝑉𝑉

𝑆𝑆𝑆𝑆∙𝑉𝑉  (22) 
 

and by taking into account (4) we obtain: 
 

 𝑃𝑃𝑑𝑑(𝛼𝛼) = ∫ 𝑄𝑄1 �𝑆𝑆𝑁𝑁𝑆𝑆 ∙ 𝑦𝑦, 𝛼𝛼
𝜎𝜎
� 𝑓𝑓𝑦𝑦(𝑦𝑦)𝑑𝑑𝑦𝑦1

𝑆𝑆𝑆𝑆  (23) 
 

where 
 
 𝑆𝑆𝑁𝑁𝑆𝑆 = 𝑉𝑉

𝜎𝜎
 (24) 

 
is the harmonic signal-to-noise ratio. 

Finally, by taking into account (19), the detection 
probability can be expressed as a function of the false alarm 
probability as 

 

𝑃𝑃𝑑𝑑�𝑃𝑃𝑓𝑓𝑓𝑓 � = ∫ 𝑄𝑄1 �𝑆𝑆𝑁𝑁𝑆𝑆 ∙ 𝑦𝑦,�−2log�𝑃𝑃𝑓𝑓𝑓𝑓 �� 𝑓𝑓𝑦𝑦(𝑦𝑦)𝑑𝑑𝑦𝑦1
𝑆𝑆𝑆𝑆  (25) 

V. NUMERICAL VALIDATION 
The analytical results derived in Sections III and IV have 

been validated by resorting to numerical simulation of the 
whole measurement process. According to (1), a voltage 
waveform consisting of three harmonic components was 
selected such that 𝑓𝑓0 = 50 Hz,  and ℎ = 1, 3, 5. The harmonic 
amplitudes were selected as 𝑉𝑉1 = 10,𝑉𝑉3 = 2,𝑉𝑉5 = 1. Phase 
angles were selected at random. Sampling was performed such 
that 10 periods of the fundamental component were acquired, 
i.e., a 200 ms measurement window were taken. The selection 
of the number of samples 𝑁𝑁𝑠𝑠 defines the corresponding 
sampling frequency. By assuming 𝑁𝑁𝑠𝑠 = 212  the corresponding 
sampling frequency was 𝑓𝑓𝑠𝑠 = 20.48 kHz, and the related 
frequency resolution was ∆𝑓𝑓 = 5 Hz. A repeated run analysis 
(104 runs to estimate each average value) was performed by 
assuming 𝑓𝑓0 taking random values with uniform distribution 
within a frequency range δf centered on the nominal frequency 
50 Hz [17]-[18]. It is worth noticing that a frequency deviation 
δf in the fundamental component results in a frequency 
deviation 3δf in the third harmonic, and 5δf in the fifth 
harmonic. In the following, analytical results were validated for 
the fifth harmonic. In fact, by assuming a maximum 𝛿𝛿𝑓𝑓

∆𝑓𝑓
= 0.2 

for the fundamental component, such normalized frequency 
range equals 1 for the fifth harmonic. 

In Fig. 2 the numerical estimates (dotted lines) of the mean 
value of the fifth harmonic amplitude are compared with the 
analytical result (10) (solid lines). The three different windows 
considered in Tab. I were used. Clearly the rectangular window 
shows the worst behavior due to its lowest SL value. 

 

 
 
Fig. 2. Comparison between analytical (solid lines) and numerical (dotted lines) 
mean value of the amplitude of the fifth harmonic as a function of the 
normalized frequency range 𝛿𝛿𝑓𝑓 ∆𝑓𝑓⁄  due to frequency instability, for three 
different windows. 
 

 
 
Fig. 3. Comparison between analytical (solid lines) and numerical (dotted lines) 
estimates of the normalized standard deviation of the amplitude of the fifth 
harmonic as a function of the normalized frequency range 𝛿𝛿𝑓𝑓 ∆𝑓𝑓⁄  due to 
frequency instability, for three different windows. 

 
In Fig. 3 the numerical estimates (dotted lines) of the 

standard deviation of the fifth harmonic amplitude are 
compared with the analytical results given by the square root of 
(11) (solid lines). 
Also in this case the best behavior is provided by the Hann 
window due to its larger SL. 

Fig. 4 shows the behavior of the detection probability of the 
fifth harmonic as a function of the false alarm probability in the 
case of rectangular window and additive Gaussian noise such 
that SNR as defined in (24) for the fifth harmonic is equal to 5. 
Frequency instability is such that δf for the fifth harmonic is 
equal to 0.5 Hz and 5 Hz (i.e., 0.1 Hz and 1 Hz for the 
fundamental frequency 𝑓𝑓0, respectively). Dotted lines refer to 
numerical results whereas solid lines refer to (25). Of course, 
larger frequency instability results in lower detection 
probability due to a larger attenuation effect of the window in 
the frequency domain. Figs. 5 and 6 show the same behavior in 
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the case of Tukey and Hann window, respectively. Detection 
probability increases with the value of SL and this is confirmed 
by the figures. In fact, while the curves for lower frequency 
instability (i.e., 0. 5 Hz) are similar for Figs. 4-6, the curves for 
larger frequency instability (i.e., 5 Hz) increase with SL 
because of the different behavior around the edges of the main 
lobe of the windows in the frequency domain. Figs. 7-9 are 
similar to Figs. 4-6 but with the fifth harmonic SNR equal to 4 
instead of 5. It means that the noise level was increased. Two 
phenomena are expected from a higher noise level. First, the 
detection probabilities decrease with respect to Figs. 4-6. 
Second, it is expected a lower influence of the attenuation 
introduced by the windows, i.e., a lower spread between the 
curves in each of the Figs. 7-9. Comparison between Figs. 4-6 
and Figs. 7-9 confirms both the phenomena expected from a 
higher noise level.  
 

 
 
Fig. 4. Detection probability of the fifth harmonic as a function of false alarm 
probability using rectangular window, noise level such that SNR=5 and 
frequency instability δf equal to 0.5 Hz and 5 Hz for the fifth harmonic.  
 
 

 
 
Fig. 5. Detection probability of the fifth harmonic as a function of false alarm 
probability using Tukey window, noise level such that SNR=5 and frequency 
instability δf equal to 0.5 Hz and 5 Hz for the fifth harmonic.  
 

 
Fig. 6. Detection probability of the fifth harmonic as a function of false alarm 
probability using Hann window, noise level such that SNR=5 and frequency 
instability δf equal to 0.5 Hz and 5 Hz for the fifth harmonic.  

 
Fig. 7. Detection probability of the fifth harmonic as a function of false alarm 
probability using rectangular window, noise level such that SNR=4 and 
frequency instability δf equal to 0.5 Hz and 5 Hz for the fifth harmonic.  

 
Fig. 8. Detection probability of the fifth harmonic as a function of false alarm 
probability using Tukey window, noise level such that SNR=4 and frequency 
instability δf equal to 0.5 Hz and 5 Hz for the fifth harmonic.  

10 -4 10 -3 10 -2 10 -1 10 0

False alarm probability

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
tio

n 
pr

ob
ab

ili
ty

Rectangular window - SNR = 5

numerical

analytical

df
5

 = 5 Hz

df
5

 = 0.5 Hz

10 -4 10 -3 10 -2 10 -1 10 0

False alarm probability

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

D
et

ec
tio

n 
pr

ob
ab

ili
ty

Tukey window - SNR = 5

numerical

analytical

df
5

 = 5 Hz

df
5

 = 0.5 Hz

10 -4 10 -3 10 -2 10 -1 10 0

False alarm probability

0.7

0.75

0.8

0.85

0.9

0.95

1

D
et

ec
tio

n 
pr

ob
ab

ili
ty

Hann window - SNR = 5

numerical

analytical

df
5

 = 5 Hz

df
5

 = 0.5 Hz

10 -4 10 -3 10 -2 10 -1 10 0

False alarm probability

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n 
pr

ob
ab

ili
ty

Rectangular window - SNR = 4

numerical

analytical

df
5

 = 0.5 Hz

df
5

 = 5 Hz

10 -4 10 -3 10 -2 10 -1 10 0

False alarm probability

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
tio

n 
pr

ob
ab

ili
ty

Tukey window - SNR = 4

numerical

analytical

df
5

 = 0.5 Hz

df
5

 = 5 Hz

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 10, 2016

ISSN: 1998-4464 258



 
Fig. 9. Detection probability of the fifth harmonic as a function of false alarm 
probability using Hann window, noise level such that SNR=4 and frequency 
instability δf equal to 0.5 Hz and 5 Hz for the fifth harmonic.  

VI. CONCLUSION 
Analytical results derived in the paper concerning the 

statistical properties of the measured amplitude of harmonics 
affected by frequency instability have shown good agreement 
with numerical results. It should be highlighted that the 
proposed approach is an approximate approach since the 
frequency behavior of the window has been approximated by a 
parabolic behavior. The advantage of the proposed approach is 
its simplicity and the possibility to be used in a straightforward 
way for a general window by using only the scallop loss 
parameter of the selected window. Future work will be devoted 
to include in the model more general statistical distributions of 
the frequency instability such as a range larger than the 
frequency bin and possibly non-symmetrical (i.e., the case of 
interharmonic components). 
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