
  
Abstract—This work deals with the derivation and validation of a 

discrete model of timing jitter suited to coarsely quantized 
waveforms, i.e., for waveforms digitized by low-resolution high-
speed analog-to-digital converters. In fact, in the paper it is shown 
that when a coarsely quantized waveform is considered, the classical 
continuous model for timing jitter is no longer valid since the discrete 
nature of the waveform must be taken into account. In particular, it is 
shown that the classical continuous model leads to significant 
underestimation of the variance of frequency-domain waveform 
parameters when repeated measurements are performed. Analytical 
derivations related to the statistical properties of Fourier coefficients 
of a jittered waveform are validated through numerical simulations.  
 

Keywords—Analog-to-digital conversion, discrete Fourier 
transform, frequency-domain analysis, jitter, noise, statistical 
analysis.  

I. INTRODUCTION 
NALOG-to-digital (A/D) conversion of signals is 
nowadays a widespread technique allowing fast and 

effective measurements in most of engineering applications. 
For this reason, the whole A/D conversion process has 
received in the past literature a lot of attention in order to 
investigate all the sources of uncertainty resulting from the 
non-ideal behavior of real A/D converters (ADCs) (e.g., see 
[1]-[6]). Timing jitter consists in the uncertainty related to the 
actual sampling instants in A/D conversion of signals [7]-[12]. 
It is well known that this kind of uncertainty becomes more 
and more relevant as the speed of ADCs increases. Much work 
has been done in order to obtain experimental characterization 
of jitter effects. Theoretical treatment of such a phenomenon, 
however, has received much less attention, and some 
analytical results are available only in the case of the 
sinusoidal waveform [7]-[11].  

In this work, a general model is proposed able to provide 
the probabilistic description of timing jitter effects in the 
frequency domain after the discrete Fourier transform (DFT) 
of a sampled and quantized signal [12]. Indeed, the main 
novelty of the proposed model consists in taking 
simultaneously into account quantization and jitter. Of course 
this is of special relevance when a high-speed low-resolution 
A/D conversion is performed. In such a case, as an essential 
enhancement of the results reported in [12], in this paper it is 
clearly shown that the well-known classical model provides an 
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underestimate of jitter effects on the variance and on the 
probability density function (PDF) of the DFT coefficients. 
This happens because the classical model provides a 
mathematical description leading to an equivalent additive 
noise with standard deviation proportional to the signal 
amplitude. Thus, by decreasing the signal amplitude, the jitter 
effects predicted by the classical model decrease on a 
proportional base. However, when a low-amplitude signal is 
considered, quantization cannot be neglected since jitter refers 
to quantized samples. Thus, quantization tends to emphasize 
jitter effects because even a small sampling jitter can result in 
an amplitude error equal to one quantization step. It follows 
that a more accurate model must result in a discrete additive 
noise instead of a continuous one.  

The derivations are carried out by assuming a Gaussian 
distribution of each sampling instant. However, the proposed 
approach can be readily extended to different distributions. In 
particular, the PDF, the mean value and the variance of both 
the real and the imaginary parts of the DFT are evaluated. The 
effects of some A/D conversion features, such as jitter 
standard deviation, ADC resolution, and number of acquired 
samples, are put into evidence. The predictions provided by 
the proposed probabilistic model are validated numerically by 
simulating the A/D conversion of sinusoidal and multisine 
waveforms. 

II. JITTER DISCRETE MODEL 
It is well known that, due to technological limits, high-

speed ADCs are typically characterized by low resolution 
since the need for high sampling frequencies contrasts with the 
need for a fine quantization. As a consequence, low-amplitude 
waveforms are subject to coarse quantization in high-speed 
ADCs. It is worth noticing, however, that the general theory of 
quantization guarantees that the so-called noise model of 
quantization can be applied only when fine quantization is 
performed. On the contrary, in case of rough quantization such 
a process can be no longer treated as additive independent 
noise, but a deterministic approach in that case is more 
appropriate. In that case, indeed, repeated A/D conversions of 
a given waveform in triggered mode (i.e., by assuming no 
phase variation in different A/D conversions) provide results 
with low statistical dispersion provided that sampling is an 
ideal process and input additive noise is negligible. In case of 
jitter, however, sampling is not an ideal process and therefore 
repeated low-resolution A/D conversions of a given waveform 
lead to results with statistical dispersion. The jitter model 
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derived in this Section provides the statistical properties of 
low-resolution A/D conversions of a given waveform in 
triggered mode.  

A/D conversion of a signal can be physically considered as 
the ordered sequence of two processes, i.e., sampling and 
quantization. However, from a modeling viewpoint, the order 
of the two processes can be exchanged without changing the 
overall result. This choice leads to consider the problem 
statement depicted in Fig. 1 where the quantized version )(tq  
of a short stretch of the underlying analog signal )(tx  is 
represented [12]. It is assumed that, as far as the time 
extension of one quantization output level is considered (i.e., 
the level ∆m  in Fig. 1, where ∆  is the quantization step), the 
slope s  of the analog signal can be treated as a constant. 
Under the hypothesis of uniform quantization, the time 
extension of the considered quantization level is therefore 

st /∆=∆ . 
Let us consider now the case of a signal sample taken at the 

ideal time instant SkT  (where ST  is the sampling period) 
falling within the above defined Δt. Its position is defined by 
the distance r with respect to the center of t∆ . In the case of 
absence of jitter this would result in the quantized sample .∆m  
In the case of a jittered sample, however, the actual sampling 
instant is δ+SkT , where δ  is a random variable (RV) 
described by the related PDF )(δδf . Three different cases can 
happen in the proposed model. In the first case, if the actual 
sampling instant is included within the duration t∆  of the 
quantization level ∆m  then the output is still ∆m , i.e., jitter 
has no effect. In the second case, if the actual sampling instant 
exceeds the right edge of the quantization level ∆m  then the 
output is ∆+ )1(m , i.e., an error equal to ∆+  is introduced. 
Finally, in the third case, if the actual sampling instant exceeds 
the left edge of the quantization level ∆m  then the output is 

∆− )1(m , i.e., an error equal to ∆−  is introduced. Thus, the 
quantized sample is affected by additive discrete noise d , 
whose possible values are { }∆+∆− ,0, . The occurrence of one 
of such values depends on t∆σδ /  (where δσ  is the standard 
deviation of the timing jitter δ ), and on the relative location r  
of the ideal sampling instant SkT  and the center of the 
considered quantization level. By assuming a given value for 

,r  and a zero-mean Gaussian PDF )(δδf , the corresponding 
conditional probabilities can be evaluated as [13]-[15] 
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Fig. 1. Quantized version q(t) of the input signal x(t), and definition 
of the probabilistic quantities related to the sampling instant kTS. 

 
where 2/1 tr ∆−−=δ  and 2/2 tr ∆+−=δ . In order to include 
the randomness of the relative position r , by assuming a 
uniform PDF trfr ∆= /1)(  within the interval ( )2/,2/ tt ∆∆− , 
from the total probability theorem one can obtain [13]-[15]: 
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where )2/( δσ∆= sz . Thus, the discrete RV d  has zero 
mean value, and variance given by: 

 
 )(2 22 ∆+=∆=σ dPd . (7) 
 
The above results hold also for the case of signal with 

negative slope provided that the magnitude of s  is considered, 

i.e., )2|/(| δσ∆= sz . 
The proposed discrete model is a time-domain model 

resulting in additive noise with respect to the quantized 
waveform q(t). In most of the applications, the digitized 
waveform is transformed into the frequency domain through 
the DFT which is effectively implemented by the well-known 
fast Fourier transform (FFT) [13]. In order to evaluate the 
frequency-domain effects of jitter, it must be considered that 
the amplitude of the n-th frequency component nc  is 
evaluated through the DFT as: 
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where SN  is the number of samples, and { }kd  are 
independent RVs with zero mean and variance given by (7) 
where z  is replaced by )2|/(| δσ∆= kk sz : 
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where || ks  is the local slope of the input signal which can be 
readily estimated from the reconstructed analog signal. By 
denoting as na  and nb  the RVs corresponding to the real and 
the imaginary parts of nc , respectively, from the Central Limit 
Theorem [13]-[15] it follows that they can be approximated as 
Gaussian RVs (see Section III), with mean values given by the 
deterministic components of the spectrum (i.e., the spectrum 
of the jitter-free quantized samples), and variances given by 
[4]-[6]: 
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Notice that (10) and (11) were obtained under the 

assumption of linear behavior of the underlying analog signal. 
Therefore, (10) and (11) provide exact results for linear 
waveforms such as the triangular waveform, whereas a 
correction factor lower than one is needed for a smooth 
waveform. Extensive numerical simulations have shown that 
for a sine wave the correction factor for (10) and (11) is 1 √2⁄ . 
Moreover, notice that in the case of the use of a time window 
in (8) against spectral leakage, the variances (10)-(11) must be 
multiplied by the Equivalent Noise Bandwidth (ENBW) of the 
selected window [4]-[6]. 

Finally, notice that in the general case na  and nb  are not 
uncorrelated RVs, therefore the magnitude || nc  cannot be 
treated as a RV with Rician distribution (or as a Rayleigh 
distribution in the special case of an only-noise frequency 
bin). In Section III it will be shown that the distribution of the 
magnitude || nc  can be approximated by a Gaussian 
distribution provided that its variance is estimated by taking 
into account the statistical correlation between na  and nb  
[13]-[15]: 
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where μ denotes the mean value, and cov is the covariance. 

A. Additive noise 
Additive noise can be readily included in the discrete model 

derived above. In fact, by considering Fig. 1, in the noise-free 
case time jitter can be provided with the following alternative 
interpretation. Instead of assigning to the actual sampling 
instant a random nature, i.e., an RV with standard deviation 
𝜎𝜎𝛿𝛿 , the sampling instant can be regarded as deterministic 
whereas the random nature can be assigned to the left and 
right edges of the relevant quantization level ∆m . It means 
that an equivalent viewpoint for time jitter is treating the 
sampling instant as deterministic and the edges of each 
quantization level as RVs with standard deviation 𝜎𝜎𝛿𝛿 . This 
equivalent viewpoint allows a straightforward extension of the 
discrete jitter model to the case of additive noise. In fact, in 
case of additive noise with standard deviation 𝜎𝜎𝑛𝑛 , each 
quantization level edge is characterized by a standard 
deviation 𝜎𝜎𝑛𝑛/|𝑠𝑠| where s is the local slope of the waveform. It 
follows that in (9) the quantities zk must be rewritten as 

 
 )2|/(| σ∆= kk sz  (13) 
 

where 
 

 𝜎𝜎 = �𝜎𝜎𝛿𝛿2 + �𝜎𝜎𝑛𝑛
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�

2
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III. NUMERICAL VALIDATION 
In this Section the main analytical results derived in Section 

II are validated through numerical simulations performed in 
MATLAB®.  

Let us consider a sinusoidal waveform 𝑥𝑥(𝑡𝑡) = 𝐴𝐴 ∙
sin  (2𝜋𝜋𝑓𝑓0 𝑡𝑡 + 𝜑𝜑) with frequency 𝑓𝑓0 = 1 GHz and arbitrarily 
selected phase φ=π/3. The amplitude A is normalized with 
respect to the quantization step Δ. Therefore, rough 
quantization corresponds to low amplitude A, whereas finer 
quantization is obtained by increasing A. Coherent sampling 
was performed by taking 𝑁𝑁𝑆𝑆 = 212 = 4096 samples within 
𝑁𝑁𝑝𝑝 = 401 periods of the sine wave. This choice corresponds 
to a sampling frequency 𝑓𝑓𝑆𝑆 = 𝑓𝑓0𝑁𝑁𝑆𝑆 𝑁𝑁𝑝𝑝 = 10.214⁄  GS s⁄ . Each 
sampling instant was corrupted by Gaussian zero-mean noise 
(i.e., random jitter) with standard deviation (STD) 𝜎𝜎𝛿𝛿 . Two 
values were selected for 𝜎𝜎𝛿𝛿 , i.e., 0.1 ps and 1 ps in order to 
represent typical jitter values for high-speed ADCs. Each 
jittered sample was quantized by rounding its value. The Hann 
window was used to weight the samples. The related 
ENBW=1.5 must be taken into account as a multiplicative 
factor for the variances (10) and (11). 

In Fig. 2 the PDF of the imaginary part b of the DFT 
coefficient corresponding to the input sine wave is shown. The 
sine wave amplitude A was equal to 10, and the numerical 
PDF (dashed line) was obtained through 104 repeated runs by 
assuming jitter with STD equal to 1 ps. The continuous line 
corresponds to the discrete model proposed in the paper, i.e., a 
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Gaussian PDF with STD given by the square root of (11) 
(actually (11) is multiplied by ENBW of the weighting 
window and by the correction factor 1 √2⁄  to take into account 
the non-linear behavior of the sinusoidal waveform). The 
dotted line corresponds to the conventional continuous model. 
Clearly the conventional model provides an underestimate of 
the actual STD. 

Fig. 3 shows the PDF of the magnitude |c| of the DFT 
coefficient corresponding to the input sine wave. Numerical 
(dashed line) and analytical (solid line) results corresponding 
to (12) taking into account the covariance contribution show a 
good agreement. The analytical approximate result (dotted 
line) does not take into account the covariance. 

Fig. 4 shows the behavior of the signal-to-noise ratio (SNR) 
as a function of the sine wave amplitude, assuming time jitter 
with STD equal to 1 ps. Here the SNR is defined as the ratio 
between the sine wave amplitude A and the STD of the 
magnitude |c| of the DFT sine-wave coefficient, i.e., the 
square root of (12). The discrete model derived in the paper 
(solid line) is in good agreement with numerical results 
(dashed line). The dotted line represents the conventional 
continuous model which provides a significant overestimation 
of SNR for low-amplitude sine waves. Fig. 5 shows the same 
curves with time jitter with STD equal to 0.1 ps instead of 1 
ps. Clearly, since the jitter STD is lower, the SNR takes higher 
values. Notice that the overestimate provided by the 
conventional model is significant even for sine wave 
amplitude around 60, i.e., around the full scale of an 8-bit 
ADC. 

A second set of simulations was performed in order to 
validate (14) to take into account additive noise. Figures 6 and 
7 show the behavior of SNR, as defined in Figures 4 and 5, as 
a function of the sine wave amplitude, for two different values 
of timing jitter (i.e., 1 ps and 0.1 ps, respectively), and for 
different levels of additive Gaussian noise, i.e., 𝜎𝜎𝑛𝑛 =
0, 0.05, 0.1, 0.2. The analytical model derived in the paper 
(solid lines) shows a good agreement with numerical results 
(dashed lines). 

A third set of simulations was performed to provide further 
validation of (14) and to prove the capability of the proposed 
model to handle also waveform different from sine waves. To 
this aim a third harmonic has been added to the sine wave 
used in Figures 2 and 3 with amplitude 𝐴𝐴3 = 𝐴𝐴 2⁄ = 5. 
Figures 8 and 9 show the PDF of the fundamental imaginary 
part b1 and magnitude |c1| in both the noise-free case and the 
case 𝜎𝜎𝑛𝑛 = 0.2. Moreover, Fig. 10 shows the behavior of the 
PDF of the third harmonic amplitude |c3| in both the noise-free 
case and the case 𝜎𝜎𝑛𝑛 = 0.2. The proposed model confirmed its 
capability to handle waveforms different from the sine wave, 
and to take into account the contribution of additive noise. 

 
 

 
 

Fig. 2. Probability density function of the imaginary part b1 of the 
DFT coefficient corresponding to the input sine wave having 
amplitude 10 and phase π/3. 
 

 
 
Fig. 3. Probability density function of the magnitude |c1| of the DFT 
coefficient corresponding to the input sine wave having amplitude 10 
and phase π/3. 
 

 
 
Fig. 4. Ratio between the sine wave amplitude A and the STD 𝜎𝜎|𝑐𝑐1| of 
jitter noise within the sine-wave frequency bin as a function of A. 
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Fig. 5. Same as Fig. 4 but with jitter STD equal to 0.1 ps. 
 

 
 
Fig. 6. Ratio between the sine wave amplitude A and the STD 𝜎𝜎|𝑐𝑐1| of 
jitter noise within the sine-wave frequency bin as a function of A and 
for different levels of additive Gaussian noise. 
 

 
 

Fig. 7. Same as Fig. 6 but with jitter STD equal to 0.1 ps. 
 
 

 
 
Fig. 8. Probability density function of the imaginary part b1 of the 
DFT coefficient corresponding to the input waveform consisting in a 
sine wave and a third harmonic. The noise-free case and the case 
𝜎𝜎𝑛𝑛 = 0.2 are reported in the figure. 
 

 
 
Fig. 9. Probability density function of the magnitude |c1| of the DFT 
coefficient corresponding to the input waveform consisting in a sine 
wave and a third harmonic. The noise-free case and the case 𝜎𝜎𝑛𝑛 = 0.2 
are reported in the figure. 

IV. CONCLUSION 
The discrete model derived in the paper proved that 

repeated jittered measurements of a given waveform through a 
high-speed low-resolution ADC result in DFT coefficients 
whose statistical properties cannot be predicted by the 
classical continuous model. In particular, it was shown that the 
spread of the PDF of a DFT coefficient is much larger than 
that predicted by the classical model. The results presented in 
the paper are useful to predict the uncertainty due to timing 
jitter in A/D conversion of roughly quantized waveforms in 
triggered mode. In fact, it was proven that the proposed model 
can handle also waveforms different from sine waves. 
Moreover, a slight modification of the proposed discrete 
model allowed to extend its validity by including the 
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contribution of additive noise. 

 
 
Fig. 10. Probability density function of the magnitude |c3| of the DFT 
coefficient corresponding to the input waveform consisting in a sine 
wave and a third harmonic. The noise-free case and the case 𝜎𝜎𝑛𝑛 = 0.2 
are reported in the figure. 
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