
 

 

  
Abstract—This paper presents experimental results of three 

control strategies to stabilize a two-wheeled inverted pendulum. The 
control techniques used are PID, Linear-Quadratic Regulator (LQR), 
and Sliding Mode Control. The comparison results of the three 
controllers are for angular wheel position tracking, for external 
disturbances, and parameter uncertainties in the model. Tests are 
quantified in terms of Integral Square Error – ISE. For the 
experiments, the robot was constructed with LEGO Mindstorms NXT 
2.0. 
 

Keywords—LQR, PID, sliding mode control, robustness,  
tracking.  
 

I. INTRODUCTION 
The concept of a self-balancing a robot is based on the idea of 
the inverted pendulum model. An inverted pendulum is an 
open loop unstable system with highly nonlinear dynamics. 
The inverted pendulum problem is common in the field of 
control engineering. Therefore, it represents an ideal 
experiment for the design of classical and contemporary 
control techniques.  
The type of robot used in this paper is a mobile robot with a 
two wheeled inverted pendulum, which is known as the Two-
Wheeled Inverted Pendulum (TWIP) Robot NXT Lego 
Mindstorms. The robot has a body with two wheels for 
moving in a plane and whose head is similar to a human one. 
Two independent driving wheels are used for position control 
and for fast motion in a plane. 
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The platform Lego Mindstorms NXT 2.0 is a kind of 
educational robotics which let us to assemble numerous 
mechanical configurations and besides allows the possibility 
of programming in various languages. Therefore, the 
uniqueness and wide application of technology derived from 
this unstable system has drawn interest of researchers and 
robotics enthusiasts around the world.  

In the recent past, numerous scientists have been studying 
several control techniques in order to design stable 
mechanisms for this kind of systems. In [1], it is developed a 
study about a TWIP with JOE. The dynamics is derived using 
a Newtonian approach and then linearized around an 
equilibrium point for designing two decoupled state-space 
controllers. In [2], the dynamics of the TWIP mobile robot is 
studied using Kane’s method of 3-DOF modeling, and the 
model is linearized to get a linear feedback control. In [3], two 
controllers for a wheeled inverted pendulum are designed. The 
first one is a two-level velocity controller for tracking vehicle 
orientation and heading speed set-points, while controlling the 
vehicle pitch (pendulum angle from the vertical) within a 
specified range. The second controller is also a two-level 
controller which stabilizes the vehicle’s position to the desired 
point, while again keeping the pitch bounded between 
specified limits; however, the controller system designed is 
not robust with respect to parameter uncertainties. In [4], the 
model of the TWIP is derived and a full order sliding mode 
control is designed to control the robot, the results are 
obtained by simulations. In [5], a self-tuning PID control 
strategy, based on a model, is proposed for implementing a 
motion control system that stabilizes the two-wheeled vehicle 
and follows the desired motion commands. The controller 
parameters are tuned automatically, on-line, to overcome the 
disturbances and parameter variations. Experimental results 
are presented. In [6], a TWIP mobile robot is developed and 
the pole-placement state feedback controller is designed in 
order to verify the functionality of the robot.  In [7] an 
adaptive fuzzy logic control of dynamic balance and motion is 
considered for wheeled inverted pendulums with parametric 
and functional uncertainties. In [8], a zero dynamics, derived 
by partial feedback linearization, is used to design a two 
degrees of freedom controller based on the feedforward 
controller and H∞ control technique to movement control of a 
TWIP. In [9], it is shown the design and development of a 
TWIP mobile robot using a Matlab® interfacing 
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configuration. The system is tested using a state-feedback 
controller. In [10], it is proposed a sliding mode control to 
solve a robust velocity tracking problem of mobile wheeled 
inverted pendulums models. In [11], a LQR and PID-PID are 
developed. Furthermore, the mathematical model is derived 
and the two controllers are compared, by simulations, in terms 
of input tracking and disturbances rejection capability. The 
results show that the LQR presents better performance than 
the PID controller. In [12] is designed and implemented a 
fuzzy control scheme for a TWIP using a Takagi-Sugeno 
fuzzy model. In [13], a sliding mode control and LQR are 
studied and compared. The SMC has the best performance by 
simulations. However, the work does not compare the 
controllers in terms of robustness.  

In this study, three control techniques are used: a PID 
controller, a LQR, and a Sliding Mode control. They are 
designed and implemented for the TWIP. The paper includes 
both, simulations and real experimental results. The 
performance of the controllers, for this kind of unstable 
system with highly non-linear dynamic, is tested in terms of 
tracking and regulation.  

The article begins with an introduction. Section II presents 
model of the robot that is used for controllers designing. 
Section III shows the development of the three controllers. 
Section IV presents the simulation results of TWIP with 
respect to body pitch angle and average angular position of 
wheels. Section V shows experimental results and the analysis 
of each controller respectively. Finally, the conclusions are 
presented in Section VI. 

    
II. DYNAMIC MODEL  

The TWIP used for this study has the following elements: 
NXT block, which is the brain of the robot; gyroscopic sensor, 
which measures the speed of inclination of the robot, 𝜓̇𝜓, and 
allows to estimate the angle 𝜓𝜓; and two electric actuators (left 
and right wheels) with encoders, which measure the angular 
position of the wheel  𝜃𝜃 and estimate its speed 𝜃̇𝜃.  

The model was taken from [14] in which the equations are 
obtained by Lagrange method. The model is linearized around 
the operating point.  

The model has four states and two inputs. The states are: the 
body pitch angle 𝜓𝜓 [𝑟𝑟𝑟𝑟𝑟𝑟], the average angular position of the 
wheels 𝜃𝜃 [𝑟𝑟𝑟𝑟𝑟𝑟]; and their respective velocities 𝜓̇𝜓 [𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠] 
and 𝜃̇𝜃 [𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠]. The system inputs are the motor voltages 𝑢𝑢𝑙𝑙  
and 𝑢𝑢𝑟𝑟 . 

The robot system used is shown in Fig. 1 

 

Fig. 1 System view: frontal, lateral and top. 
The model is given by state-space representation: 
 

𝑥̇𝑥1 = 𝐴𝐴1𝑥𝑥1 + 𝐵𝐵1𝑢𝑢 . ( 1) 
 
Where: 

𝑥𝑥1 =

⎣
⎢
⎢
⎡
𝜃𝜃
𝜓𝜓
𝜃̇𝜃
𝜓̇𝜓⎦
⎥
⎥
⎤
 . ( 2) 

 

𝑢𝑢 = �
𝑢𝑢𝑙𝑙
𝑢𝑢𝑟𝑟�. ( 3) 

 

𝐴𝐴1 = �

0 0 1 0
0 0 0 1
0 𝑎𝑎32 𝑎𝑎33 𝑎𝑎34
0 𝑎𝑎42 𝑎𝑎43 𝑎𝑎44

�. ( 4) 

 

𝐵𝐵1 = �

0 0
0 0
𝑏𝑏3 𝑏𝑏3
𝑏𝑏4 𝑏𝑏4

�. ( 5) 

Where: 
𝑎𝑎32 = −𝑔𝑔𝑔𝑔𝑔𝑔𝑒𝑒12/ det(𝐸𝐸). ( 6) 

  
𝑎𝑎42 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑒𝑒11/ det(𝐸𝐸). 

 ( 7) 

𝑎𝑎33 = −2(𝜎𝜎𝑒𝑒22 + 𝛽𝛽𝑒𝑒12)/ det(𝐸𝐸). ( 8) 
 

𝑎𝑎43 = 2(𝜎𝜎𝑒𝑒12 + 𝛽𝛽𝑒𝑒11)/ det(𝐸𝐸). ( 9) 
 

𝑎𝑎34 = 2𝛽𝛽(𝑒𝑒22 + 𝑒𝑒12)/ det(𝐸𝐸). ( 10) 
 

𝑎𝑎44 = −2𝛽𝛽(𝑒𝑒11 + 𝑒𝑒12)/ det(𝐸𝐸). ( 11) 
 

𝑏𝑏3 = 𝛼𝛼(𝑒𝑒22 + 𝑒𝑒12)/ det(𝐸𝐸). 
 ( 12) 

𝑏𝑏4 = −𝛼𝛼(𝑒𝑒11 + 𝑒𝑒12)/ det(𝐸𝐸). (13) 
 

𝑒𝑒11 = (2𝑚𝑚 + 𝑀𝑀)𝑅𝑅2 + 2𝐽𝐽𝑤𝑤 + 2𝑛𝑛2𝐽𝐽𝑚𝑚 . (14) 
 

𝑒𝑒12 = 𝑀𝑀𝑀𝑀𝑀𝑀 − 2𝑛𝑛2𝐽𝐽𝑚𝑚 . (15) 
 

𝑒𝑒22 = 𝑀𝑀𝐿𝐿2 + 𝐽𝐽𝜓𝜓 + 2𝑛𝑛2𝐽𝐽𝑚𝑚 . (16) 
 

det(𝐸𝐸) = 𝑒𝑒11𝑒𝑒22 − 𝑒𝑒12
2 . (17) 

 
𝛼𝛼 = 𝑛𝑛𝐾𝐾𝑡𝑡/𝑅𝑅𝑚𝑚 . (18) 

 
𝛽𝛽 = 𝑛𝑛𝐾𝐾𝑡𝑡𝐾𝐾𝑏𝑏/𝑅𝑅𝑚𝑚 + 𝑓𝑓𝑚𝑚 . (19) 

 
𝜎𝜎 = 𝛽𝛽 + 𝑓𝑓𝑤𝑤 . (20) 

 
The physical parameters of TWIP are taken from [14] and 

some of them were modified according to our robot. In Table I 
these parameters are shown. 
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Table I. Parameters of TWIP 

Parameter Unit Description 
𝑔𝑔 = 9.8 [𝑚𝑚/𝑠𝑠2] Gravity acceleration 
𝑚𝑚 = 0.03 [𝑘𝑘𝑘𝑘] Wheel mass 
𝑅𝑅 = 0.021 [𝑚𝑚] Wheel radius 
𝐽𝐽𝑤𝑤 = 𝑚𝑚𝑅𝑅2/2 [𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2] Wheel inertia moment 
𝑀𝑀 = 0.6 [𝑘𝑘𝑘𝑘] Body mass 
𝑊𝑊 = 0.09 [𝑚𝑚] Body width 
𝐷𝐷 = 0.05 [𝑚𝑚] Body depth 
𝐻𝐻 = 0.26 [𝑚𝑚] Body height 

𝐿𝐿 = 𝐻𝐻/2 [𝑚𝑚] Distance of the center of the 
mass from the Wheel axle 

𝐽𝐽𝜓𝜓 = 𝑀𝑀𝐿𝐿2/3 [𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2] Body pitch inertia moment 
𝐽𝐽𝜙𝜙 = 𝑀𝑀(𝑊𝑊2 
+𝐷𝐷2)/12 

[𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2] Body yaw inertia moment 

𝐽𝐽𝑚𝑚
= 1𝑥𝑥10−5 [𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2] DC motor inertia moment 

𝑅𝑅𝑚𝑚 = 6.69 [Ω] DC motor resistance 

𝐾𝐾𝑏𝑏 = 0.468 [V ∙ s/rad] DC motor back electromotive 
force constant 

𝐾𝐾𝑡𝑡 = 0.317 [N. m/A] DC motor torque constant 
𝑛𝑛 = 1 Gear ratio 
𝑓𝑓𝑚𝑚
= 0.0022 

Friction coefficient between body and DC 
motor 

𝑓𝑓𝑤𝑤 = 0 Friction coefficient between body and 
motion surface 

 
Replacing the physical parameter of the TWIP into 

equations (4) to (20). The matrices 𝐴𝐴1(𝑡𝑡) and 𝐵𝐵1(𝑡𝑡) are 
obtained: 

 

𝐴𝐴1 = �

0 0 1 0
0 0 0 1
0 −698,30 −416,80 416,80
0 139,96 53,41 −53,41

�. (21) 

 

𝐵𝐵1 = �

0 0
0 0

405,11 405,11
−51,91 −51,91

�. (22) 

 
Changing the continuous-time system into a discrete-time 

system with a sampling time of 10 [ms].  
The following matrices are obtained: 
 

𝐴𝐴[𝑘𝑘] = �

1 −0,010 0,003 0,007
0 1,004 0,0009 0,0091
0 −1,122 0,1207 0,8690
0 0,649 0,1129 0,8910

�. (23) 

 

𝐵𝐵[𝑘𝑘] = �

0,0068 0,0068
−0,0009 −0,0009
0,8546 0,8546
−0,1097 −0,1097

�. (24) 

 
The open-loop poles for the discrete-time system are: 
 

𝑝𝑝1 = 1. (25) 
 

𝑝𝑝2 = 0,0091. (26) 
 

𝑝𝑝3 = 1,0703. (27) 
 

𝑝𝑝4 = 0,9362. (28) 
 
As it is shown in equations from (25) to (27) the system is 

open-loop unstable, since it has two poles over or outside the 
unit circle. 

 
III. CONTROLLERS SYNTHESIS 

In this section the synthesis of each one of the three 
controllers, to stabilize the TWIP, is presented. Firstly, the 
PID is presented, then the LQR and finally the SMC is 
described. 

 

A. PID 
PID is the most common controller used in industrial 

control systems [11]. In order to implement a PID controller, 
the continuous PID (29) must be discretized. The trapezoidal 
integration is used to integral component and for the derivative 
component the forward integration is used, the equation is 
given as in (30), [15]. 

 

𝐺𝐺𝑐𝑐 = 𝐾𝐾𝑃𝑃 + 𝐾𝐾𝐷𝐷𝑠𝑠 +
𝐾𝐾𝐼𝐼
𝑠𝑠

. (29) 

 
𝑈𝑈(𝑧𝑧)
𝐸𝐸(𝑧𝑧) = 𝐾𝐾𝑃𝑃 + 𝐾𝐾𝐼𝐼 �

𝑇𝑇0

2
𝑧𝑧 + 1
𝑧𝑧 − 1

� + 𝐾𝐾𝐷𝐷 �
1
𝑇𝑇0

𝑧𝑧 − 1
𝑧𝑧

�. (30) 

 
Taking the inverse Z transform (31) of (30), (32) is 

obtained. 
 

𝑧𝑧−𝑛𝑛𝐹𝐹(𝑧𝑧) = 𝐹𝐹(𝑘𝑘 − 𝑛𝑛). (31) 
 

𝑢𝑢(𝑘𝑘) = 𝑢𝑢(𝑘𝑘 − 1) + 𝐸𝐸(𝑘𝑘) �𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼𝑇𝑇0

2
+
𝐾𝐾𝐷𝐷
𝑇𝑇0
�

+ 𝐸𝐸(𝑘𝑘 − 1) �−𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼𝑇𝑇0

2
−

2𝐾𝐾𝐷𝐷
𝑇𝑇0

� + 𝐸𝐸(𝑘𝑘 − 2) �
𝐾𝐾𝐷𝐷
𝑇𝑇0
�. 

(32) 

And: 
𝐸𝐸(𝑘𝑘) = 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟  (𝑘𝑘) − 𝑥𝑥(𝑘𝑘). (33) 

 
Where: 
 
𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 : It represents the desired states, in order to stabilize the 

TWIP. 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 = 0 
𝑥𝑥: It represents the value of the system outputs. 
 
Two PID controllers are designed, Fig. 2 shows the scheme. 

The first PID controller is designed in order to control the 
body pitch angle and the second PID to regulate the angular 
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position of the wheels.  

 
Fig. 2 PID Controller Scheme. 

 
In Table II the tuning parameters for PID controllers, which 

are obtained by trial and error, are shown. 
 

Table II. PID parameters 
 Variable 𝐾𝐾𝑃𝑃   𝐾𝐾𝐼𝐼   𝐾𝐾𝐷𝐷   

PID1 𝜓𝜓 -77.97 -0.01 -8.79 
PID2 𝜃𝜃 -1.07 -0.01 -1.36 

 

B. LQR 
The Linear Quadratic Regulator is a state-feedback control, 

which is useful to handle multivariable systems. The aim of 
LQR is to minimize a cost function, [15]. The control scheme 
is shown in Fig. 3. 
 

 
Fig. 3 LQR Scheme. 

 
The system is given by the following equation: 
 

𝑥𝑥(𝑘𝑘 + 1) = 𝐴𝐴𝐴𝐴(𝑘𝑘) + 𝐵𝐵𝐵𝐵(𝑘𝑘). (34) 
 
The optimal control will be written as a state feedback, 

given by the next expression: 
 

𝑢𝑢(𝑘𝑘) = −𝐾𝐾𝐾𝐾(𝑘𝑘). (35) 
 
Where: 
 
𝐾𝐾 is the gain matrix. The matrix 𝐾𝐾 has to bring the system 

into a final state 𝑥𝑥(𝑘𝑘1) = 0 from an initial state 𝑥𝑥(𝑘𝑘0). 
To determine the matrix 𝐾𝐾 the performance index, J, also 

called the cost function, should be minimized.  
 

𝐽𝐽 = � 𝑥𝑥𝑇𝑇(𝑘𝑘 + 1)𝑄𝑄𝑄𝑄(𝑘𝑘 + 1) + 𝑢𝑢𝑇𝑇(𝑘𝑘)𝑅𝑅𝑅𝑅(𝑘𝑘).
𝑘𝑘1−1

𝑘𝑘=𝑘𝑘0

 (36) 

 
Selecting the matrices 𝑄𝑄 (37) and 𝑅𝑅 (38), as follow: 

 

𝑄𝑄 = �

0,38 0 0 0
0 0,43 0 0
0 0 0,09 0
0 0 0 0,09

�. (37) 

 

𝑅𝑅 = �0,00017 0
0 0,00017�. (38) 

 
Solving the equation (36). The matrix 𝐾𝐾 (39) is obtained: 
 

𝐾𝐾 = �−1,099 −81,44 −1,368 −10,860
−1,099 −81,44 −1,368 −10,860�. (39) 

 
An integral term is added to eliminate the position error. 
Therefore, the control law is: 
 

�
𝑢𝑢𝑙𝑙
𝑢𝑢𝑟𝑟� = −𝐾𝐾𝐾𝐾(𝑘𝑘) + �

𝐾𝐾𝜃𝜃𝜃𝜃 ��𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 (𝑘𝑘) − 𝜃𝜃(𝑘𝑘)�

𝐾𝐾𝜃𝜃𝜃𝜃 ��𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 (𝑘𝑘) − 𝜃𝜃(𝑘𝑘)�
�. 

 

(40) 

Where: 
 
𝐾𝐾𝜃𝜃𝜃𝜃 : It represents an integral constant and 𝐾𝐾𝜃𝜃𝜃𝜃 = −0,006 

 

C. Sliding Mode Control 
Sliding Mode control (SMC) is a kind of robust control, 

[10, 16]. The control scheme is shown in Fig. 4. 
 

 
 

Fig. 4 SMC Scheme. 
 

From equation (34) and using the transformation matrix 𝑇𝑇1, 
[15]. The system is transformed into its controllable canonical 
form (41)  

 
𝑥̅𝑥(𝑘𝑘 + 1) = 𝐴̅𝐴𝑥̅𝑥(𝑘𝑘) + 𝐵𝐵�𝑢𝑢(𝑘𝑘). (41) 

 
Where: 
 

𝐴̅𝐴 = 𝑇𝑇1
−1𝐴𝐴𝑇𝑇1. (42) 

 
𝐵𝐵� = 𝑇𝑇1

−1𝐵𝐵. (43) 
 
The sliding surface is defined as: 
 

𝑠𝑠�𝑥𝑥(𝑘𝑘)� = 𝑆𝑆𝑆𝑆(𝑘𝑘) = 𝑆𝑆̅𝑥̅𝑥(𝑘𝑘)      𝑆𝑆̅ ∈ ℝ1𝑥𝑥𝑥𝑥 . (44) 
 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 10, 2016

ISSN: 1998-4464 284



 

 

 
Where: 

𝑆𝑆̅ = 𝑆𝑆𝑇𝑇1. (45) 
  

𝑆𝑆̅ = [𝑠𝑠1� 𝑠𝑠2� … 𝑠𝑠𝑛𝑛−1������ 1]. (46) 
 
Thereby, the sliding surface is defined as in (47). 
 

𝑠𝑠�𝑥𝑥(𝑘𝑘)� = 𝑆𝑆̅𝑥̅𝑥(𝑘𝑘) = 0. (47) 
 
𝑆𝑆̅𝑥̅𝑥(𝑘𝑘) = 𝑠𝑠1�𝑦𝑦 + 𝑠𝑠2�𝑦𝑦𝑘𝑘 + ⋯+ 𝑠𝑠𝑛𝑛−1������𝑦𝑦𝑘𝑘(𝑛𝑛−2)

+ 𝑦𝑦𝑘𝑘(𝑛𝑛−1). 
(48) 

 
𝑆𝑆𝑆𝑆(𝑘𝑘 + 1) = 0. (49) 

 
𝑆𝑆𝑆𝑆(𝑘𝑘 + 1) = 𝑆𝑆 �𝐴𝐴𝐴𝐴(𝑘𝑘) + 𝐵𝐵𝑢𝑢𝑒𝑒𝑒𝑒 (𝑘𝑘)� = 0.  (50) 

 
Therefore, from the equivalent control procedure: 
 

𝑢𝑢𝑒𝑒𝑒𝑒 (𝑘𝑘) = −(𝑆𝑆𝑆𝑆)−1𝑆𝑆𝑆𝑆𝑆𝑆(𝑘𝑘). (51) 
 
The complete SMC, Eq. (52), is composed by a continuous 

part, (51), and discontinuous part, (53), and can be represented 
as: 

𝑢𝑢(𝑘𝑘) = 𝑢𝑢𝑒𝑒𝑒𝑒 (𝑘𝑘) + 𝑣𝑣. (52) 
 

𝑣𝑣 = �
𝑐𝑐𝑐𝑐𝑐𝑐, 𝑠𝑠(𝑥𝑥) < 0
0, 𝑠𝑠(𝑥𝑥) = 0

−𝑐𝑐𝑐𝑐𝑐𝑐, 𝑠𝑠(𝑥𝑥) > 0
.� (53) 

 
In order to perform the angular wheel position tracking, the 

sliding surface and equivalent control depend on the error (33) 
instead of the state.  

The sliding surface is designed with the poles obtained from 
feedback the matrix 𝐾𝐾 (39). The sliding surface takes into 
account the optimal poles obtained from the LQR and 
therefore produces the best possible sliding movement until 
get the final desired value.  

 
𝑠𝑠�𝐸𝐸(𝑘𝑘)� = [1,924 147,918 1,669 21,065]. (54) 
 
And the equivalent control law is: 
 
𝑢𝑢𝑒𝑒𝑒𝑒 (𝐸𝐸(𝑘𝑘))
= [−1,924 −160,270 −2,717 −21,581]. 

(55) 

 
In order to reduce the chattering produced by high 

frequency switching, a filter is used (56), where 𝑐𝑐𝑐𝑐𝑐𝑐 = 0,3 
and 𝐿𝐿 = 0,64.  

 

𝑣𝑣 =

⎩
⎨

⎧−𝑐𝑐𝑐𝑐𝑐𝑐, 𝑠𝑠�𝐸𝐸(𝑘𝑘)� < −𝐿𝐿
𝑠𝑠
𝐿𝐿

, �𝑠𝑠�𝐸𝐸(𝑘𝑘)�� ≤ 𝐿𝐿

𝑐𝑐𝑐𝑐𝑐𝑐, 𝑠𝑠�𝐸𝐸(𝑘𝑘)� > 𝐿𝐿

�. (56) 

 

The filter is shown in Fig. 5.  

 
 

Fig. 5 Filter for chattering reduction. 
 

 An integral part is aggregated by maintaining the error 
position equal to zero. Thus, the control law is given by the 
following expression: 

 

𝑢𝑢𝑙𝑙 = 𝑢𝑢𝑟𝑟 = 𝑢𝑢𝑒𝑒𝑒𝑒 (𝑘𝑘) + 𝑣𝑣 + 𝐾𝐾𝜃𝜃𝜃𝜃 �(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 (𝑘𝑘) − 𝜃𝜃(𝑘𝑘)). (57) 

 
Where: 
 
𝐾𝐾𝜃𝜃𝜃𝜃 : It represents an integral constant and 𝐾𝐾𝜃𝜃𝜃𝜃 = −0,006. 

IV. SIMULATION RESULTS 
In this section, the simulation results are presented using 

Simulink-Matlab®. The performance of the controllers is 
tested with an initial condition in the body pitch angle. 

 
𝑥𝑥0 = [0 0,1 0 0]𝑇𝑇 . (58) 

 
Figures 6, 7, and 8 show the evolution of the Body Pitch 

Angle 𝜓𝜓, Angular Wheel Position 𝜃𝜃 and input to the system 𝑢𝑢. 
 

 
 

Fig. 6 Body pitch angle. 
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Fig. 7 Angular wheel position. 
 

The Sliding Mode Control presents the best response to 
stabilize the TWIP. It has a smooth response and the smallest 
overshoot in ψ and θ. The output of the Sliding Mode 
Controller does not present chattering, it can be seen in Figure 
8.  

 
 

Fig. 8 Motor input voltage 
 

V. EXPERIMENTAL RESULTS 

In this section, the experimental results are shown. All the 
controllers are implemented and applied to the educational 
platform Mindstorms NXT 2.0, of Lego, in the TWIP 
configuration. 

 
 
In order to compare the performance of the controllers in 

real-time, three tests are carried out. The test considered are: 
disturbances case, robustness to model uncertainties and 
disturbances, and the last test considers tracking and 
disturbances over a steep path. 

All controllers, in the three test, are compared using the 
Integral Square Error (ISE). The ISE is calculated with: 

 

𝐼𝐼𝐼𝐼𝐼𝐼 = � �𝑒𝑒(𝑡𝑡)�2𝑑𝑑𝑑𝑑
𝑡𝑡

0
. ( 57) 

 
Where: 
 
𝑒𝑒(𝑡𝑡): It represents the error between the reference and the 

state feedback. 
 

A. Disturbance 
For this test, an external force 𝐹𝐹 is used. The force is 

exerted using a pendulum system as it is shown in Fig. 9.  
 

 
 

Fig. 9 Scheme used to apply an external force 
 
The force is obtained by: 
 

𝐹𝐹 = 𝑚𝑚 ∙ 𝑔𝑔 ∙ sin(𝐴𝐴). (58) 
 
Where: 
 
𝑚𝑚: It represents the mass of the pendulum system; its value 

is 0.03 [𝑘𝑘𝑘𝑘]. 
𝑔𝑔: It represents the gravity, the value is 9.8 [𝑚𝑚/𝑠𝑠2]. 
𝐴𝐴: It is the angle formed between the vertical axis and the 

rope holding the mass. In this case, the angle is 35°. 
 
Solving the equation (58). The resulting force 𝐹𝐹 (59) is: 
 

𝐹𝐹 = 0,1686 (𝑁𝑁 ∙ 𝑚𝑚). (59) 
 
 Fig. 10 shows the test evolution, in the first picture the 

TWIP is stabilized, then in the second picture the force 𝐹𝐹 is 
applied to the TWIP, in pictures 3 and 4 the TWIP tries to 
stabilize and finally picture 5 show the TWIP stable. 
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Fig. 10 Test evolution when an external force is applied. 
 

As is shown in Figures 11, 12, and 13 the progression of the 
Body Pitch Angle 𝜓𝜓, Angular Wheel Position 𝜃𝜃 and input to 
the system 𝑢𝑢 are pictured for each controller. 

 

 
 

Fig. 11 Body pitch angle. 
 

 
 

Fig. 12 Angular wheel position. 

 
  

Fig. 13 Motor input voltage. 
 

Table III. ISE Comparison of three controllers with 
disturbance. 

 PID LQR SMC 
ISE 

𝜓𝜓 0.0066 0.0047 0.0051 
𝜃𝜃 2.2081 7.0679 15.3873 

 
The LQR presents the best response, with less overshoot 

and less oscillations. The LQR output is smoother and with a 
lower settling time. 
 

B. Model uncertainties 

Fig. 14 illustrates this test. Firstly, the robot weight is 
increased in 40%, it can be observed in picture 1.  Picture 2 
shows that the robot is hit with an external force 
of  0,147 (𝑁𝑁𝑁𝑁) with an angle equal to 30°, in the next two 
figures the robot tries to stabilize. 

 

 
 

Fig. 14 Increasing the weight and external force. 
 
Figures 15, 16, and 17 show the evolution of the Body Pitch 

Angle 𝜓𝜓, Angular Wheel Position 𝜃𝜃 and input to the system 𝑢𝑢. 
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Fig. 15 Body pitch angle. 
 

 
 

Fig. 16 Angular wheel position. 
 

Table IV. ISE Comparison of three controllers with model 
uncertainties 

 PID LQR SMC 
ISE 

𝜓𝜓 0.0175 0.0045 0.0027 
𝜃𝜃 6.1256 4.2191 5.4097 

 
In this test, The PID controller was not able to stabilize the 

TWIP as is shown in Fig. 15. For this reason any force was 
applied over the TWIP. LQR and SMC responses are very 
close. 

 

 
 

Fig. 17 Motor input voltage. 
 

C. Tracking and disturbances 

In the third test, a steep path is used as reference. The 
surface pattern used is shown in Fig. 18. It has a downward 
ramp and a step to simulate disturbances.  

 

 
 

Fig. 18 Surface scheme for tracking and disturbances test. 
 
Fig. 19 shows the progress of the robot on the steep path. It 

can be seen from picture 1 to figure 9. 
 

 
 

Fig. 19 TWIP tracking over a steep path 
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Figure 20 shows how the TWIP maintains upright in spite 
of the unevenness of the surface. The tracking results are 
shown in Fig. 21.  

 

 
 

Fig. 20 Body pitch angle 
 

 
 

Fig. 21 Angular wheel position. 
 

Table V. ISE Comparison of three controllers in terms of 
tracking and disturbance. 

 PID LQR SMC 
ISE 

𝜓𝜓 0.0168 0.0159 0.0107 
𝜃𝜃 10.7178 13.6665 32.8634 

 

SMC offers the best response to control the TWIP pitch angle, 
but PID and LQR present better results than SMC to control 
the angular position of wheels. 
 

 
 

Fig. 22 Motor input voltage. 
 

VI. CONCLUSIONS 
In this article, three controllers: PID, LQR, and Sliding 

Mode Controller (SMC) were successfully designed and 
implemented to stabilize a TWIP. 

Based on the results, for nominal cases, on both simulation 
and experimental results, it can be concluded that the three 
implemented control schemes are capable to stabilize the 
TWIP.  

All the controllers were compared. The SMC had a better 
performance than LQR and PID for the body pith angle. The 
LQR response was faster than the other two. The SMC had a 
better disturbance rejection capability than LQR and PID 
controllers. In the real experiments the SMC output presents a 
little chattering in spite of the filter, which is not presented in 
the simulation results. 

For modeling uncertainty case, the Sliding Mode Controller 
showed better response than the other two. The PID fails in 
the second test. 

Finally, three controllers were able to control the TWIP 
when a steep pattern is used.  
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