
 

 

  
Abstract—A novel model predictive control method based on 

subspace identification for linear parameter varying (LPV) systems is 
presented. The LPV systems in innovations are introduced to derive 
the subspace prediction output with the subspace identification 
algorithm. The subspace prediction output is composed of the 
time-varying system matrices and the transition matrices. Next, the 
subspace prediction output is transformed to the appropriate one for 
the design of the controller. Through RQ factorization, the R matrix 
can be obtained from the above subspace prediction output. The 
subspace predictors are derived from R matrix using the orthogonal 
projection. Then, the subspace predictors are used to design the model 
predictive controller. The controller is to get the control sequence 
which can be obtained by minimizing the cost function and the control 
input is calculated from the control sequence. It’s shown that the 
integrated action is incorporated in the control effect to eliminate the 
steady error. The simulation example is a model of the out-of-plane 
dynamics of a flexible rotor blade of a fixed speed wind turbine and it 
can be represented as the LPV system state-space model. The 
simulation results are provided to illustrate the performance of this 
method. 
 
 

Keywords—Linear parameter varying systems, Subspace 
identification, Model predictive control, Flapping dynamics of a wind 
turbine 

I. INTRODUCTION 
HE model predictive control has been attractive for decades 
in control theory field and has become one of the main 

methods of modern control and achieved wide applications in 
industry processes [1], [2], [3], [4]. The traditional industrial 
predictive control is based on input-output model, including 
parametric and nonparametric ones. In order to improve the 
control performance, a state space model should be adopted, so 
the modern filter theory and the design method of controller 
developed in recent years can play a role [5]. However, it was 
unable to obtain the accurate state-space model among the 
complex industrial targets due to the limitation of identified 
method. Subspace identification method has changed this 
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situation perfectly, the control workers may relieve completely 
from the tedious modeling by mechanism. The accurate 
state-space model can be obtained when there are enough 
process input and output data [6], [7], [8]. By combining the 
merits of subspace identification and MPC, subspace based 
model predictive control (SPC) was formed [9], [10], [11].  

Linear parameter varying (LPV) systems are a particular 
class of nonlinear systems which can be thought of as 
time-varying systems, for which the variation depends explicitly 
on a time-varying parameter referred to as the scheduling or 
weight sequence [12]. LPV systems are widely used in control 
field, especially in gain-scheduling, and robust control 
techniques [13], [14].  The applicability of subspace techniques 
to periodically time-varying systems has already been shown in 
some researchers. Vincent and Verhaegen [15] presented kernel 
methods for subspace identification which have much smaller 
dimensions in LPV systems. Felici et al. [16] presented the 
periodic scheduling sequence to determine the column space of 
the time-varying observability matrices. Wingerden and 
Verhaegen [17] proposed subspace identification method with 
affine parameter dependence of LPV systems for the open- and 
closed-loop data. But these papers only solve the identification 
problem. It’s a powerful technique using subspace identification 
to design model predictive controller in LPV systems and the 
SPC for LPV systems has never been seen in any other 
publications. 

In this paper, the main contribution is that we present a novel 
model predictive control method based on subspace 
identification for LPV systems. The subspace prediction output 
of the LPV system is first derived by recursive substitution. 
Through RQ factorization, the subspace predictors can be 
obtained from R matrix. Next, construct the incremental form of 
cost function in MPC and the subspace predictors are 
incorporated to get the control input. 

The outline of the paper is arranged as follows. We start in 
Section 2 with the prediction output for LPV systems using 
subspace identification. In Section 3, we give the subspace 
predictive control method for LPV systems. In Section 4 the 
simulation example is presented that show the potential of the 
proposed method. Section 5 ends with the conclusions. 

II. SUBSPACE PREDICTION OUTPUT FOR LPV SYSTEMS 

Consider the LPV system described by innovations form 
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1k k k k k k kx A x B u K e+ = + +                                                                  (1) 

k k k k k ky C x D u e= + +                                                              (2) 
 

where n
kx ∈ , r

ku ∈ , l
ky ∈ , are state, input and output 

vectors respectively. l
ke ∈  is zero-mean white Gaussian 

sequence which is independent of the input ku  and of the initial 

state 0x . 
    The time-varying system matrix is now given by 
 

( ) ( )

1

m
i i

k k
i

A A µ
=

= ∑                                                                       (3

) 
 

and kB , kC , kD  and kK  are similar to kA . The matrices 
( )i n nA ×∈ , ( )i n rB ×∈ , ( )i l nC ×∈ , ( )i l rD ×∈ , 
( )i n lK ×∈ . The model weights ( )i

kµ ∈ . 

Define the output vector d
ky  as 

 
TT T T

1 1
d
k k k k dy y y y+ + − =                                              (4) 

 
and the input vector d

ku , the noise vector d
ke  are similar to d

ky  
where d  is defined as the window size. Define the transition 
matrix ( , ) n n

A k jΦ ×∈  for k j> : 
 

1 2( , )A k k jk j A A AΦ − −=                                                        (5) 

 
where ( , )A nk k IΦ = , I  is the identity matrix. 

The subspace prediction output of the LPV system can be 
derived by recursive substitution of Eqs. (1)-(2): 
 

d d d d d d
k k k k k k ky x H u F e= Γ + +                                                          (6) 
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where , , 1 1( 1, )d
k i j k i A k jh C k i k j BΦ+ − + −= + − + , 

 , , 1 1( 1, )d
k i j k i A k jf C k i k j KΦ+ − + −= + − +  with 2, ,i d=  , 

1, , 1j d= − , and i j> . 
  To use the subspace prediction output to design model 
predictive controller, define the period is p  and N  samples in 
system. The equation (6) can be transformed as 
 

, , , , , , ,
k d k d k d k

i d N k i N k i d N k i d NY X H U F E= Γ + +                                           (7) 
 

where  

, , ( 1) ( 1)
k d d d

i d N k ip k i p k i N pY y y y+ + + + + − =   , 

 , , ( 1) ( 1)
k d d d
i d N k ip k i p k i N pU u u u+ + + + + − =   ,  

, , ( 1) ( 1)
k d d d
i d N k ip k i p k i N pE e e e+ + + + + − =   ,  

, ( 1) ( 1)
k
i N k ip k i p k i N pX x x x+ + + + + − =   . 

III. SUBSPACE PREDICTIVE CONTROL FOR LPV SYSTEMS 

Construct the following instrumental variable matrix NW : 
 

0, ,

0, ,

k p d
d Nk p d

N k p d
d N

U
W

Y

+ −
+ −

+ −

 
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where 
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The 1, ,
k

d NU  and 1, ,
k
d NY  are represented as  

2
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  A series of algebraic calculations are carried out on (7) and 
take the following RQ factorization: 
 

T
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T
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                                         (9) 

 

The optimal prediction 1, ,
k

d NY  can be found from the 

orthogonal projection of the row space of 1, ,
k
d NY  onto the row 

space of the matrix 
1, ,

k p d
N

k
d N

W
U

+ − 
 
  

: 
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The optimal prediction 1, ,
k

d NY also can be written as 
 


1, , 1, ,

k k k p d k k
d N w N u d NY L W L U+ −= +                                                   (11) 

 
where k

wL  is the subspace predictor that corresponds to the past 

input-output data and k
uL is the subspace predictor that 

corresponds to the future input data. 
    Through the implementation of the orthogonal projection, by 
letting 
 

†

11
31 32

21 22

0k
k k k k
w u k k
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L L R R

R R
 

   =     
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                                 (12) 

 
where superscript †  represents the Moore-Penrose 

pseudo-inverse. We can get the k
wL  and k

uL . 
Define an incremental form of cost function which has an 

integrated action to eliminate the steady error: 
 

2
T
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1 1
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T T

ˆˆ( ) ( )

ˆ(ˆ  ( ) )

u

N

k i k ik i k k i k
i

N

k j k j
j

f f ff ff

J r y Q r y

u R u

r Q r u R uy y

+ ++ +
=
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=
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+ ∆ ∆
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∑

∑                  (13) 

 
where 2N  and uN  are the prediction and control horizon 

respectively, k ir +  is the reference setpoint signal at the current 
time k i+ , Q  and R  are the weighting matrices, the subscript 
f  represents “future”. The prediction output of MPC can be 

expressed as 
 
ˆ k k

f l k l w p l u fy F y L w L u= + Γ ∆ + Γ ∆                                        (14) 

 
where  

l

l
l

l

I
I

F

I

 
 
 =
 
 
 



, 

0 0
0

l

l l
l

l l l

I
I I

I I I

 
 
 Γ =
 
 
 





   



, 

1

2ˆ

k p

k p
f

k p d

y
y

y

y

+ +

+ +

+ +

 
 
 =
 
 
  



, 

1

1

k p

k p
f

k p d

u
u

u

u

+

+ +

+ + −

∆ 
 ∆ ∆ =
 
 
∆  



, 

1

2

1

1

k p d

k p d

k p
p

k p d

k p d

k p

y
y

y
w

u
u

u

+ − +

+ − +

+

+ −

+ − +

+ −

 ∆
 ∆ 
 
 

∆ ∆ =  ∆ 
∆ 

 
 
 ∆ 





. 

Substituting the ˆ fy  into the cost function J  and 

minimize the J . The control sequence fu∆  can be 

obtained: 
 

( )
( ) ( )

T 1

T

( () )

( )

k k
l u lf u

k k
l u l w p l k k

L Q L R

L L w F y r

u

Q

−
∆ = −

×

Γ Γ +

Γ Γ ∆ + −
                       (15) 

 
At each time sample, only the first element of fu∆  is used 

for calculating the control input. So the control input ku  is 
 

1k k ku u u−= + ∆                                                                      (16) 
 
    At the next time sample, we measure the new input-output 
data and the new control input will be calculated using above 
procedure. 

IV. SIMULATION EXAMPLE 

The simulation example is a model of the out-of-plane 
dynamics of a flexible rotor blade of a fixed speed wind 
turbine [18]. Among other phenomena of the wind, gravity 
will lead to a nonlinear description of the flapping 
dynamics. The produced nonlinearity can be described by 
an LPV model using the scheduling sequence as the cosine 
of the blade rotation angle. After choosing some wind 
turbine parameters, the LPV system state-space model can 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 10, 2016

ISSN: 1998-4464 323



 

 

be obtained from the following differential equations 
governing the flapping dynamics: 

 

(1) (2)

(1) (2)

(1) (2)

(1) (2)

(1) (2)

0 0.0734 0.0021 0
,
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0.07221 0
,
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1 0 0 0 ,

0 0 ,

0.1 0
.

0.02 0

A A

B B

C C

D D

K K

 −   =    − − − 
−   =    − 

  =    
  =    

   =     

   (17) 

 

First, we introduce the identification step to verify the 
model accuracy. The flapping dynamics is excited using a 
constant wind speed with added turbulence modeled by a 
white noise input signal. The parameters are given as 
follows, the samples 5000N = , the period 10p = , the 

window size 6d = . The eigenvalues of ( )iA  matrices are 
showed in Fig. 1. It can be seen as a satisfactory model. 

To test the cross validation, a form of prediction error is 
defined as: 
 

( )
( )

ˆvar
VAF=max{1- ,0} 100

var
k k

k

y y
y
−

×                                         (18) 

 

where ky  and ˆky  are the values at instant k  of process 
and model output respectively. The LTI (Linear Time 
Invariant) method of subspace identification is introduced 
as a comparison. The VAF on the validation data set can be 
seen in Table 1. We can get from (18) that with the increase 

of VAF, the model is more satisfactory. The cross 
validation results indicate that the LPV identified model is 
more accurate than LTI identified model. 

Then, the identified LPV model is used to design the 
subspace predictive controller. The parameters of LPV 
subspace predictive controller (LPV-SPC) are tuned as 
follows. The prediction horizon 2 20N =  and the control 
horizon 10uN = . The weighting matrices are respectively 
represented as 200.5*Q I= , 100.1R I= ∗ . Totally 900s are 
conducted in simulation. For comparison, the LTI subspace 
predictive controller (LTI-SPC) is used to control this 

system [19]. In the set-point test, Rf is defined as the 
reference output. The performance of output using the 
proposed LPV-SPC and the LTI-SPC is shown in Fig. 2.  

For the analysis of Fig. 2, a form of prediction error ξ  is 

conducted to verify the performance of output: 
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2
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2

1

N
p

i i
i

N

i
i

y y

y
ξ =

=

−
=

∑

∑
                       (19) 

where iy  and p
iy  are the values at instant i  of reference 

and process output respectively. The smaller the value of 
ξ , the better the performance of the controller. The 
compared ξ  is presented in Table 2 and we could 
conclude that LPV-SPC expresses better comparing with 

Table 1. The VAF of LPV and LTI identified model 
Identified method LPV LTI 

VAF 98.0371 86.5233 
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Fig. 1 The eigenvalues of ( )iA  matrices 
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the LTI-SPC. This is attributed to the system nonlinear 
characteristic which can be represented by the LPV model. 

 

 

V. CONCLUSION 
In the article, we presented a subspace based model 

predictive control method for linear parameter varying (LPV) 
systems. The time-varying matrices are used to get the subspace 
prediction output through recursive substitution. Then, the 
subspace predictive controller applied to LPV systems is 
designed using the subspace predictors. The method was 
implemented on flapping dynamics of a wind turbine. The 
primary contribution of this article is that we are able to obtain 
the subspace predictors to design the model predictive 
controller in a LPV system and we do not need to obtain the 
state space model of the system. 

In the future, we will focus on using some effective 
calculation tools to reduce the computation of the method. 
Further, we will extend the application object to a more 
complex wind turbine system. 
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Table 2. The ξ  of LPV-SPC and LTI-SPC methods 
Control method LPV-SPC LTI-SPC 

ξ  0.03672 0.05731 
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