
 

 

  
Abstract—This paper is intended to present not so common and 

frequently used approach to the definition of uncertainty bounding 
set for systems with parametric uncertainty and related tools for 
robust stability analysis. More specifically, the work deals with 
spherical families of polynomials. The set of illustrative examples 
demonstrates an easy-to-use graphical method of robust stability 
testing based on the combination of the value set concept and the 
zero exclusion condition by means of the Polynomial Toolbox for 
Matlab. 
 
Keywords—Spherical Uncertainty, Weighted Euclidean Norm, 

Robust Stability Analysis, Value Set Concept, Zero Exclusion 
Condition. 

I. INTRODUCTION 
OBUSTNESS of control systems represents attractive 
research topic with a countless number of real life 

applications [1] – [5]. Parametric uncertainty is commonly 
used tool for the description of real plants as it allows using 
relatively simple and natural mathematical models for 
processes which behavior can be much more complicated. The 
structure (i.e. order) of the models with parametric uncertainty 
is considered to be fixed, but its parameters can lie within 
given bounds. Within this contribution, these bounds are 
going to be assumed in a not so frequently applied way. 

The typical, mostly used and naturally comprehensible 
approach assumes the bounds in the shape of a box. Here, the 
alternative approach, which uses the bounds in the shape of a 
sphere (ellipsoid), is going to be studied. The scientific 
literature contains much more works related to the classical 
“box” uncertainties than to the spherical ones. However, some 
basic information, as well as possible extensions and various 
applications, can be found e.g. in [6] – [10]. 

This paper is focused on polynomials with parametric 
uncertainty and spherical uncertainty bounding set. More 
specifically it deals with the description of a spherical 
polynomial family and with tools for analysis of its robust 
stability. Special attention is paid to very universal graphical 
tool based on the combination of the value set concept and the 
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zero exclusion condition [6]. The described ideas are followed 
by the set of illustrative examples supported by plots from the 
Polynomial Toolbox for Matlab [11], [10]. The paper is the 
extended version of the previously published conference 
contributions [12], [13]. 

The paper is organized as follows. In Section 2, basic 
notation and theoretical background of systems with 
parametric uncertainty and uncertainty bounding sets are 
provided. The Section 3 is then focused on the description of 
spherical polynomial families. Next, tools for robust stability 
analysis with especial emphasis on the value set concept and 
the zero exclusion condition are shown in Section 4. The 
following extensive Section 5 presents three illustrative 
examples of practical robust stability investigation for selected 
spherical polynomial families. And finally, Section 6 offers 
some conclusion remarks. 

II. PARAMETRIC UNCERTAINTY AND UNCERTAINTY 
BOUNDING SET 

Generally, the systems with parametric uncertainty can be 
described through a vector of real uncertain parameters (often 
called just uncertainty) q. The continuous-time uncertain 
polynomial, which is a typical object of researchers’ or 
engineers’ interest, can be written in the form: 
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where iρ  are coefficient functions. 

Then, so-called family of polynomials combines together 
the structure of uncertain polynomial given by (1) with the 
uncertainty bounding set Q. Therefore, the family of 
polynomials can be denoted as: 

 
{ }( , ) :P p q q Q= ⋅ ∈  (2) 

 
The uncertainty bounding set Q is usually given in advance, 

typically by user requirements. It is supposed as a ball in an 
appropriate norm. The most frequently used case utilizes L∞ 
norm: 
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q q
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which means that a ball in this norm is a box. Practically, the 
box is defined by the components, i.e. by the real intervals 
which can the uncertain parameters lie within. 

Another approach employs L2 (Euclidean) norm: 
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or more generally the weighted Euclidean norm: 

 

2,
T

W
q q Wq=  (5) 

 
where kq ∈R  and W is a positive definite symmetric matrix 
(weighting matrix) of size k k× . Such definition of Q means 
that a ball in the norm can be referred as a sphere, or more 
generally as an ellipsoid. Under assumption of 0r ≥  and 

0 kq ∈ R , the ellipsoid (in kR ) which is centered at 0q  can be 
expressed by means of: 

 
( ) ( )0 0 2T
q q W q q r− − ≤  (6) 

 
or equivalently by: 

 
0

2,W
q q r− ≤  (7) 

 
The ellipsoid can be easily visualized in two-dimensional 

space ( 2k = ) for: 
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as it is shown in Fig. 1 [6]. 

 

 
Fig. 1 An ellipsoid defined by weighted Euclidean norm 

 
A decision on what type of norm should be used for 

uncertainty bounding set Q depends on several factors. In 
 

many engineering problems, the real uncertain physical 
parameters are independent of each other and thus Q should 
be a box naturally. However, according to [6], the ellipsoids 
could be useful and justifiable under “imprecise description” 
of the uncertainty bounds, i.e. if actual Q is located between 
some minimum and maximum and a suitable ellipsoid can 
interpolate them. The choice should respect also available 
tools for solving the specific problem. Besides, the 
mathematical models obtained on the basis of physical laws 
usually have Q in the shape of a box, but the identification 
methods mostly lead to the ellipsoids [14]. 

III. SPHERICAL POLYNOMIAL FAMILY 
The family of polynomials given by (2) is called spherical 

one [6] if ( , )p s q  has an independent uncertainty structure (all 
coefficients of the polynomial are independent on each other) 
and Q is an ellipsoid. 

In fact, one can work with two basic representations of 
spherical polynomial families. The first type assumes that 
polynomial is centered at zero: 
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where W is a positive definite symmetric matrix, 0q  is the 
nominal and 0r ≥  means the radius of uncertainty. In the 
second representation, Q is considered to be centered at zero: 
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where moreover 0

0 ( ) ( , )p s p s q= . 
As an example, suppose a spherical polynomial family: 
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which can be centered on the vector: 

 
( )0 0.5, 1.5, 2.5q =�  (12) 

 
Then, the resulting spherical polynomial family, equivalent 

to (11), can be written as: 
 

0 2
2 2q r w+  

0 2
2 2q r w−  

0
2q  

2q  

0 2
1 1q r w−  0 2

1 1q r w+  0
1q   

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 10, 2016

ISSN: 1998-4464 327



 

 

2
0 1 2

0 2,

( , )
1

1 0 0
0 2 0
0 0 3

W

p s q q q s q s
q q

W

= + +
− ≤

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

� � �
� �

 (13) 

IV. ROBUST STABILITY ANALYSIS 
Obviously, the most important feature of all control circuits 

is their stability. Under conditions of parametric uncertainty, 
this term can be expanded to robust stability, which means 
that the whole family of closed-loop control systems must 
remain stable for all possible allowed perturbations of system 
parameters. 

From the practical testing point of view, we are interested 
in the robust stability of the family of closed-loop 
characteristic polynomials in the form (2). This family is 
robustly stable if and only if ( , )p s q  is stable for all q Q∈ , 
i.e. all roots of ( , )p s q  must be located in the strict left half of 
the complex plane for all q Q∈ . 

There are many results for robust stability analysis of 
systems with parametric uncertainty for Q in a shape of a box. 
Their choice depends mainly on the complexity of the 
structure of investigated polynomial (or system). Doubtless, 
the most famous tool is the Kharitonov theorem [15] which is 
suitable for investigation of the robust stability of interval 
polynomials (with independent uncertainty structure). 
Moreover, several modifications and generalizations of 
classical Kharitonov theorem are also available in the 
literature [6], [16]. Among other known tools it belong e.g. 
the edge theorem, the thirty-two edge theorem, the sixteen 
plant theorem, the mapping theorem, etc. [6]. Furthermore, it 
exists a graphical method which is applicable for wide range 
of robust stability analysis problems (from the simplest to the 
very complicated uncertainty structures, for various stability 
regions, etc.). This technique combines the value set concept 
with the zero exclusion condition [6], [17]. 

Robust stability analysis for systems affected by parametric 
uncertainty for the case of Q in a shape of an ellipsoid is also 
relatively well developed and there are several methods 
available. The Soh-Barger-Dabke theorem [18], [6] represents 
the analogical tool to Kharitonov theorem for spherical 
polynomial families. Furthermore, extensions are provided by 
the theorem of Barmish and Tempo [19], [6] based on the idea 
of the spectral set and the theorem of Biernacki, Hwang and 
Bhattacharyya [20], [6] which solves the robust stability for 
closed-loop system with affine linear uncertainty structure 
(e.g. a spherical plant family in feedback connection with a 
fixed controller). Besides, well-known Tsypkin-Polyak 
function [21] can be used for robust stability testing or 
actually for computation of robustness margin under spherical 
uncertainty. In fact, the spherical version of Tsypkin-Polyak 
criterion is related to the results given by Soh-Berger-Dabke 
theorem [6]. 

 

Nevertheless, the very universal technique based on the 
value set concept and the zero exclusion condition, which is 
described in [6], is applicable also to the spherical polynomial 
families.  

The value set at each frequency ω  for a spherical 
polynomial family (2) supposed in the form: 
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is given [6], [22] by an ellipse centered at nominal 0 ( )p jω , 
with the major axis (in the real direction) having the length: 
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and with minor axis (in the imaginary direction) having the 
length: 
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where W is a weighting matrix: 

 
( )2 2 2

1 2, , , nW diag w w w= …  (17) 

 
Moreover, for the special degenerate case of 0ω = , the 

value set is just the real interval: 
 

0 0( 0, ) ,p j Q a r a r= − +  (18) 
 
The practical visualization of the ellipsoidal value sets can 

be conveniently performed by means of the Polynomial 
Toolbox 2.5 [11], [22], [10] by using the “spherplot” 
command. 

Then, the zero exclusion condition can be applied for 
testing robust stability in the following way: The spherical 
polynomial family (2) with invariant degree and at least one 
stable member (e.g. nominal polynomial) is robustly stable if 
and only if the complex plane origin is excluded from the 
value set ( , )p j Qω  at all frequencies 0ω ≥ , i.e. the spherical 
polynomial family is robustly stable if and only if: 

 
0 ( , ) 0p j Qω ω∉ ∀ ≥  (19) 

 
Generally, the detailed description, proofs and examples of 

the zero exclusion principle applications can be found in [6] 
or for instance in [14], [17]. 
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V. ILLUSTRATIVE EXAMPLES 

A. Example 1 
First, suppose the spherical polynomial family defined by 

the uncertain polynomial: 
 

( ) ( ) ( )
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1 0
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1.5 0.5

p s q q s q s q s

q s q
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and by the uncertainty bounding set: 
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i.e.: 

 
2 2 2 2 2
0 1 2 3 45 4 3 2 0.5q q q q q+ + + + ≤  (22) 
 

The polynomial (20) can be easily expressed in the form (14) 
as: 

 
4 3 2

4 3 2
4 3 2 1 0

( , ) 3.5 2.5 1.5 0.5p s q s s s s
q s q s q s q s q

= + + + + +
+ + + + +

"  (23) 

 
The nominal polynomial is stable and so the family fulfills 

the condition of at least one stable member. The value sets for 
the range of frequencies from 0 to 3 with step 0.01 was 
obtained with the assistance of the Polynomial Toolbox 2.5 
for Matlab and its routine “spherplot” [11], [22]. They are 
plotted in Fig. 2. 
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Fig. 2 The value sets for the family (20), (21) 

 
The zoomed version of the same value sets, depicted in Fig. 

3, provides better view of the neighborhood of the complex 
plane origin which is critical area for decision on robust 
(in)stability. 
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Fig. 3 The value sets for the family (20), (21) – a detailed view near 

the point [0, 0j] 
 
As can be observed, the zero point is included in the value 

sets which means that the spherical polynomial family (20), 
(21) is not robustly stable. In other words, not all members of 
the prescribed family are stable. 

The example of robustly stable case can be illustrated e.g. 
just by using the “narrower” uncertainty bounding set: 
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The full overview of the value sets for the same range of 

frequencies as in the previous plots can be seen in Fig. 4 and 
the zoomed version in Fig. 5. Obviously, the family has a 
stable member and the value sets do not include the origin of 
the complex plane and consequently the family (20), (24) is 
robustly stable. 
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Fig. 4 The value sets for the family (20), (24) 
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Fig. 5 The value sets for the family (20), (24) – a detailed view near 

the point [0, 0j] 
 

B. Example 2 
Now, assume another spherical family of polynomials given 

by the uncertain polynomial of tenth order: 
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and by the corresponding uncertainty bounding set: 

 
( )2,

0.3; 2,3,1, 2,3,1, 2, 4,3,1, 2
W

q W diag≤ =  (26) 

 
The nominal polynomial is stable which means that the 

condition of at least one stable member is fulfilled. The value 
sets for the range of frequencies from 0 to 10 with step 0.01 
are plotted in Fig. 6. 
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Fig. 6 The value sets for the family (25), (26) 

Since the polynomial (25) is of the tenth order, the value sets 
from Fig. 6 successively go through ten quadrants. Four variously 
zoomed versions of the full Fig. 6 are shown in Figs. 7-10. 
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Fig. 7 The value sets for the family (25), (26) – a little zoomed view 
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Fig. 8 The value sets for the family (25), (26) – a moderately zoomed view 
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Fig. 9 The value sets for the family (25), (26) – a more zoomed view 
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Fig. 10 The value sets for the family (25), (26) – a detailed view near 

the point [0, 0j] 
 
The set of Figs. 6-10 reveals that the zero point is excluded 

from the value sets. Since the family has a stable member and 
the value sets do not include the origin, the family (25), (26) is 
robustly stable. 

C. Example 3 
The last example is intended to demonstrate the importance 

of at least one stable member precondition fulfillment, 
because if it is ignored it can lead to the wrong results. 

Assume the spherical polynomial family: 
 

( ) ( ) ( )
( ) ( )

( )

4 3 2
4 3 2

1 0

2,

( , ) 1 1 1

1 1

0.1

5, 4,3, 2,1
W

p s q q s q s q s

q s q

q

W diag

= + + + + + +

+ + + +

≤

=

"

 (27) 

 
The corresponding value sets for the range of frequencies 

from 0 to 3 with step 0.01 are depicted in Fig. 11 with closer 
look near the origin in Fig. 12. 
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Fig. 11 The value sets for the family (27) 

-0.5 0 0.5 1 1.5 2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Real Axis

Im
ag

in
ar

y 
A

xi
s

 
Fig. 12 The value sets for the family (27) – a detailed view near the 

point [0, 0j] 
 
As the complex plane origin is obviously excluded from the 

value sets, it could (wrongly) indicate the robust stability of 
the family. However, the family does not have any stable 
member and thus the zero exclusion condition is not fulfilled 
actually. In fact, all members of the family are unstable which 
is the reason why the stability border is not crossed at all and 
why the zero point is not included. 

VI. CONCLUSION 
The paper has been aimed to an alternative bounding of 

uncertain parameters in systems with parametric uncertainty, 
i.e. the main object of interest has been the spherical 
polynomial family and its robust stability analysis. The basic 
theoretical descriptions have been accompanied by the set of 
simple illustrative examples supported by the Polynomial 
Toolbox for Matlab. 
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