
 

 

  
Abstract—Envelope tracking power amplifiers, though having 

high efficiency for non-constant envelope signals, also exhibit distinct 
“S” shape characteristics, which is very difficult to be compensated by 
employing traditional polynomial predistortion techniques. In order to 
deal with the problem, a universal digital predistorter of cascaded 
simplicial canonical piecewise linear function and memory polynomial 
model is proposed. The architecture of the proposed predistorter has 
“adaptive” capacity to varied power amplifiers. The complex separable 
least squares algorithm (CSLS) is presented for the parameters 
identification as well. Simulation demonstrated that the convergence 
speed and identification error of the CSLS algorithm are superior to 
those of least mean square type algorithms. The proposed predistorter 
model is effective on linearization of different types of envelope 
tracking power amplifiers, with an improvement of Adjacent Channel 
Power Ratio (ACPR) over 35dB.  
 

Keywords—digital predistorter, envelope tracking, SCPWL 
function, separable least squares, memory polynomial  

I. INTRODUCTION 
ASED  on the state-of-the-art method of dynamic change of 
supply voltage, envelope tracking power amplifiers (ET 

PAs) can obtain over 60% power-added efficiency [1]-[3] in the 
case of non-constant envelope input signals. In order to carry 
out researches on predistortion techniques for ET PAs, we 
propose ET PA macro models with memory effects by 
cascading memory polynomial (MP) [4], linear time invariant 
(LTI) filter, Saleh and ET nonlinear models. Because of their 
operation principle, ET PAs exhibit distinct "S" shape nonlinear 
AM-AM characteristic, which will produce inband distortion, 
outband spectrum leakage and adjacent channel interference. 
And due to the special characteristics, ET PAs are unable to be 
compensated by the existing power series polynomial based 
digital predistorters (DPD) [5]. Simplicial canonical piecewise 
linear (SCPWL) function [6], [7] is a new simple piecewise 
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approximation approach which is easy for hardware 
implementation. The merits of SCPWL and MP models will be 
exploited by cascading both of them. Therefore, we introduce 
SCPWL and MP cascaded model to construct a universal DPD 
in this paper. And the architecture of the proposed DPD is able 
to adapt to ET and other types of PAs.  

Parameters identification of cascaded model has always been 
a difficult problem. Common algorithms include the Filter-x 
least mean square (LMS) algorithm [8] and the dual-loop LMS 
algorithm recently proposed in [6]. However, due to data 
correlations, the convergence speed of LMS-type algorithms is 
slow, and the result of parameters estimation is biased. What’s 
more, it’s necessary for ET PAs to be compensated both in large 
and small power regions. The DPD needs more parameters, and 
the identification accuracy of LMS-type algorithms is seriously 
deteriorated. The separable least squares (SLS) algorithm [9], 
[10] is a Newton-type algorithm commonly used in cascade 
model identification. However, to the best of the authors’ 
knowledge, the SLS algorithm is limited in real number field, 
and cannot meet the requirements of complex data. Therefore, 
we propose the complex SLS (CSLS) algorithm for the 
cascaded piecewise DPD parameters identification.  

The rest of the paper is organized as follows. In Section II, we 
describe the system architecture and the PA model. Then, 
Section III presents the complex Levenberg Marquardt (LM) 
algorithm, which is essential to the CSLS algorithm. Section IV 
proposes the CSLS algorithm and its application details in the 
DPD parameters identification, and the hardware structure of 
the DPD is also presented. Section V validates the performances 
of the proposed algorithm and the DPD. Finally, Section VI 
includes the conclusions of the paper.  

II. SYSTEM ARCHITECTURE AND MODEL 

A. ET PA Model 
So far, there has been short of any commercialized objects 

and even simulation models for ET PAs, which makes it 
inconvenient for the urgent need of research work at present. 
The structure of ET PAs is shown in Fig. 1. As can be seen from 
the figure, the power source of the radio frequency (RF) main 
amplifier is fed dynamically through the amplification version 
of the signal envelope. As a result, the main RF amplifier always  
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Fig. 1 Structure of ET PAs 

 
operates near the saturation region [11], which enables it to 
achieve a very high efficiency. However, when the input signal 
envelope is small, the gain of the output transistor decreases 
because of the low supply voltage, which results in a reverse 
bend of the characteristic curve in the small power region. At 
the same time, the curve still bends in the large power saturation 
region, and the whole curve shows a distinct "S" shape [5]. 
Recently, Draxler et al. proposed a function to fit the curve in 
the small power region [12]: 
 

   (1) 

 
where  is a factor to control bending, generally taken from 
0.01 to 0.1. For brevity, we name (1) “ET” model. Cascading 
method is commonly used to construct nonlinear models with 
memory effects, e.g., Hammerstein and Wiener models [9]. We 
propose two types of ET PA models. MP-ET model is 
constructed by cascading memory nonlinear MP and ET 
models. LTI-Saleh-ET model is constructed with the 
combination of LTI filter, Saleh [13] and ET models. The 
proposed ET PA models include most of the practical PA 
models currently.  
 

 
Fig. 2 AM-AM and AM-PM characteristics of the LTI-Saleh-ET PA 

 

 
Fig. 3 AM-AM and AM-PM characteristics of the MP-ET PA 

 
The AM-AM and AM-PM characteristics of the proposed 

models are shown in Fig. 2-3 respectively, wherein . 

For clarity, the figures also show the curves with the removal of 
memory effects. The reverse bending characteristics can be 
clearly seen in the small power region. The unique 
characteristics of ET come from various causes, e.g. the 
non-ideality of the envelope amplifier. In order to focus on the 
nonlinear compensation problem, the method we use is to 
“pack” all the non-idealities into the proposed ET PA macro 
model. 

B. Predistortion System Architecture 
We propose a DPD structure with cascaded SCPWL and MP 

model, as shown in Fig. 4. The proposed structure endows the 
DPD with an adaptive capacity to different types of PAs as 
follows:  

a) SCPWL function is essential to the compensation of 
reverse bending characteristic of ET and other hard 
nonlinear models. 

b) MP model DPD can compensate MP amplifiers. If the PA 
model is LTI-Saleh-ET, the DPD's MP part degrades to a 
linear FIR filter. 

c) Not only the PA models proposed in this paper, but also 
other hard nonlinear PA models may be compensated by 
the proposed DPD. 

d) The DPD model will be adjusted automatically in the 
process of parameters identification according to the 
responses of PAs. 

 

 
Fig. 4 Architecture of the predistortion system 

 
The system uses the efficient indirect learning structure [2], 

as shown in Fig. 4. In order to describe deeper memory 
characteristics, in LTI-Saleh-ET PA model, infinite impulse 
response (IIR) filter is used. The transfer function of IIR filter, 
the characteristics of Saleh and MP model are shown in (2) to (4) 
respectively as follows: 

 

   (2) 

   (3) 

    (4) 

   
 where  is the amplitude of input signals, , , , , , 

, , , ,  are model parameters. 
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C. SCPWL Function 
SCPWL function is a piecewise linear interpolation function 

employing the absolute value function, whose base functions are 
[6], [7]: 
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where x , ( )i xλ , iβ , and sβ   are the input, output, break point 
and saturation point respectively. S  is the number of segments. 
The total output can be denoted as T( ) ( )f x = λx c  , where ( )λx   
and c   are base function and coefficient vector respectively. 

III. LM ALGORITHM IN COMPLEX NUMBER FIELD 
The Levenberg Marquardt (LM) algorithm is a common 

optimization algorithm in real number field, and it is essential to 
the CSLS algorithm. In this paper, the LM algorithm needs to be 
extended to the complex number field. We follow the Wirtinger 
Calculus derivative rules [14] for nonanalytic real functions 

*( , )f z z   with complex input variables *( , )z z , i.e. when 
*( , )f z z  differentiates with respect to z , *z  will be treated as 

constant and vice versa.  
By using the Taylor series expansion of 

*( , ), , Nf f R C∈ ∈z z z  , let
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z za
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, we can find that the v   

being able to bring a maximum amount of change on *( , )f z z   
[15] is: 
 

 ( ) ( )1* * 1 * 1 *−− −= − −v B A B A A B a a   (6) 

 
In system identification applications, the cost function is 

usually set to 2

1
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= ∑ , where T( ) ( ) ( )e n y n n= − z x , ( )y n , 

( )nx  and z  are output error, reference, input vector and 
parameters vector under identification. Let 

[ ]T(1), (2),..., ( )e e e N=e , then ( )* H,fε = =e e e e  is the real 

function of complex vector e , and thus we obtain the following 
first derivatives: 
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where ‘T’, ‘H’ and ‘*’ denote transpose, hermitian transpose 
and complex conjugate respectively. In (7), J  is the complex 

Jacobian matrix of e   with respect to z . And the second 
derivatives are: 
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Using (7)-(8) in (6), we have ( ) 1H H−
= −v J J J e  . Finally, 

the update equation of z   which brings the steepest descent to 
the cost function is: 
 

 ( ) 1H H
0

−
= −z z J J J e   (9) 

 
Equation (9) can be looked as the generalization of 

Gauss-Newton algorithm in the complex field. Compared with 
LMS-type algorithms, it has the advantages of fast convergence, 
without being affected by data correlations. Its main 
disadvantage is that if J   is rank deficient or nearly rank 
deficient, (9) will be numerically instable. Similarly to the LM 
algorithm in real number field [16], we use a variable regular 
factor to solve this problem, and correct the Hessian Matrix of 
the algorithm to ( )H δ+J J I  , wherein δ   being a small real 

factor. Finally, update equation of the complex LM algorithm 
can be summed up as: 

 

 ( ) 1H H
0 δ

−
= − +z z J J I J e   (10) 

 

IV. COMPLEX SEPARABLE LEAST SQUARES ALGORITHM 
In the feedback channel of Fig. 4, the output of part P is a 

function of the signal amplitude ( )u n  , which can be piecewise 
approximated by means of SCPWL function. Let the DPD’s 
coefficient vectors of MP and SCPWL parts be 

10 11 1, 1 30 , 1, ,..., , ,...,M K Mb b b b b− − =  b   and [ ]0 1 1, ,..., Sc c c −=c  , 

the outputs of the feedback channel be ( )s n   and ( )w n  
respectively, then we have 
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where M  and K  are the memory depth and orders of the MP 
part of the DPD respectively. S  is the number of segments of 
the SCPWL part. Let ( ) ( ) ( )e n s n s n= −   , cost function 

be 2

1

1 ( )
N

N
n

e n
N

ε
=

= ∑  , define { } =θb c  , the coefficients 
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identification problem can be expressed as: 
   (12) 

Let the complex Jacobian matrix of  with 

respect to  be , where  and  denote the 

linear and nonlinear complex Jacobian matrix respectively. The 

projection matrix of  is . When the 

system converges to the steady state, if there is a slight change 
of the nonlinear part, the output of the feedback channel is 

. Since the nonlinear parameters have 
changed, the linear parameters will no longer be optimal. We 
can find the optimal linear parameters again via a projection 
approximation method including two steps [9]. Step 1: project 
the change of the nonlinear part to the column space of . Step 
2: let the linear part generate an opposite change  against the 
projection in order to achieve an optimization match again, i.e. 

. Therefore, we have  
 

   (13) 
 
Equation (13) maps the change of the linear part to the 

column space of the nonlinear part by means of the projection 
method. And now, we can treat the output  as a single input 

function of , and thus we have . Let 

, the amount of the change of  be 

, then the iterative update equation of 

 is: 
 

   (14) 

 
 Each time after the update of the coefficients of the SCPWL 

part, the coefficients of the MP part can be obtained through LS 
method. The calculation of  needs complex Jacobian matrix 

 and . We obtain the element  of  

by using (11) and the definition of  as follows:  
 

   (15) 

 
where , , . And the 
element  of  is: 

 

  (16) 

where . 
If the parameters of the SCPWL and MP parts are multiplied 

by a same constant, the output will remain unchanged. 
Therefore, the first coefficient of  or  need to be normalized 
in each iteration. The flow chart of the CSLS algorithm is shown 
in Fig. 5, where the main control factors are the regular factor  
and reduction factor  . During the iterative process,  
gradually reduces from its initial value and the convergence 
speed increases, with the decreasing of the error. 

 

 
Fig. 5 Flow chart of the CSLS algorithm 

V. SIMULATION RESULTS AND DISCUSSION 
In order to verify the effectiveness of the DPD and the 

identification algorithms, the performances of LMS-type and 
the CSLS algorithms, the outband spectrum leakage and the 
AM-AM and AM-PM characteristic curves of the PAs before 
and after predistortion are compared respectively. Simulation 
stimulus data are the 4-carrier WCDMA signal of 3GPP 
TS251.141 Test Model 1 with bandwidth of 20MHz. In MP-ET 
PA model, the MP parameters are set as follows: 

 

   (17) 

 
In LTI-Saleh-ET PA model, IIR transfer function parameters 

are set as   , , ,  and Saleh 
model parameters are set as the typical values of  , 
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2 1.1517α = , 1 4.0033η =  , 2 9.1040η = . ET model parameter 
is set as 0.03b =  for both types of PA models.  

The identification algorithms include the dual-loop LMS [6], 
the Filter-x LMS [8] and the CSLS. Dual-loop LMS algorithm 
has two steps. Step 1 is to identify the parameter vector a   of 
the MP part of the PA and the parameter vector ( )nc   of the 
SCPWL part of the DPD as shown in (18). If the PA is a 
LTI-Saleh-ET model, then vector a   will degrade to a FIR 
filter’s parameter vector which is approximate to the IIR filter of 
the PA model.  
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where 1,3,...,l L= , 0,1,..., 1r R= − , 0,1,..., 1i S= − , R , L  and 
S  are the memory depth and orders of the MP part of the PA 
model and the number of segments of the DPD respectively. 1µ  
and 2µ  are the step sizes.  

In step 2 of the dual-loop LMS algorithm, ( )nc  will be 
copied directly into the SCPWL part of the DPD. Nevertheless 
a   should be inversed to obtain the MP parameters b  of the 
DPD: 
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where ( )g n   denotes the gradient of the LMS algorithm, 3µ  is  
the step size and 1,3,..., , 0,1,..., 1k K m M= = − , K , M  are 
order and  memory depth of the DPD.  

The Filter-x LMS algorithm uses LMS algorithm to update 
the coefficients of MP and SCPWL parts of the DPD 
simultaneously as follows: 
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where 1,3,...,k K=  , 0,1,..., 1m M= −   , 0,1,..., 1i S= −  ,  1µ  
and 2µ    are the step sizes. In order to obtain a balance between 
the convergence speed and the identification accuracy, the step 
sizes of the dual-loop LMS algorithm are chosen 
as 1 2 3 0.1µ µ µ= = =  , and the step sizes of the Filter-x LMS 

algorithm are chosen as 1 2 0.1µ µ= = . After simulation 
comparison, the CSLS algorithm parameters are chosen 
as 1δ = , 5γ = .  
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Fig. 6 Comparison of the convergence 

 
Fig. 6 is the comparison of the convergence speed and error 

of three identification algorithms, where 1,024 samples are 
treated as one iteration time. The figure shows that the 
convergence speed and error of the dual-loop and the Filter-x 
LMS algorithm are almost the same. The CSLS algorithm 
comes to convergence only after a few iterations, with the error 
being better than the above two algorithms 10dB. It is because 
the CSLS is a Newton-type algorithm, which converges much 
faster than LMS-type algorithms, with estimation accuracy not 
being affected by data correlations. 

Fig. 7 is the comparisons of the power spectrum density 
(PSD) of the LTI-Saleh-ET and MP-ET PAs  after 
predistortion. The MP part of the DPD is set as 5, 6K M= = . 
The segments of SCPWL are set as 12S =  and 10S =  for 
LTI-ET-Saleh and MP-ET models respectively. The parameter 
numbers of the DPD are 28 and 30. As can be seen from the 
figure, the proposed DPD can compensate both types of PA 
models. Outband suppression effect of the DPD designed with 
the CSLS algorithm can be up to 35dB, far better than the two 
LMS-type algorithms. The reason is that the ET PA must be 
compensated in different power regions and the DPD needs 
more parameters, which results in strong data correlations. As a 
result, the performances of LMS-type algorithms drop more 
seriously. 
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(a)  LTI-Saleh-ET PA model               (b) MP-ET PA model 

Fig. 7 Comparisons of the PSD 
 
Fig. 8 is the comparisons of the AM-AM characteristics of the 

LTI-Saleh-ET PA before and after predistortion with different 
identification algorithms. The characteristics of the DPD are 
also presented as well. Seen from the figure, the MP part of the 
DPD degrades to LTI filter automatically to compensate for the 
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memory effects of the PA. The AM-AM curve of the SCPWL 
part of the DPD in Fig. 8 (a) obviously bends in the small power 
region in order to compensate for the characteristics of the PA, 
while Fig. 8 (b) does not have this feature. Linearity and 
memory effects elimination of the PA after predistortion in Fig. 
8 (a) are much better than in Fig. 8 (b). Fig. 9 is the comparisons 
of the AM-PM characteristics of the PA with different 
identification algorithms. From the comparisons, we can draw a 
conclusion that both the model of the DPD and the identification 
algorithms have impact on the effects of the linearization. 

 

 
(a)With the CSLS algorithm  (b)With the dual-loop LMS algorithm 

Fig. 8 Comparisons of AM-AM characteristics of LTI-Saleh-ET  
PA after DPD with different identification algorithms 

 

  
(a)With the CSLS algorithm    (b)With the dual-loop LMS algorithm 

Fig. 9 Comparisons of AM-PM characteristics of LTI-Saleh-ET  
PA after DPD with different identification algorithms 

 

 
Fig. 10 AM-AM characteristic of MP-ET PA after DPD 
 
Fig. 10 is the AM-AM characteristic curve of MP-ET PA. As 

can be seen from the figure, the SCPWL part compensates the 
reverse bending in small power region and part of the saturation 
nonlinearity, while the MP part is responsible for the 
compensation of memory effects and part of the saturation 
nonlinearity. Fig.11 is the AM-PM and normalized gain 
characteristics of the MP-ET PA. Seen from the figure, MP-ET 
PA has gain expansion and compression regions. Gain 
nonlinearity and dispersion phenomena are significantly 
improved after DPD compensation. From the simulation results 
of LTI-Saleh-ET and MP-ET PA models, a conclusion can be 

drawn that the proposed DPD of cascaded SCPWL and MP 
models has adaptive capacity to varied PA models. 
 

  
(a) AM-PM characteristic        (b) Normalized gain characteristic 

Fig. 11 AM-PM and normalized gain characteristics  
of MP-ET PA after DPD 

VI. CONCLUSION 
The proposed DPD structure has adaptive capacity to varied 

traditional and new-type PA models. With the cascaded 
architecture of SCPWL and MP, it can effectively compensate 
the strong nonlinear characteristics of ET PAs, with an ACPR 
improvement over 35dB. The performances of the CSLS 
algorithm are much better than those of LMS-type algorithms in 
convergence speed and identification accuracy. The algorithm 
also can be applied to other cascaded model, and thus provides a 
unified complex field identification algorithm for cascaded 
DPDs. SCPWL function has good prospects in engineering 
applications with the advantages of simple structure and easy 
hardware implementation. With the commercialization progress 
of ET PAs, further research directions include testing the 
performances of the proposed DPD on real ET PAs and 
applying the CSLS algorithms in other types of DPD models. 
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