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A Digital Predistorter with Adaptive
Architecture for High Efficient Envelope
Tracking Power Amplifiers

Jiangnan Yuan, Chenwei Feng

Abstract—Envelope tracking power amplifiers, though having
high efficiency for non-constant envelope signals, also exhibit distinct
“S” shape characteristics, which is very difficult to be compensated by
employing traditional polynomial predistortion techniques. In order to
deal with the problem, a universal digital predistorter of cascaded
simplicial canonical piecewise linear function and memory polynomial
model is proposed. The architecture of the proposed predistorter has
“adaptive” capacity to varied power amplifiers. The complex separable
least squares algorithm (CSLS) is presented for the parameters
identification as well. Simulation demonstrated that the convergence
speed and identification error of the CSLS algorithm are superior to
those of least mean square type algorithms. The proposed predistorter
model is effective on linearization of different types of envelope
tracking power amplifiers, with an improvement of Adjacent Channel
Power Ratio (ACPR) over 35dB.

Keywords—digital predistorter, envelope tracking, SCPWL
function, separable least squares, memory polynomial

ASED on the state-of-the-art method of dynamic change of

supply voltage, envelope tracking power amplifiers (ET
PAs) can obtain over 60% power-added efficiency [1]-[3] in the
case of non-constant envelope input signals. In order to carry
out researches on predistortion techniques for ET PAs, we
propose ET PA macro models with memory effects by
cascading memory polynomial (MP) [4], linear time invariant
(LTI) filter, Saleh and ET nonlinear models. Because of their
operation principle, ET PAs exhibit distinct "S" shape nonlinear
AM-AM characteristic, which will produce inband distortion,
outband spectrum leakage and adjacent channel interference.
And due to the special characteristics, ET PAs are unable to be
compensated by the existing power series polynomial based
digital predistorters (DPD) [5]. Simplicial canonical piecewise
linear (SCPWL) function [6], [7] is a new simple piecewise
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approximation approach which is easy for hardware
implementation. The merits of SCPWL and MP models will be
exploited by cascading both of them. Therefore, we introduce
SCPWL and MP cascaded model to construct a universal DPD
in this paper. And the architecture of the proposed DPD is able
to adapt to ET and other types of PAs.

Parameters identification of cascaded model has always been
a difficult problem. Common algorithms include the Filter-x
least mean square (LMS) algorithm [8] and the dual-loop LMS
algorithm recently proposed in [6]. However, due to data
correlations, the convergence speed of LMS-type algorithms is
slow, and the result of parameters estimation is biased. What’s
more, it’s necessary for ET PAs to be compensated both in large
and small power regions. The DPD needs more parameters, and
the identification accuracy of LMS-type algorithms is seriously
deteriorated. The separable least squares (SLS) algorithm [9],
[10] is a Newton-type algorithm commonly used in cascade
model identification. However, to the best of the authors’
knowledge, the SLS algorithm is limited in real number field,
and cannot meet the requirements of complex data. Therefore,
we propose the complex SLS (CSLS) algorithm for the
cascaded piecewise DPD parameters identification.

The rest of the paper is organized as follows. In Section 11, we
describe the system architecture and the PA model. Then,
Section 11l presents the complex Levenberg Marquardt (LM)
algorithm, which is essential to the CSLS algorithm. Section IV
proposes the CSLS algorithm and its application details in the
DPD parameters identification, and the hardware structure of
the DPD is also presented. Section V validates the performances
of the proposed algorithm and the DPD. Finally, Section VI
includes the conclusions of the paper.

Il. SYSTEM ARCHITECTURE AND MODEL

A. ET PA Model

So far, there has been short of any commercialized objects
and even simulation models for ET PAs, which makes it
inconvenient for the urgent need of research work at present.
The structure of ET PAs is shown in Fig. 1. As can be seen from
the figure, the power source of the radio frequency (RF) main
amplifier is fed dynamically through the amplification version
of the signal envelope. As a result, the main RF amplifier always
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Fig. 1 Structure of ET PAs

operates near the saturation region [11], which enables it to
achieve a very high efficiency. However, when the input signal
envelope is small, the gain of the output transistor decreases
because of the low supply voltage, which results in a reverse
bend of the characteristic curve in the small power region. At
the same time, the curve still bends in the large power saturation
region, and the whole curve shows a distinct "S" shape [5].
Recently, Draxler et al. proposed a function to fit the curve in
the small power region [12]:

e
(|z(n)|+b-e%J .
1 - 1 (1)
(l+b-e1’) 1+b-¢*

y(n) = max(y(n))

where & is a factor to control bending, generally taken from
0.01 to 0.1. For brevity, we name (1) “ET” model. Cascading
method is commonly used to construct nonlinear models with
memory effects, e.g., Hammerstein and Wiener models [9]. We
propose two types of ET PA models. MP-ET model is
constructed by cascading memory nonlinear MP and ET
models. LTI-Saleh-ET model is constructed with the
combination of LTI filter, Saleh [13] and ET models. The
proposed ET PA models include most of the practical PA
models currently.
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Fig. 2 AM-AM and AM-PM characteristics of the LTI-Saleh-ET PA
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Fig. 3 AM-AM and AM-PM characteristics of the MP-ET PA

The AM-AM and AM-PM characteristics of the proposed
models are shown in Fig. 2-3 respectively, wherein& =10.03 .
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For clarity, the figures also show the curves with the removal of
memory effects. The reverse bending characteristics can be
clearly seen in the small power region. The unique
characteristics of ET come from various causes, e.g. the
non-ideality of the envelope amplifier. In order to focus on the
nonlinear compensation problem, the method we use is to
“pack” all the non-idealities into the proposed ET PA macro
model.

B. Predistortion System Architecture

We propose a DPD structure with cascaded SCPWL and MP
model, as shown in Fig. 4. The proposed structure endows the
DPD with an adaptive capacity to different types of PAs as
follows:

a) SCPWL function is essential to the compensation of
reverse bending characteristic of ET and other hard
nonlinear models.

b) MP model DPD can compensate MP amplifiers. If the PA
model is LTI-Saleh-ET, the DPD's MP part degrades to a
linear FIR filter.

c¢) Not only the PA models proposed in this paper, but also
other hard nonlinear PA models may be compensated by
the proposed DPD.

d) The DPD model will be adjusted automatically in the
process of parameters identification according to the
responses of PAs.

Predistorter Amplifier Model
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Fig. 4 Architecture of the predlstortlon system

The system uses the efficient indirect learning structure [2],
as shown in Fig. 4. In order to describe deeper memory
characteristics, in LTI-Saleh-ET PA model, infinite impulse
response (1IR) filter is used. The transfer function of IIR filter,
the characteristics of Saleh and MP model are shown in (2) to (4)
respectively as follows:

by+bz ' +hz?

H(z)= 2

@ lvaz ' vra,z? @
2
a,r nr

4, =—r @, =" 3

P4 1 T 2 ¢PA 1 T qzr)_ ( )
IA -1 -1
yn)= z Zabs(n—r)|s(n—r)‘ 4)
I=1Jcodd r=0

where r is the amplitude of input signals, &,, &, &,, q, a,,
o, a,, 1, 7, a are model parameters.
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C. SCPWL Function

SCPWL function is a piecewise linear interpolation function
employing the absolute value function, whose base functions are

6], [7]:

SO-AE-B. X<,

1

2

A

(x) i=12..5-1 (5)

(ﬂs _ﬁi +|ﬂs _:Bi|)- Xzﬁs

where x, 4(x), S ,and g, are the input, output, break point
and saturation point respectively. S is the number of segments.
The total output can be denoted as f (x) = Ak )&, where ik )
and c¢ are base function and coefficient vector respectively.

The Levenberg Marquardt (LM) algorithm is a common
optimization algorithm in real number field, and it is essential to
the CSLS algorithm. In this paper, the LM algorithm needs to be
extended to the complex number field. We follow the Wirtinger
Calculus derivative rules [14] for nonanalytic real functions

f(z,z") with complex input variables (z,z") , i.e. when
f(z,2") differentiates with respect to z,
constant and vice versa.

LM ALGORITHM IN COMPLEX NUMBER FIELD

Z" will be treated as

By using the Taylor series expansion  of
f(z,2),f eR,zeC" | let a:% , v=(z-1,)
4

_0°1(20,25) 0% f(20,25)
ozoz" ozoz"
being able to bring a maximum amount of change on f(z,z")
[15] is:

, we can find that the v

=(B"-A'BA) (AB'a-a’) (6)

In system identification applications, the cost function is
y(n)—z"x(n), y(n),

x(n) and z are output error, reference, input vector and
parameters vector Let
=[e(1).e(2)....e(N)]", then &= f (e,e")=e"e is the real

function of complex vector e, and thus we obtain the following
first derivatives:

N
usually setto & = Z|e(n)|2 , Where e(n) =

i=1

under identification.

of (e,e) _gT *’6f(e,Te ) M3

oz oz (7)
8f(ee) J“,af(e’He):eTJ*

oz oz

where ‘T’, ‘H’ and “*’ denote transpose, hermitian transpose
and complex conjugate respectively. In (7), J is the complex
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Jacobian matrix of e And the second

derivatives are:

with respect to z .

o*f(e,e’) o°f(ee’) 0

oozt oo™ @)
0 f(ee) o*f(e,e’) 1o«
T AT ,—HZJ J

0z o1 0z0z

Using (7)-(8) in (6), we have v=—(J”J)7lJ”e . Finally,
the update equation of z which brings the steepest descent to
the cost function is:

~(3%3) 7 3% 9)

Equation (9) can be looked as the generalization of
Gauss-Newton algorithm in the complex field. Compared with
LMS-type algorithms, it has the advantages of fast convergence,
without being affected by data correlations. Its main
disadvantage is that if J is rank deficient or nearly rank
deficient, (9) will be numerically instable. Similarly to the LM
algorithm in real number field [16], we use a variable regular
factor to solve this problem, and correct the Hessian Matrix of
the algorithm to(J”J +§I) , Wherein § being a small real

factor. Finally, update equation of the complex LM algorithm
can be summed up as:

~(3"3+51) " 3% (10)

IV. COMPLEX SEPARABLE LEAST SQUARES ALGORITHM

In the feedback channel of Fig. 4, the output of part P is a
function of the signal amplitude |u(n)| , which can be piecewise

approximated by means of SCPWL function. Let the DPD’s
coefficient vectors of MP and SCPWL parts be

b [bw’bll' blM -1 30’ K M 1:| and C:[co’clv'--!cs,l] ’

the outputs of the feedback channel be §(n) and w(n)
respectively, then we have
K M-1
SOEEDY b W(n —m) [w(n - m)|
k=1,keodd m=0 (11)
S-1
w(n) = ci(|u(n)|)u(n)

where M and K are the memory depth and orders of the MP
part of the DPD respectively. S is the number of segments of
the SCPWL part. Let e(n)=s(n)-5(n) cost function

be ¢,

%ik(n)r , define gb=¢ | | , the coefficients
n=1
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identification problem can be expressed as:

8 = arg min £, (0) (12)

Let the complex Jacobian matrix of e:[e(l),___,e(N)] with

respect to & be F={F, |F,}, where J, and J, denote the
linear and nonlinear complex Jacobian matrix respectively. The
projection matrix of J, is B, :J,(J,"J,)_IJ,H . When the
system converges to the steady state, if there is a slight change
o_of the nonlinear part, the output of the feedback channel is
Me+d )=3c)y+J o, . Since the nonlinear parameters have

changed, the linear parameters will no longer be optimal. We
can find the optimal linear parameters again via a projection
approximation method including two steps [9]. Step 1: project
the change of the nonlinear part to the column space of J; . Step

2: let the linear part generate an opposite change &, against the
projection in order to achieve an optimization match again, i.e.

J, 0, + BJ 8 =0. Therefore, we have
He+d)=H)+{I-P)J 8, (13)
Equation (13) maps the change of the linear part to the

column space of the nonlinear part by means of the projection
method. And now, we can treat the output 3(¢) asasingle input

function of &

a3
and thus we have 5;’N:(I—B)..‘l',,. Let

J, =(I-B)J, , the amount of the change of ¢ be

-1 . . .
Ac=(J"J,+8I) Je, then the iterative update equation of
¢ is:

cn 1D =ec(n) (I, +81) Jie (14)

Each time after the update of the coefficients of the SCPWL
part, the coefficients of the MP part can be obtained through LS
method. The calculation of J, needs complex Jacobian matrix

. k+1 K+1
J, andJ,. We obtain the element (n,TJrer-TJr) of J,

by using (11) and the definition of e(#) as follows:

de(n) _ 0Xn) _
ob,_ b,

(15)

—w(n—m) ‘w(n — m)‘k_1

where =12 N , k=13, K m=0]1__
element (m,i+1) of J_ is:

M —1. And the
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de(n)y  0¥(n) ow(n—m)
dc, own-m) &
“f ZK: k+1
m=0 k=1, 2
ke€odd

(16)

B, [W(n— m)‘k_1 A (|ju(n— m) | yu(n—m)

where i=0,1..,§ 1.

If the parameters of the SCPWL and MP parts are multiplied
by a same constant, the output will remain unchanged.
Therefore, the first coefficient of ¢ or & need to be normalized
in each iteration. The flow chart of the CSLS algorithm is shown
in Fig. 5, where the main control factors are the regular factor &
and reduction factor ¥ . During the iterative process, &

gradually reduces from its initial value and the convergence
speed increases, with the decreasing of the error.
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Fig. 5 Flow chart of the CSLS algorithm

V. SIMULATION RESULTS AND DISCUSSION

In order to verify the effectiveness of the DPD and the
identification algorithms, the performances of LMS-type and
the CSLS algorithms, the outband spectrum leakage and the
AM-AM and AM-PM characteristic curves of the PAs before
and after predistortion are compared respectively. Simulation
stimulus data are the 4-carrier WCDMA signal of 3GPP
TS251.141 Test Model 1 with bandwidth of 20MHz. In MP-ET
PA model, the MP parameters are set as follows:

a, = 10513 + 0.0904ia, = -0.0680 - 0.0023i;
a, = 0.0289 - 0.0054i;a,, —-0.0542 - 0.2900i;
a, = 02234 + 0.2317i;a,, =-0.0621 - 0.0932;
ay, =-0.9657 - 0.7028i;a,, =-0.2451 - 0.3735i
a, = 0.1229 + 0.1508i

(17)

In LTI-Saleh-ET PA model, IIR transfer function parameters
aresetas @, =02 a,=0, 5,=1, b =0, b, =03 and Saleh

model parameters are set as the typical values of &, =2.1587 ,
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a, =1.1517, n, =4.0033 , 7, =9.1040. ET model parameter

is setas b =0.03 for both types of PA models.

The identification algorithms include the dual-loop LMS [6],
the Filter-x LMS [8] and the CSLS. Dual-loop LMS algorithm
has two steps. Step 1 is to identify the parameter vector a of
the MP part of the PA and the parameter vector c(n) of the
SCPWL part of the DPD as shown in (18). If the PA is a
LTI-Saleh-ET model, then vector a will degrade to a FIR

filter’s parameter vector which is approximate to the IR filter of
the PA model.

|

where 1=1,3,...,L,r=01..,R-1,i=0,1..,S-1,R,L and
S are the memory depth and orders of the MP part of the PA
model and the number of segments of the DPD respectively. g,

a, (n+1) = a, (n) - e; (Mw(n—r)[w(n—r)|

B} (18
¢.(n+1) = ¢, (n) + 158 (M) (ju())u(m)

)

and g, are the step sizes.
In step 2 of the dual-loop LMS algorithm, c(n) will be

copied directly into the SCPWL part of the DPD. Nevertheless
a should be inversed to obtain the MP parameters b of the
DPD:

g(n) = ef(n)i ! erl > {al*rs(n -1)|s(n- r)|"1 .

w,(n—m—r)|w,(n—m- r)|k_l} (19)
bkm (n +1) = bkm (n) + :usg(n)

where g(n) denotes the gradient of the LMS algorithm, g, is
the step size and k=1,3,...,K,m=0,1,..,.M -1, K, M are
order and memory depth of the DPD.

The Filter-x LMS algorithm uses LMS algorithm to update
the coefficients of MP and SCPWL parts of the DPD
simultaneously as follows:

by (N+1) = by, (M) + 24€" (NYw(n —m)|w(n—m)[*”"

-1 K

G =c M+ memY Y

m=0 k=1,keodd

lw(n—m)[" 4 (Ju(n=m)|)u(n- m)}

S{cs Db, @0

wherek =13,..,K ,m=0,1..,M-1 ,i=01..,S-1,
and u, are the step sizes. In order to obtain a balance between

the convergence speed and the identification accuracy, the step
sizes of the dual-loop LMS algorithm are chosen
asu, =u, =4, =01, and the step sizes of the Filter-x LMS
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algorithm are chosen as g, =u, =0.1 . After simulation

comparison, the CSLS algorithm parameters are chosen
aso=1,y=5.

Comparison of Convergence
I I I
+  Dual-loop LMS
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O  csLs

25 PE——— e |

Error (dB)

-30

-35 8
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Fig. 6 Comparison of the convergence

25 30 35

Fig. 6 is the comparison of the convergence speed and error
of three identification algorithms, where 1,024 samples are
treated as one iteration time. The figure shows that the
convergence speed and error of the dual-loop and the Filter-x
LMS algorithm are almost the same. The CSLS algorithm
comes to convergence only after a few iterations, with the error
being better than the above two algorithms 10dB. It is because
the CSLS is a Newton-type algorithm, which converges much
faster than LMS-type algorithms, with estimation accuracy not
being affected by data correlations.

Fig. 7 is the comparisons of the power spectrum density
(PSD) of the LTI-Saleh-ET and MP-ET PAs  after
predistortion. The MP part of the DPD is setasK =5,M =6.
The segments of SCPWL are set as S=12 and S =10 for
LTI-ET-Saleh and MP-ET models respectively. The parameter
numbers of the DPD are 28 and 30. As can be seen from the
figure, the proposed DPD can compensate both types of PA
models. Outband suppression effect of the DPD designed with
the CSLS algorithm can be up to 35dB, far better than the two
LMS-type algorithms. The reason is that the ET PA must be
compensated in different power regions and the DPD needs
more parameters, which results in strong data correlations. As a
result, the performances of LMS-type algorithms drop more
seriously.
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(a) LTI-Saleh-ET PA model (b) MP-ET PA model
Fig. 7 Comparisons of the PSD

Fig. 8 is the comparisons of the AM-AM characteristics of the
LTI-Saleh-ET PA before and after predistortion with different
identification algorithms. The characteristics of the DPD are
also presented as well. Seen from the figure, the MP part of the
DPD degrades to LTI filter automatically to compensate for the



INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

memory effects of the PA. The AM-AM curve of the SCPWL
part of the DPD in Fig. 8 (a) obviously bends in the small power
region in order to compensate for the characteristics of the PA,
while Fig. 8 (b) does not have this feature. Linearity and
memory effects elimination of the PA after predistortion in Fig.
8 (a) are much better than in Fig. 8 (b). Fig. 9 is the comparisons
of the AM-PM characteristics of the PA with different
identification algorithms. From the comparisons, we can draw a
conclusion that both the model of the DPD and the identification
algorithms have impact on the effects of the linearization.
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Fig. 8 Comparisons of AM-AM characteristics of LTI-Saleh-ET
PA after DPD with different identification algorithms
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Fig. 9 Comparisons of AM-PM characteristics of LTI-Saleh-ET
PA after DPD with different identification algorithms
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Fig. 10 AM-AM characteristic of MP-ET PA after DPD
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Fig. 10 is the AM-AM characteristic curve of MP-ET PA. As
can be seen from the figure, the SCPWL part compensates the
reverse bending in small power region and part of the saturation
nonlinearity, while the MP part is responsible for the
compensation of memory effects and part of the saturation
nonlinearity. Fig.11 is the AM-PM and normalized gain
characteristics of the MP-ET PA. Seen from the figure, MP-ET
PA has gain expansion and compression regions. Gain
nonlinearity and dispersion phenomena are significantly
improved after DPD compensation. From the simulation results
of LTI-Saleh-ET and MP-ET PA models, a conclusion can be
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drawn that the proposed DPD of cascaded SCPWL and MP
models has adaptive capacity to varied PA models.
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Fig. 11 AM-PM and normalized gain characteristics
of MP-ET PA after DPD

VI.

The proposed DPD structure has adaptive capacity to varied
traditional and new-type PA models. With the cascaded
architecture of SCPWL and MP, it can effectively compensate
the strong nonlinear characteristics of ET PAs, with an ACPR
improvement over 35dB. The performances of the CSLS
algorithm are much better than those of LMS-type algorithms in
convergence speed and identification accuracy. The algorithm
also can be applied to other cascaded model, and thus provides a
unified complex field identification algorithm for cascaded
DPDs. SCPWL function has good prospects in engineering
applications with the advantages of simple structure and easy
hardware implementation. With the commercialization progress
of ET PAs, further research directions include testing the
performances of the proposed DPD on real ET PAs and
applying the CSLS algorithms in other types of DPD models.

CONCLUSION
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