
 

 

  
Abstract—This work investigates the impact of windowing on 

the detection probability of weak sine waves buried in noise and 
characterized by a frequency uniformly distributed in a given 
frequency interval. Detection is performed in the frequency domain 
through the discrete Fourier transform (DFT). The mean value of the 
sine wave frequency can be located in any position on the frequency 
axis, i.e., it is not required a frequency mean value corresponding to a 
DFT bin. The work extends previous results obtained under the 
simple worst-case assumption of a sine wave frequency located in the 
middle point between two adjacent DFT bins. An interesting 
application related to such extension is given by the detection of 
interharmonics in power systems. Analytical expressions for the 
detection probability as function of the noise level and the selected 
window are derived in closed form. Validation is performed through 
numerical simulation of the whole measurement process. 
 

Keywords—Detection probability, discrete Fourier transform, 
frequency fluctuation, noise, weak sine waves.  

I. INTRODUCTION 
ETECTION of weak sine waves buried in additive noise 
arises in many fields of electrical engineering, including 

aerospace applications, diagnostics of electrical machines, and 
measurement of radiated electromagnetic emissions (e.g., see 
[1]-[3]). Although it is well known that parametric methods 
provide better performances in sine wave detection (e.g., see 
[4]), in many applications the nonparametric method based on 
the discrete Fourier transform (DFT) is still the most common 
approach due to its simplicity and since it does not require a 
preliminary selection of the order of the spectral model. As far 
as the DFT approach is considered, windowing against 
spectral leakage must be taken into account when sine wave 
detection is investigated [1], [4]-[6]. In fact, windowing 
greatly affects sine wave detection for several reasons. First, it 
is well known that different windows result in different noise 
level in each DFT frequency bin. Second, spectral leakage due 
to asynchronous sampling results in interference between 
spectral lines. Third, frequency resolution of the windowed 
DFT could be lower than the frequency spacing of adjacent 
spectral lines. The three points mentioned above have been 
already investigated in the related literature, therefore in this 
paper it is assumed that: 1) The noise behavior of a window is 
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properly taken into account by the corresponding equivalent 
noise bandwidth (ENBW); 2) Side-lobes level of each 
considered window is such that spectral leakage can be 
neglected; 3) Frequency resolution of DFT is such that the 
sine wave to be detected can be distinguished from the 
adjacent spectral lines. A further point related to windowing, 
however, must be taken into account when sine wave 
detection is considered. Under asynchronous sampling 
conditions, the amplitude of the sine wave to be detected is 
weighted by the main lobe of the window in the frequency 
domain because the sine wave frequency deviates from the 
center of the window main lobe [5], [7]-[8]. Such weighting 
process results in attenuation of the sinewave amplitude, 
leading to lower detection probability. In the worst case, i.e., 
when the sine wave frequency is placed in the middle point 
between two adjacent frequency bins, the maximum amplitude 
attenuation is given by the window scallop loss (SL) [5]. This 
phenomenon is well known in signal processing theory, but its 
impact on the detection probability of a sine wave was not 
thoroughly investigated in the existing literature. In fact, in the 
literature only the worst case (i.e., the maximum attenuation 
SL) was considered [1], whereas a proper investigation 
requires the analytical description of the impact of the window 
main-lobe continuous behavior in the frequency domain. To 
this aim, in this paper it is assumed that the frequency of the 
sine wave to be detected is randomly distributed within a 
given frequency interval with uniform distribution (i.e., 
frequency fluctuation about a frequency mean value is 
assumed). By taking into account the frequency behavior of 
the window main lobe introducing amplitude attenuation, the 
probabilistic description of the spectral line amplitude 
corresponding to the sine wave is derived in closed form. 
Finally, the detection probability is derived by taking into 
account the noise behavior of the selected window. The results 
presented in the paper extend the results presented in [7]-[8] 
where the special case of a harmonic sine wave was 
considered, i.e., where the frequency mean value of the 
fluctuating sinewave was equal to the center of a frequency 
bin. On the contrary, in this paper the mean value of the sine 
wave frequency can be located in any position. An important 
application of such assumption is related to detection of 
interharmonics in power systems [9]-[10]. 

The paper is organized as follows. In Section II the basic 
results concerning detection and false alarm probabilities in 
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the frequency domain already available in the literature are 
recalled. In Section III the approximate analytical model for 
the frequency behavior of weighting windows is introduced, 
and the probabilistic description of frequency fluctuation 
effects is analytically derived. In Section IV the approach 
based on detection and false alarm probabilities of a noisy sine 
wave component is extended taking into account sine wave 
frequency fluctuation. In Section V the mean value and the 
variance of the spectral line amplitude are derived. Analytical 
results are validated through numerical simulations in Section 
VI. 

II. BACKGROUND: PROBABILITY DISTRIBUTION OF DFT 
SPECTRAL LINES AMPLITUDE 

Let us consider a distorted voltage or current waveform u(t) 
consisting in the sum of N sine waves and zero-mean white 
noise n(t): 

 
 𝑢𝑢(𝑡𝑡) = ∑ 𝐴𝐴ℎcos(2𝜋𝜋𝑓𝑓ℎ𝑡𝑡 + 𝜑𝜑ℎ)𝑁𝑁

ℎ=1 + 𝑛𝑛(𝑡𝑡) (1) 
 
The waveform u(t) is sampled with sampling period TS, i.e., 

with sampling frequency fS=1/TS. The time-to-frequency 
transformation of the sampled waveform is performed by 
evaluating the NS-samples discrete Fourier transform (DFT) 
[4]-[6]: 

 
𝑈𝑈𝑚𝑚 = 2

𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁
∑ 𝑢𝑢(𝑘𝑘𝑇𝑇𝑆𝑆)𝑤𝑤(𝑘𝑘𝑇𝑇𝑆𝑆)exp �−𝑗𝑗 2𝜋𝜋𝑚𝑚𝑘𝑘

𝑁𝑁𝑆𝑆
�𝑁𝑁𝑆𝑆−1

𝑘𝑘=0  (2) 
 

where w(t) is a window function used against spectral leakage, 
and NPSG is the normalized peak signal gain of the selected 
window w(t). The frequency resolution of the DFT in (2) is 
∆𝑓𝑓 = 𝑓𝑓𝑆𝑆 𝑁𝑁𝑆𝑆⁄ . The factor 2 (𝑁𝑁𝑆𝑆𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁)⁄  in (2) is such that the 
estimate of each sine wave amplitude in (1) is given by the 
coefficient magnitude |𝑈𝑈𝑚𝑚 | corresponding to the discrete 
frequency 𝑚𝑚∆𝑓𝑓 closest to the considered sine wave frequency.  

Additive noise n(t) results in a random behavior of the DFT 
coefficients 𝑈𝑈𝑚𝑚 . The real and the imaginary parts of each 𝑈𝑈𝑚𝑚  
can be approximated as a Gaussian random variable (RV) with 
unbiased mean values (i.e., the deterministic noise-free 
values), and variance [6]-[10], [11]-[17] 

 
 𝜎𝜎2 = 𝐸𝐸𝑁𝑁𝐸𝐸𝐸𝐸 2

𝑁𝑁𝑆𝑆
𝜎𝜎𝑛𝑛2 (3) 

 
where ENBW is the equivalent noise bandwidth of the 
selected window w(t), and 𝜎𝜎𝑛𝑛2 is the variance of the input noise 
n(t). As a result, the only-noise spectral lines (i.e., with zero 
deterministic component) have a Rayleigh probability density 
function (PDF) [18]-[20]: 
 

 𝑔𝑔|𝑈𝑈|(|𝑈𝑈|) = |𝑈𝑈|
𝜎𝜎2 exp �− |𝑈𝑈|2

2𝜎𝜎2� (4) 
 

and cumulative distribution function (CDF): 
 

 𝑁𝑁|𝑈𝑈|(|𝑈𝑈|) = 1 − exp �− |𝑈𝑈|2

2𝜎𝜎2� (5) 

Notice that in (4) and (5) the frequency subscript m was 
dropped since the results are independent of m. 

On the other hand, the signal spectral lines (i.e., with non-
zero deterministic component) have Rician PDF [7]-[8], [11]-
[20]: 

 

 𝑓𝑓|𝑈𝑈|(|𝑈𝑈|) = |𝑈𝑈|
𝜎𝜎2 exp �− |𝑈𝑈|2+𝐶𝐶2

2𝜎𝜎2 � 𝐼𝐼0 �
|𝑈𝑈|𝐶𝐶
𝜎𝜎2 � (6) 

 
where C is the related sine wave amplitude (i.e., A with proper 
index) weighted by the spectrum of the window w(t), and I0 is 
the modified Bessel function of the first kind. If the considered 
sine wave frequency equals an integer multiple of ∆𝑓𝑓 than the 
weight introduced by the window spectrum is equal to one, 
otherwise the weight is less than one. The CDF is given by 
 

 𝐹𝐹|𝑈𝑈|(|𝑈𝑈|) = 1 − 𝑄𝑄1 �
𝐶𝐶
𝜎𝜎

, |𝑈𝑈|
𝜎𝜎
� (7) 

 
where Q1 is the Marcum Q function. 

By defining a threshold level α, the false alarm probability 
is defined as the probability that an only-noise spectral line is 
larger than α. Thus, from (5) the false alarm probability is 
given by 

 

 𝑁𝑁𝑓𝑓𝑓𝑓 (𝛼𝛼) = exp �− 𝛼𝛼2

2𝜎𝜎2� (8) 
 
The detection probability is defined as the probability that a 

signal spectral line is greater than the threshold. Thus, from 
(7) the detection probability is given by 

 
 𝑁𝑁𝑑𝑑(𝛼𝛼) = 𝑄𝑄1 �

𝐶𝐶
𝜎𝜎

, 𝛼𝛼
𝜎𝜎
� (9) 

 
By solving (8) with respect to α and substituting into (9) we 

obtain 
 

 𝑁𝑁𝑑𝑑�𝑁𝑁𝑓𝑓𝑓𝑓 � = 𝑄𝑄1 �
𝐶𝐶
𝜎𝜎

,�−2log�𝑁𝑁𝑓𝑓𝑓𝑓 �� (10) 

 
Therefore, for a given signal-to-noise ratio 𝐶𝐶 𝜎𝜎⁄ , eq. (10) 

provides the detection probability as a function of the accepted 
false alarm probability. 

In the next Sections the PDF and the CDF of spectral lines 
affected by frequency fluctuation will be derived instead of (4) 
and (5), respectively. Therefore, the statistical moments (e.g., 
mean value and variance) and the detection probability similar 
to (10) will be derived taking into account the random 
distribution of sine wave frequency and the weighting window 
used against spectral leakage. 

III. PROBABILISTIC MODELING OF SINE WAVE FREQUENCY 
FLUCTUATION 

It is well known that when a DFT is evaluated, a time-
domain sine wave component results in a spectral line whose 
amplitude is weighted by the main lobe of the spectrum of the 
window function w(t) used against spectral leakage. Therefore, 
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by assuming negligible spectral leakage, a sine wave 
amplitude is weighted by a frequency-domain function equal 
to one at the DFT frequency bins (i.e., integer multiples of 
∆𝑓𝑓), and equal to the scallop loss (SL) of the selected window 
at (𝑚𝑚 ± 1 2⁄ )∆𝑓𝑓. The behavior of such function within the 
above mentioned frequency range is specific to the selected 
window. In order to obtain approximate and simple results, 
however, the frequency behavior of the window function can 
be analytically represented by the parabolic behavior (see Fig. 
1) [7]-[8] 

 
 𝑦𝑦 ≅ 1 − 4(1−𝑆𝑆𝑆𝑆)

∆𝑓𝑓2 𝑓𝑓2 = 1 − 4(1 − 𝑆𝑆𝑆𝑆)𝑥𝑥2 (11) 
 

where the origin was assumed at a frequency bin 𝑚𝑚∆𝑓𝑓, and 
𝑥𝑥 = 𝑓𝑓 ∆𝑓𝑓⁄  is the normalized frequency. Therefore, after DFT 
the amplitude of a spectral line can be written as 
 

 𝐴𝐴(𝑥𝑥) = 𝑦𝑦(𝑥𝑥) ∙ 𝐴𝐴0 (12) 
 
where 𝐴𝐴0 is the actual amplitude of the sine wave component 
(i.e., one of the coefficients 𝐴𝐴ℎ  in (1)).  

In this paper, the sine wave frequency is treated as a random 
variable (RV) uniformly distributed within a given 
(normalized) frequency range ∆𝑥𝑥 = 𝑥𝑥2 − 𝑥𝑥1 < 1, centered 
around the mean normalized frequency 𝑥𝑥0 (i.e., the normalized 
deviation with respect to a frequency bin). In the following, 
the derivations are performed by assuming 0 ≤ 𝑥𝑥0 ≤ 1 2⁄  
since y(x) is an even function and therefore the same results 
can be obtained for negative 𝑥𝑥0. Thus, the spectral line 
amplitude (12) can be regarded as a function of the RV x, and 
the statistical properties of the RV y can be readily obtained 
from Fig. 1. In particular, the CDF of y can be obtained by 
evaluating the frequency interval where 𝑦𝑦 ≤ 𝑦𝑦� for 𝑆𝑆𝑆𝑆 ≤ 𝑦𝑦� ≤
1. To this aim, four different cases should be investigated: 

1) 𝑥𝑥1 ≥ 0, 𝑥𝑥2 ≤ 1 2⁄ . By taking into account that 
 

 �̅�𝑥 = � 1−𝑦𝑦�
4(1−𝑆𝑆𝑆𝑆)

 (13) 

 
the CDF of y can be readily obtained as 
 

𝐹𝐹𝑦𝑦(𝑦𝑦) = 𝑥𝑥2−𝑥𝑥̅
∆𝑥𝑥

= 𝑥𝑥0
∆𝑥𝑥

+ 1
2
− 1

∆𝑥𝑥 �
1−𝑦𝑦

4(1−𝑆𝑆𝑆𝑆)
, 𝑦𝑦2 ≤ 𝑦𝑦 ≤ 𝑦𝑦1,  (14) 

 
where 𝑦𝑦1 = 1 − 4(1 − 𝑆𝑆𝑆𝑆)𝑥𝑥1

2 and 𝑦𝑦2 = 1 − 4(1 − 𝑆𝑆𝑆𝑆)𝑥𝑥2
2. 

The PDF of y is obtained as the first derivative of (14): 
 

 𝑓𝑓𝑦𝑦(𝑦𝑦) = 𝑑𝑑𝐹𝐹
𝑑𝑑𝑦𝑦

= 1
4∆𝑥𝑥�(1−𝑆𝑆𝑆𝑆)(1−𝑦𝑦)

= 𝑝𝑝0(𝑦𝑦) (15) 

 
2) 𝑥𝑥1 < 0, 𝑥𝑥2 ≤ 1 2⁄ . In this case it can be shown that the 

CDF of y is given by: 
 

 𝐹𝐹𝑦𝑦(𝑦𝑦) =

⎩
⎨

⎧𝑥𝑥0
∆𝑥𝑥
− 1

2
− 1

2∆𝑥𝑥
� 1−𝑦𝑦

1−𝑆𝑆𝑆𝑆
, 𝑦𝑦2 ≤ 𝑦𝑦 ≤ 𝑦𝑦1

1 − 1
∆𝑥𝑥
� 1−𝑦𝑦

1−𝑆𝑆𝑆𝑆
, 𝑦𝑦1 ≤ 𝑦𝑦 ≤ 1

�,  (16) 

 
Fig. 1.  Frequency behavior of the weighting window used against spectral 
leakage as a function of the normalized frequency x. 
 
and the related PDF: 
 

 𝑓𝑓𝑦𝑦(𝑦𝑦) = �𝑝𝑝0(𝑦𝑦),   𝑦𝑦2 ≤ 𝑦𝑦 ≤ 𝑦𝑦1 
2𝑝𝑝0(𝑦𝑦),   𝑦𝑦1 ≤ 𝑦𝑦 ≤ 1

� (17) 

 
3) 𝑥𝑥1 > 0, 𝑥𝑥2 > 1 2⁄  (i.e., the case shown in Fig. 1). The 

CDF and PDF are given by: 
 

 𝐹𝐹𝑦𝑦(𝑦𝑦) =

⎩
⎨

⎧ 1
∆𝑥𝑥
− 1

∆𝑥𝑥
� 1−𝑦𝑦

1−𝑆𝑆𝑆𝑆
, 𝑆𝑆𝑆𝑆 ≤ 𝑦𝑦 ≤ 𝑦𝑦2

1 − 1
∆𝑥𝑥
� 1−𝑦𝑦

1−𝑆𝑆𝑆𝑆
, 𝑦𝑦2 ≤ 𝑦𝑦 ≤ 𝑦𝑦1

� (18) 

 

 𝑓𝑓𝑦𝑦(𝑦𝑦) = �2𝑝𝑝0(𝑦𝑦),   𝑆𝑆𝑆𝑆 ≤ 𝑦𝑦 ≤ 𝑦𝑦2 
𝑝𝑝0(𝑦𝑦),   𝑦𝑦2 ≤ 𝑦𝑦 ≤ 𝑦𝑦1

� (19) 

 
4) 𝑥𝑥1 < 0, 𝑥𝑥2 > 1 2⁄ . The CDF and PDF are given by: 

 

 𝐹𝐹𝑦𝑦(𝑦𝑦) =

⎩
⎪⎪
⎨

⎪⎪
⎧ 1

∆𝑥𝑥
− 1

∆𝑥𝑥
� 1−𝑦𝑦

1−𝑆𝑆𝑆𝑆
, 𝑆𝑆𝑆𝑆 ≤ 𝑦𝑦 ≤ 𝑦𝑦2

𝑥𝑥0
∆𝑥𝑥

+ 1
2
− 1

2∆𝑥𝑥
� 1−𝑦𝑦

1−𝑆𝑆𝑆𝑆
, 𝑦𝑦2 ≤ 𝑦𝑦 ≤ 𝑦𝑦1

1 − 1
∆𝑥𝑥
� 1−𝑦𝑦

1−𝑆𝑆𝑆𝑆
, 𝑦𝑦1 ≤ 𝑦𝑦 ≤ 1

� (20) 

 

 𝑓𝑓𝑦𝑦(𝑦𝑦) = �
2𝑝𝑝0(𝑦𝑦),   𝑆𝑆𝑆𝑆 ≤ 𝑦𝑦 ≤ 𝑦𝑦2 
𝑝𝑝0(𝑦𝑦),   𝑦𝑦2 ≤ 𝑦𝑦 ≤ 𝑦𝑦1
2𝑝𝑝0(𝑦𝑦),   𝑦𝑦1 ≤ 𝑦𝑦 ≤ 1

� (21) 

 
Finally notice that from (12) the CDF and PDF of the RV A 

can be obtained as:  
 
 𝐹𝐹𝐴𝐴(𝐴𝐴) = 𝐹𝐹𝑦𝑦 �

𝐴𝐴
𝐴𝐴0
� (22) 

 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 10, 2016

ISSN: 1998-4464 379



 

 

 𝑓𝑓𝐴𝐴(𝐴𝐴) = 1
𝐴𝐴0
𝑓𝑓𝑦𝑦 �

𝐴𝐴
𝐴𝐴0
� (23) 

 

IV. DETECTION PROBABILITY OF SINE WAVE 
The measured amplitude of a spectral line is affected by 

both additive noise and frequency fluctuation. Therefore, the 
detection probability for a given threshold level α must be 
obtained from the total probability theorem by combining (9) 
(representing only the noise contribution for a given sine wave 
amplitude A) and (23) (representing the frequency fluctuation 
contribution) [18]-[20]: 

 
 𝑁𝑁𝑑𝑑(𝛼𝛼) = ∫ 𝑁𝑁𝑑𝑑 (𝛼𝛼|𝐴𝐴�)𝑓𝑓𝐴𝐴(𝐴𝐴)𝑑𝑑𝐴𝐴𝐴𝐴0

𝑆𝑆𝑆𝑆∙𝐴𝐴0
=  

 
 = ∫ 𝑄𝑄1 �

𝐴𝐴
𝜎𝜎

, 𝛼𝛼
𝜎𝜎
� 𝑓𝑓𝐴𝐴(𝐴𝐴)𝑑𝑑𝐴𝐴𝐴𝐴0

𝑆𝑆𝑆𝑆∙𝐴𝐴0
 (24) 

 
and by taking into account (12) we obtain: 
 

 𝑁𝑁𝑑𝑑 (𝛼𝛼) = ∫ 𝑄𝑄1 �𝑆𝑆𝑁𝑁𝑆𝑆 ∙ 𝑦𝑦, 𝛼𝛼
𝜎𝜎
� 𝑓𝑓𝑦𝑦(𝑦𝑦)𝑑𝑑𝑦𝑦1

𝑆𝑆𝑆𝑆  (25) 
 
where 
 

 𝑆𝑆𝑁𝑁𝑆𝑆 = 𝐴𝐴0
𝜎𝜎

 (26) 
 
is the signal-to-noise ratio. 

Finally, by taking into account (8), the detection probability 
can be expressed as a function of the false alarm probability as 

 

 𝑁𝑁𝑑𝑑�𝑁𝑁𝑓𝑓𝑓𝑓 � = ∫ 𝑄𝑄1 �𝑆𝑆𝑁𝑁𝑆𝑆 ∙ 𝑦𝑦,�−2log�𝑁𝑁𝑓𝑓𝑓𝑓 �� 𝑓𝑓𝑦𝑦(𝑦𝑦)𝑑𝑑𝑦𝑦1
𝑆𝑆𝑆𝑆  (27) 

 
In (27) the PDF 𝑓𝑓𝑦𝑦(𝑦𝑦) is given by (15), (17), (19), or (21) 

according to the frequency range (𝑥𝑥1, 𝑥𝑥2).  

V. MEAN VALUE AND VARIANCE OF MEASURED SINE WAVE 
AMPLITUDE 

By denoting as 𝑀𝑀 = |𝑈𝑈| the measured amplitude of a 
spectral line affected by both additive noise and frequency 
fluctuation, the related PDF can be obtained by resorting to the 
total probability theorem and by using (6) and (23): 

 

𝑓𝑓𝑀𝑀(𝑀𝑀) = � 𝑓𝑓𝑀𝑀(𝑀𝑀|𝐴𝐴�)𝑓𝑓𝐴𝐴(𝐴𝐴)𝑑𝑑𝐴𝐴 =

𝐴𝐴0

𝑆𝑆𝑆𝑆∙𝐴𝐴0

 

 

 = ∫ 𝑀𝑀
𝜎𝜎2 exp �−𝑀𝑀2+𝐴𝐴2

2𝜎𝜎2 � 𝐼𝐼0 �
𝑀𝑀𝐴𝐴
𝜎𝜎2 � 𝑓𝑓𝐴𝐴(𝐴𝐴)𝑑𝑑𝐴𝐴𝐴𝐴0

𝑆𝑆𝑆𝑆∙𝐴𝐴0
 (28) 

 
By taking into account (12) and by defining the normalized 

amplitude of the measured sine wave: 
 

 𝑧𝑧 = 𝑀𝑀
𝜎𝜎

 (29) 
 

we obtain: 
 

𝑓𝑓𝑧𝑧(𝑧𝑧) = ∫ 𝑧𝑧 ∙ exp �− 𝑧𝑧2+𝑆𝑆𝑁𝑁𝑆𝑆2𝑦𝑦2

2
� 𝐼𝐼0(𝑆𝑆𝑁𝑁𝑆𝑆 ∙ 𝑧𝑧𝑦𝑦)𝑓𝑓𝑦𝑦(𝑦𝑦)𝑑𝑑𝑦𝑦1

𝑆𝑆𝑆𝑆  (30) 
 

The mean value of M can be evaluated as: 
 

 𝜇𝜇𝑀𝑀 = 𝜎𝜎𝜇𝜇𝑧𝑧 = 𝜎𝜎 ∫ 𝑧𝑧𝑓𝑓𝑧𝑧(𝑧𝑧)𝑑𝑑𝑧𝑧∞
0  (31) 

 
and the variance: 
 

 𝜎𝜎𝑀𝑀2 = 𝜎𝜎2𝜎𝜎𝑧𝑧2 = 𝜎𝜎2 ∫ (𝑧𝑧 − 𝜇𝜇𝑧𝑧)2𝑓𝑓𝑧𝑧(𝑧𝑧)𝑑𝑑𝑧𝑧∞
0  (32) 

VI. NUMERICAL VALIDATION 
The analytical results derived in Sections IV and V were 

validated by resorting to numerical simulation of the whole 
measurement process. According to (1), a waveform 
consisting of three harmonic components was selected such 
that 𝑓𝑓1 = 50 Hz, 𝑓𝑓3 = 150 Hz, and 𝑓𝑓5 = 250 Hz. The 
amplitudes were selected as 𝐴𝐴1 = 10,𝐴𝐴3 = 2,𝐴𝐴5 = 1, 
whereas the phase angles were selected at random. One sine 
wave component 𝐴𝐴4 was also added, with uniformly 
distributed random frequency. Several values for the average 
frequency were selected within the range (180 Hz, 182.5 Hz), 
i.e., in normalized units within the range (36, 36.5). Different 
values were also selected for the frequency interval ∆𝑥𝑥 = 𝑥𝑥2 −
𝑥𝑥1, provided that ∆𝑥𝑥 < 1. The sine wave amplitude 𝐴𝐴4 was 
selected to implement different values of SNR according to 
(26). Additive zero-mean Gaussian noise n(t) was also added 
with 𝜎𝜎𝑛𝑛 = 0.1. Sampling was performed such that 10 periods 
of the fundamental component were acquired, i.e., a 200 ms 
measurement window was taken. The selection of the number 
of samples 𝑁𝑁𝑆𝑆  defines the corresponding sampling frequency. 
By assuming 𝑁𝑁𝑆𝑆 = 210  the corresponding sampling frequency 
was 𝑓𝑓𝑆𝑆 = 5.12 kHz, and the related frequency resolution was 
∆f = 5 Hz. Three different windows were used, i.e., the 
rectangular, Hann, and minimum 4-term Blackman-Harris 
windows. Repeated run analyses (104 runs to estimate each 
average value) were performed to validate the analytical 
results.  

In Fig. 2 the numerical estimates (dotted lines) of the sine-
wave detection probability as a function of the false alarm 
probability are compared with the analytical result (27) (solid 
lines). The sine wave has SNR = 4 as defined in (26), and a 
rectangular window (𝑆𝑆𝑆𝑆 = 0.637) was used. The normalized 
frequency fluctuation was ∆𝑥𝑥 = 0.1, and three different values 
for the mean value of the normalized frequency deviation 𝑥𝑥0 
from the closest frequency bin were considered, i.e., 0, 0.25, 
and 0.5. Clearly by increasing 𝑥𝑥0 the detection probability 
decreases since the main lobe of the rectangular window in the 
frequency domain results in the attenuation of the sine wave 
amplitude according to (12). In Figs. 3 and 4 the same 
quantities are represented for the Hann (𝑆𝑆𝑆𝑆 = 0.849) and the 
minimum 4-term Blackman-Harris (𝑆𝑆𝑆𝑆 = 0.909) windows, 
respectively. As it was expected, by considering windows with 
larger SL results in higher detection probability especially 
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when the sine wave frequency fluctuates around the edges of 
the window main lobe, i.e., for 𝑥𝑥0 = 0.5. Figs. 5 and 6 are 
similar to Fig. 3 (i.e., Hann window) but with SNR equal to 3 
and 2, respectively. According to (26), decreasing SNR results 
in a lower sine-wave amplitude and larger impact of additive 
noise. This results in lower detection probabilities (i.e., the 
curves in Figs. 5 and 6 are lower than curves in Fig. 3), and 
lower impact of the main lobe of the window in the frequency 
domain (i.e., the curves in Fig. 5 are close each other more 
than the curves in Fig. 3, and this phenomenon is further 
emphasized in Fig. 6 where the behavior is mainly related to 
the additive noise). In Fig. 7 the Hann window was considered 
again (and SNR = 4 as in Fig. 3), but the frequency fluctuation 
∆𝑥𝑥 was increased from 0.1 to 0.5. As it was expected, by 
increasing the frequency fluctuation the detection probability 
decreases for 𝑥𝑥0 = 0 and increase for 𝑥𝑥0 = 0.5 due to the 
main lobe of the window in the frequency domain. Therefore, 
the spread between the three curves for different frequency 
mean value 𝑥𝑥0 decreases. 

Figs. 8 and 9 compare numerical (dotted lines) and 
analytical (solid lines) behavior of the mean value and 
standard deviation of the measured normalized sine-wave 
amplitude z according to (31) and (32), respectively. Mean 
value and standard deviation of z are reported as functions of 
the mean value 𝑥𝑥0 of the normalized frequency fluctuation. 
The interval of frequency fluctuation was assumed ∆𝑥𝑥 = 0.5, 
and the sine wave amplitude was selected such that SNR = 4. 
Three pairs of curves are represented corresponding to the 
three windows already used above. From Fig. 8, as it was 
expected, the mean value of z is larger for a window with 
larger SL. Again, this can be explained by the weight provided 
by the window main lobe. On the contrary, in Fig. 9 it is clear 
that larger standard deviation of the measured sine-wave 
amplitude corresponds to windows with lower SL because in 
this case the window main lobe provides larger variability in 
weighting the sine wave amplitude. From Figs. 8 and 9 it is 
clear that even in the case of a properly detected sine wave, 
both the mean value and the standard deviation can be 
significantly affected by the sine-wave frequency fluctuation 
combined with the effect of the window used against spectral 
leakage.  

 

 
Fig. 2.  Detection probability as a function of the false alarm probability for a 
sine wave component with normalized frequency fluctuation 0.1 and three 
different values (i.e., 0, 0.25, and 0.5) for the mean value of the normalized 
frequency deviation from the closest frequency bin. The SNR (according to 
(26)) is equal to 4, and the rectangular window (𝑆𝑆𝑆𝑆 = 0.637) was used. 

 
Fig. 3.  Detection probability as a function of the false alarm probability for a 
sine wave component with normalized frequency fluctuation 0.1 and three 
different values (i.e., 0, 0.25, and 0.5) for the mean value of the normalized 
frequency deviation from the closest frequency bin. The SNR (according to 
(26)) is equal to 4, and the Hann window (𝑆𝑆𝑆𝑆 = 0.849) was used. 
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Fig. 4.  Detection probability as a function of the false alarm probability for a 
sine wave component with normalized frequency fluctuation 0.1 and three 
different values (i.e., 0, 0.25, and 0.5) for the mean value of the normalized 
frequency deviation from the closest frequency bin. The SNR (according to 
(26)) is equal to 4, and the minimum 4-term Blackman-Harris window 
(𝑆𝑆𝑆𝑆 = 0.909) was used. 
 

 
Fig. 5.  Same as Fig. 3 but with SNR = 3. 

 

 
Fig. 6.  Same as Fig. 3 but with SNR = 2. 

 

 

Fig. 7.  Detection probability as a function of the false alarm probability for a 
sine wave component with normalized frequency fluctuation 0.5 and three 
different values (i.e., 0, 0.25, and 0.5) for the mean value of the normalized 
frequency deviation from the closest frequency bin. The SNR (according to 
(26)) is equal to 4, and the Hann window (𝑆𝑆𝑆𝑆 = 0.849) was used. 
 

 
Fig. 8.  Mean value of the normalized sine-wave amplitude z as a function of 
the normalized mean value 𝑥𝑥0 of the frequency fluctuation. The normalized 
frequency interval of fluctuation is ∆𝑥𝑥 = 0.5, and the sine wave amplitude is 
such that SNR = 4. Comparison between numerical and analytical results are 
shown for the three different windows already considered above. 
 

 
Fig. 9.  Standard deviation of the normalized sine-wave amplitude z as a 
function of the normalized mean value 𝑥𝑥0 of the frequency fluctuation. The 
normalized frequency interval of fluctuation is ∆𝑥𝑥 = 0.5, and the sine wave 
amplitude is such that SNR = 4. Comparison between numerical and 
analytical results are shown for the three different windows already 
considered above. 
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