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Abstract － This paper implements Legendre wavelet and 
particle swarm optimization (PSO) to linearize power amplifier 
(PA). The novel method proposed is very efficient and the 
pre-distorter (PD) shows stability and effectiveness. The reasons 
are mainly the Legendre wavelet base can offer piecewise lower 
order polynomial approximation at different level of resolution for 
the PA linearization, and the PSO is a powerful optimization tool 
based on stochastic searching technique. Furthermore, a quite 
significant improvement in linearity is achieved based on the 
measured data of the PA characteristics and out power spectrum 
has been compared.   
 
  Keywords－Power amplifier, Pre-distortion, Legendre wavelet, 
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I. INTRODUCTION     

The power amplifier is a major source of nonlinearity in a 
communication system. Thus, the improvement of the 
linearity of the PA becomes an objective of first importance 
for mobile communication systems. Recently, a lot of 
efforts have been made to improve the linearity of the PA 
[1–5]. Among these methods, the polynomial model is 
widely used to predict and design the performance of the PA 
because of its simplicity and easiness of implementation. 
Especially, orthogonal polynomials have been proposed to 
model the PA and the PD [7-9]. It is very important that the 
coefficients of the orthogonal polynomial model can be 
extracted with much improved numerical stability than 
those of the conventional polynomials [5].       
  In this work, a novel technique of the PA and the PD 
models is presented by utilizing the Legendre wavelet and 
the PSO to discuss commonly employed models (the 
Wiener model and the Hammerstein model) consisting of a 
linear dynamic system and a static nonlinearity [10-19]. 
The linear dynamic system (LDS) is realized by an FIR 
filter, and the static nonlinearity (SNL) is characterized by 
AM/AM and AM/PM effects [6-10], which are 
approximated by the Legendre wavelet, respectively. In this 
paper, an LDMOS class-AB power amplifier with 50W 
output power at 2.14 GHz was used to assess the proposed 
technique for actual PA linearization. This PA is excited by   
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                           a WCDMA signal with bandwidth of 20 MHz and chip rate 
of 3.84 Mcps. Applying the practical transmission signal, 
the Wiener model is used to model the PA with memory by 
using the Legendre wavelet, which can offer an efficient 
tool for the pre-distortion because of its rich properties. On 
the other hand, through computing the inversion of the 
Wiener model, the Hammerstein model is implemented to 
design the PD by using the PSO algorithm. The approach 
presented in this article has advantages: adaptive piecewise 
approximation at different decomposition level; the 
Legendre wavelet base functions are orthogonal and 
expressed in closed form and can be implemented with 
little demand on the computation resources; lower order 
approximation; an efficient pre-distortion linearization 
technique to overcome the stagnation in the nonlinear 
system identification.   

 The organization of this paper is as follows. In Section II, 
we relate the Legendre wavelet and illustrate its benefit in 
PA modeling and the inversion structure of the PA model 
and compare it with the conventional polynomial model. In 
Section III, we formulate a pre-distortion linearization 
algorithm with the Legendre wavelet and the PSO 
algorithm. Numerical examples are presented and a great 
improvement in linearity is achieved. Finally, the 
conclusion is obtained in Section IV.   

  
II. PA MODEL AND ITS INVERSION  

WITH LEGENDRE WAVELET 
 In this section, we first relate the principle of the model 

known as PA model and inversion from a mathematical 
point of view[11]. In a second step, the Legendre wavelet is 
introduced. Finally, applying the practical transmission 
signal, the different polynomial bases including the 
Legendre wavelet are used to PA model and its inversion 
and compared with respect to the normalized mean squared 
error (NMSE) of least squares (LS) estimation.  

 
A. Principle of PA model and its inversion   
  The PD, which has the inverse characteristic of the PA, is 
used to compensate for the nonlinearity in the PA. The most 
satisfied PA linearization is that the ultimate function of the 
system from the PD input to the PA output would ideally 
consist of a linear gain and 0◦ phase shift. Generally, let 

WN , HP denote the operators of the Wiener model for the 
PA and the Hammerstein model for the PD, respectively. 
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Then in the discrete time case, the PA linearization is 
implicitly given 

][]}}[{{:][ 0qqxgqxPNqy HW −⋅==    (1) 

with some real valued constant gain 0>g and some 
constant delay 00 Nq ∈ . Here x[q] and y[q] are the 
discrete-time input and output signals, respectively, 
and Qq ,,2,1 = . Or if the inverse of the behaviour of the 
target system exists, the explicit definition of the PD reads 

]}[{]}[{{:][ 0
1 qqxgNqxPqy WH −⋅== − .   (2)       

Fig. 1 demonstrates the structures of the Wiener model and 
the Hammerstein model, respectively [11]. 
  xW                  yW      xH                   yH 
     LDS      SNL                SNL      LDS 
 
   Fig.1 (a) Wiener model (PA)    (b) Hammerstein model (PD) 
In this article, we utilize the Legendre wavelet base to 
approximate the two operators WN and 

HP by applying a 
set of 73920 samples of the practical transmission signal.  

 
B. Legendre wavelet 
  In this context, we briefly review the Legendre wavelet 
base constructed by Alpert [12]. It is pointed out that the 
Legendre wavelet can effectively approximate the above 
two operators with respect to the pre-distortion due to its 
nice properties.    
  Let )(xLk denote the Legendre polynomial of degree k , 
which is defined as follows 
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Let )(xkφ denote the Legendre scale function defined as 
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For 
,2,1,0=n and 12,,2,1,0 −= nl  , define 
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. For 2,1=p ,. . ., 

define npV , as a space of piecewise polynomial functions, 

nlInp ffV :{, = is a polynomial of degree strictly less   

       than p ; and f vanishes elsewhere},  
which constitutes a linear space. The whole set 1
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forms an orthonormal basis for 0,pV .  

  Generally, the subspace 
npV ,

 is spanned by pn2  

functions which are obtained from 10 ,, −kφφ 
 by 

dilations and translations, 
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,which forms an orthonormal basis. In order to intuitively 
understand this base, we let 5=p and 1=n , 
respectively. Fig. 2 plots the functions )(, xnlkφ  for 

1,5V . 

 
Fig.2. Legendre wavelet bases with p=5 and n=1   

  According to the above properties, the approximation of 
a function ]1,0[2Lf ∈  in npV ,  is represented as follows   
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In this paper, we use the discrete-time signals x[q] and y[q] 
as training data to identify the coefficients nlks , . The 

approximate estimation satisfies [12] 
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which demonstrates that the approximation error 
exponentially converges with the level n of the resolution 
and the order p of the Legendre wavelet.  

   
C. PA model and its inversion 
  The models of the PA linearization can be significantly 
simplified by splitting up the elaborate dynamic 
nonlinearities into compositions of the LDS and SNL [11], 
which are described by operators L  and N respectively. 
Then the continuous- time description of the Wiener model, 
i.e., PA model reads 

          }])[*({][ , qxhNqy LBBA= ,        (6) 

    ]}[arg{}])[*({]}[arg{ , qxqxhNqy LBB += Φ
,   (7) 

where Lh is a finite impulse response of the LDS with 
length 0L , and   

TLqxqxqxqx ]]1[,],1[],[[][ 0 +−−= 

,   (8) 
T

LLLL Lhhhh ]]1[,],1[],0[[ 0 −= 

.    (9) 
Furthermore, the SNL of PA is characterized by the 
combination of the AM/AM and the AM/PM conversions. 
The operator

BBAN ,
 in (6) is termed the AM/AM conversion 

and describes the (nonlinear) relation between the amplitude 
of the input baseband signal ][qx and the amplitude of the 
output baseband signal ][qy , and the operator BBN ,Φ  in (7) 

denotes the AM/PM conversion, which characterizes the 
phase offset of the output baseband signal depending on the 
input amplitude.  
  According to Fig.1 and by computing the inversions of  
three operators LH , BBAN , and BBN ,Φ , we can obtain the 

I/O relation of the Hammerstein model, which is given by 
the similar combination of the AM/AM and the AM/PM 
conversions. Fig.3 illustrates the SNL model by using the 
AM/AM and AM/PM conversions. 
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Fig.3.  A static baseband structure 
In Fig.3, the θ∆ represents the time-dependent phase offset. 
Consequently, the response y[q] of the SNL to the input 
signal x[q] has the form  

( ))][*(])[arg( ,][][ qxhNqxj LBBeqyqy Φ+= .       (10) 

With (6), (7) and (10), we can elaborate methods to find 
three parameter sets for the PA model.  
  In this subsection, we implement a common approach in 
the context of PA identification to estimate the parameters 
of the LDS and the SNL part separately based on the 
measured data [9]. Firstly, the filter coefficients are 
randomly generated uniformly distributed on the complex 
square [-0.5, 0.5) + j[-0.5, 0.5) and normalized such that the 
magnitude of the largest weight equals one. Then we 
estimate the weights of the FIR filter with an additional 
rough compensation of the nonlinearity. For the 
Hammerstein model in Section III, the linear filter is again 
inverted by the root search method. In the second step, the 
SNL is identified more accurately based on the results of the 
first phase and by using the Legendre wavelet base, which 
is defined on the subinterval nlI , i.e., piecewise polynomials 
which are represented by a linear combination of basis 
functions and can be approximated be different level n  of 
resolution with required accuracy.  
  Now, let ][*][ qxhqx LBB =  and ][][ qyqyBB = , 

respectively. With (6) and (7), we obtain the approximations 
of the AM/AM and AM/PM conversions satisfying 
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where nlks , and lnkd ′′′, are the Legendre wavelet 

approximation coefficients. Due to the similar means to 
approximate the AM/PM characteristic, here we explicitly 
discuss the approximation of the AM/AM conversion. Let 
us define the 1×Q  input data vector x= TQxx ]][,],1[[ 

, 
the 1×Q  output data vector y= TQyy ]][,],1[[ 

, and 

the 12 ×pn  parameter vector s= T
pnss ],,[ 21  . For 

pu n2,,2,1 = , define T
uuu Qxxx ])][(,]),1[([)( φφφ = , 

and the pQ n2×  matrix T
p xx n )](,),([ 21 φφ =Φ . 

Samples Q
qqyqx 1]}[],[{ = correspond to points on the PA 

transfer characteristics, which may or may not be ordered 
or equally spaced. Then we can now represent (11) as 

                 sy Φ= .              (13) 
  In this subsection, we utilize the common LS method to 

optimize the coefficients the vectors in (13) such that 
              ys TT ΦΦΦ= −1)( .          (14) 

For conventional polynomials, the inversion of the 
pp nn 22 ×  matrix Φ×ΦT  in formula (14) can experience 

a numerical instability problem, whereas for the Legendre 
wavelet method proposed in this paper, the parameter 
estimation in (11) can be improved substantially and the 
numerical instability problem can be alleviated because of 
the orthogonality and adaptive piecewise approximation on 
the subinterval nlI  of the Legendre wavelet base. 

 In this work, to give a quantitative measure of the 
approximation accuracy, we use the NMSE of the form  
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as metric to choose the optimum dimensions of the PA 
model with different polynomials. Here z[q] is the 
measured PA response, y[q] is the PA model response. Let 
the decomposition level 0=n , 1=n respectively, and 
compared with different polynomials such as conventional 
polynomials and orthogonal polynomials, the nonlinearity 
order of the PA model is obtained as shown in Fig. 4.  

 
Fig.4. Estimate NMSE of the AM/AM conversion of the PA model 

Fig.5 shows the AM/PM conversion of the PA with 
different polynomial order.  

 
     Fig.5. Estimate NMSE of the AM/PM of the PA model  

Fig.4 and Fig.5 illustrate that the Legendre wavelet method 
for the pre-distortion is very efficient because of its lower 
order approximation than that of other polynomials. 
Furthermore, this technique offers approximations of the 
PA and its inversion at different level n of resolution. Now, 
we discuss the description of the inverse conversion of the 
SNL. In order to reduce computation load, an efficient 
method for the inversion model is obtained, when the input 
x[q] and the output y[q] are interchanged. Hence, the 
direction of the signal flow in the branch is reversed. The 
reader is referred to the literature for further details [9]. 
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Fig.6 depicts the inversion of the PA model by using the 
Legendre wavelet and LS algorithm.           

 
Fig.6. The inversion of the PA model  

  It is known that the pre-distortion technique involves the 
creation of an inverse characteristic complementary to the 
PA nonlinearity. Nevertheless, the behavior of the PA 
changes with time in practice. Therefore, the PD usually 
needs to be adjusted adaptively. Now, we turn to discuss the 
estimation algorithm of the inverse structure of the PA 
model, i.e., the Hammerstein model.  

 
III. DIGITAL PR-DISTORTION USING  

LEGENDRE WAVELET AND PSO  
 In Section II, we mainly focus on the representation and 

estimation of the SNL of the PA model and its inversion 
based on the Legendre wavelet base. The remaining task 
necessary to linearize the out of the PA is to find an 
adequate system, i.e., the PD which pre-processes the 
transmit signal in such a way that the overall response of 
the cascade PD-PA is linear. In this section, a complete 
digital pre-distortion linearization technique is developed 
based on the Legendre wavelet and the PSO algorithm. 

  
A. Pre-distortion via indirect learning architecture 
  Most of the pre-distortion for PA linearization are based 
on indirect learning architecture, which is depicted in Fig.7 
and more flexible and robust than direct learning 
architecture [11]. In addition, performances of the PA 
linearization can be improved by adding a feedback control 
to cope with external perturbations, parameter variations or 
operating frequency modifications. 

                PD             PA 
         x[q]              yp[q]            y(t)    
               Copy of A  
              
                              ＋  e[q]                                          
                                           1/g    
                              －   
                   z[q]         
                               Pre-distorter                                                              
                               Training A      
  

 
Fig.7. Pre-distortion architecture 

In this section, we use this learning structure to adjust the 
parameters of the PD based on the inversion model 
proposed in Section II and PSO algorithm. 

                                           
B. Learning behaviour of PSO algorithm 
  To estimate the parameters of the Hammerstein model in 
an optimal way, it is required to jointly optimize the 
coefficients of the inversion of the Wiener model. However, 
this minimum issue is not linear-in-parameters and the 

objective function most probably has several local minima. 
It is well-known that the PSO is a population-based 
stochastic searching technique developed by Kennedy and 
Eberhart [20]. Owing to its implementation simplicity and 
fewer adjustable parameters than the other global 
optimization algorithms, the PSO is an efficient approach to 
solving complex and large-scale problems. Especially, by 
using the PSO, the convergence can be accelerated and the 
risk of stalling at a local minimum can be reduced.  

 Thus, in this subsection, the PSO algorithm is adopted to 
find the optimal coefficients of the PD for system 
identifications. In the pre-distortion linearization, the goal 
is to minimize the error between desired outputs and trained 
outputs of the PA, and then the NMSE in (15) will be 
defined as the fitness function. With the pn2 number of 
decision parameters of this optimal problem, the position 
and velocity of each particle i in the swarm are defined as 

),,,( 2,2,1,, piiiknli nsssS =  and ),,,( 2,2,1, piiii nvvvV = , 

respectively. The best previous position of each particle is 
defined as ),,,( 2,2,1, piiii npppP = , and the global best position 

of all particles is represented as ),,,( 2,2,1, pgggg npppP = . 

Therefore, the velocity and position of each particle are 
updated as follows 

))(()())()(()()()()1( ,22,11 jSPrjcjSjPrjcjVjjV knligknliiii −+−+=+ ω ,  (16) 

)1()()1( ,, ++=+ jVjSjS iknliknli
,     (17) 

where j  is iteration step and )( jω  denotes the inertia 
weight at iteration j . In the above two equations )(1 jc  
and )(2 jc are cognitive parameter and social parameter at 

iteration j , respectively. Also 1r  and 2r  are two random 
numbers that are uniformly generated between 0 and 1.  
  In this context, the initial positions are based on the 
coefficients of the inversion of the PA model proposed in 
Section II. That is to say, the expansion coefficients of the 
inversion model are used as reference system for the 
adaptive system identification, i.e., the Hammerstein model. 
In addition, the velocities of all particles in the swarm 
randomly generate, respectively. Furthermore, in order to 
improve computational efficiency, a linearly adaptable 
inertia weight and linearly time-varying acceleration 
coefficients [20-22] over the evolutionary procedure of 
PSO algorithm are adopted. Firstly, the inertia weight ω  
starts with a high value maxω and linearly decreases to 

minω at the maximal number of iterations and has the form 

)()1(
max

minmax
max jiter

iter
j ⋅

−
−=+

ωω
ωω ,       (18) 

where maxiter  is the maximal number of iterations 
(generations) and iter is the current number of iterations. 
Secondly, the cognitive parameter 1c starts with a high 

value max1c and linearly decreases to min1c , whereas the 

social parameter 2c starts with a low value min2c and 

linearly increases to max2c . Therefore, the acceleration 
coefficients )1(1 +jc and )1(2 +jc  satisfy  
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  Now we utilize the above PSO algorithm to identify the 
parameters of the PD. In each iterative step, the particles 
exchange information to update their movements toward 
the global minimum. After adaptation, the estimated 
parameters approximate the point-inverse of the PD are 
obtained. Compared with the conventional orthogonal 
polynomial method, Fig.8 shows the better approximation 
of NMSE by using the Legendre wavelet approach and the 
PSO algorithm at 50max =iter . 

 
Fig.8.   PD model with Legendre wavelet and PSO  

  It is pointed that the new technique proposed in this 
article enjoys inherent implementation/cost advantages over 
other PA linearization techniques discussed previously. The 
reasons are mostly in the rich properties of Legendre 
wavelet base and the strong optimal ability of the PSO 
algorithm.  

  
C. Linearization performances 
  In this subsection, in order to evaluate the quality and the 
effectiveness of the proposed PA linearization technique in 
suppressing spectral regrowth, we compare the power 
spectral density of the PA output without linearization and 
with memory pre-distortion. The identification performance 
of the digital pre-distortion scheme based on the Legendre 
wavelet and the PSO methods is evaluated by measured I/O 
data signals. Fortunately, an efficient improvement of the 
PA linearization is obtained and the PSD both without and 
with the PD are illustrated in Fig.9, respectively.    

 
Fig.9. Comparison of the PSD with the Legendre wavelet method 

  In Fig. 9, the green line shows the linearized spectrum at 
the PA output. For comparison the PA response without 
pre-distortion is represented by the dashed line. It is 

remarkably suppressed with compensation by the proposed 
method to the level of -125 dB or less and reduced about 
30dB, which shows that the Legendre wavelet and the PSO 
approaches have successfully compensated the nonlinearity 
of the PA system with high accuracy.  

 
IV. CONCLUSION   

  In this paper, the PA model, i.e., the Wiener model with 
the LDS and the SNL and its inversion are firstly 
established to describe the behavior of the PA. Secondly, 
the Legendre wavelet and the PSO algorithm are applied to 
identify the PD and compared to other standard 
pre-distortion methods. Especially, it can be concluded 
from the above obtained results that the Legendre wavelet 
and the PSO methods require lower order adaptive 
polynomial approximation at different level of resolution 
and less computational complexity compared with other 
polynomial approaches. In another work, we shall describe 
the memory Legendre wavelet structures and realize the 
full potential of the Legendre wavelet and the PSO 
approaches. 
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