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Abstract—We derive in this paper second order
necessary conditions for certain classes of optimal con-
trol problems involving inequality and equality con-
straints in the time variable and the control functions.
We study different normality conditions found in the
literature which can be imposed on solutions to the
problem and provide a new approach, partly based on
the theory for constrained problems in finite dimen-
sional spaces, which under mild assumptions allows
us to enlarge the usual set of critical directions.

Keywords—Optimal control, second order neces-
sary conditions, extremals, normality.

I. INTRODUCTION

This paper deals with the derivation of second order
necessary conditions for certain classes of Lagrange
optimal control problems posed over piecewise C1 tra-
jectories and piecewise continuous controls. For these
problems, the integrand of the cost function is inde-
pendent of the state variable and the constraints are ex-
pressed in terms of the dynamics, fixed endpoint con-
ditions, and inequalities and equalities depending on
the time variable and the control functions. The latter
are of the form

ϕα(t, u(t)) ≤ 0 and ϕβ(t, u(t)) = 0 (t ∈ T )

with α, β in finite sets of indices and T a compact time
interval.

To illustrate the kind of problems we shall deal with
let us give a simple example which can be found in
the literature of optimal control processes (see [19]).
Suppose that a landing vehicle separates from a space-
craft with initial velocity v, at time t0 and altitude h
from some surface. Not taking into account gravita-
tional forces and assuming the mass of the vehicle is
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lore 789 ac@hotmail.com, jfrl@unam.mx).

constant, consider vertical motion only, with upwards
regarded as the positive direction. If x1(t) denotes alti-
tude, x2(t) velocity, and u(t) the thrust exerted by the
rocket motor subject to |u(t) + e(t)| ≤ 1 with suit-
able scaling and e(t) some error at time t, we have the
equations of motion

(ẋ1(t), ẋ2(t)) = (x2(t), u(t))

and the initial conditions (x1(t0), x2(t0)) = (h,−v).
For a soft landing at time t1 we require also that
(x1(t1), x2(t1)) = (0, 0). We might then be interested
in minimizing

I(x, u) =

∫ t1

t0
(|u(t)|+ k)dt

which represents a sum of the total fuel consumption
and time to landing, k being a factor which weights the
relative importance of these two quantities.

First order conditions for such problems are well es-
tablished in the literature (see, for example, [7, 9, 10,
16] and, more recently, [4] where mixed constraints
with nonsmooth data are studied), providing a natural
definition of extremals. This notion will be our start-
ing point. Our aim is to derive in a simple way sec-
ond order conditions which those extremals, if solv-
ing the problem, should satisfy. The main idea relies
on linking up the properties that characterize the ex-
tremals with any solution to the underlying problem of
minimizing the same functional over the set of equal-
ity and inequality constraints without dynamics or end-
point conditions.

Second order necessary conditions in terms of the
accessory problem can be found in [9, 22–24] for the
problem posed over controls u in L∞(T,Rm). How-
ever, for the problem we shall deal with, the control
functions are piecewise continuous and so do not form
a Banach space. Thus, the technique used for L∞ con-
trols where results from abstract optimization theory
on Banach spaces are applied to the optimal control
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problem, does not work for our problem. Let us also
point out that it provides a natural setting for results
related to, in particular, “broken extremals” as defined
and studied in [3, 18].

There is an extensive literature on second order con-
ditions for optimal control problems and how the the-
ory can be applied to practical problems (see, for ex-
ample, [1–7, 9, 10, 12–18, 20–24] and references
therein) but some fundamental questions remain unan-
swered. In particular, when dealing with such con-
ditions, one usually faces two main features: (1) the
normality assumptions imposed on the solution to the
problem which imply, in particular, a positive cost mul-
tiplier, and (2) the set of critical directions where, un-
der those normality assumptions, the second order con-
ditions hold.

As we shall see, a weak notion of normality usually
imposed for first order conditions is not enough to en-
sure the validity of the second order necessary condi-
tions, and a stronger notion is needed. However, once
this stronger assumption is imposed, the set of criti-
cal directions may be too restrictive. One is then, of
course, interested in enlarging that set and, if possible,
in weakening the normality assumptions. In this paper
we show how, for the problem we shall deal with, these
two aspects can be achieved. The results obtained here
correspond to a generalization of second order condi-
tions first derived in [21] (and with more detail in [5])
for certain classes of optimal control problems.

Let us point out that, in some of the references men-
tioned above, the approach followed to derive second
order conditions is based precisely on that stronger no-
tion of normality by taking into account only equality
constraints for active indices and imposing normality
assumptions with respect to the corresponding set of
tangential constraints. The conditions one encounters
in those cases will be said to be of a “weak type” since,
as we shall see, the assumptions and the critical direc-
tions can be modified and, in the two senses mentioned
above, improved.

This paper is organized as follows. In Section 2 we
pose the problem we shall deal with together with a
fundamental assumption on the full rank of the ma-
trix of partial derivatives of the constraints with respect
to the control functions. In Section 3 we state well-
known first order necessary conditions and introduce
the notions of extremal and normality relative to the set
S, where the functional of the problem is to be mini-
mized. Weak normality is defined in terms precisely
of that set, while strong normality corresponds to ap-
plying that definition to the set S0 defined by equality

constraints for active indices. We then state second or-
der necessary conditions found in the literature which
hold, for strongly normal extremals, on the correspon-
ing set of tangential constraints with respect to S0.

We provide an example to illustrate that the nonneg-
ativity of the quadratric form appearing in this result
may not hold if the assumption of strong normality is
replaced with that of weak normality. An important
characterization of normality, applicable to any subset
of S, is given in Section 4 and used in Section 5 where,
taking into account the sign of the Lagrange multipli-
ers, a new set of second order conditions is obtained by
making use of the theory for constrained problems in
finite dimensional spaces (see [8, 11]). A natural con-
jecture appearing in this result is then solved through
an example.

II. STATEMENT OF THE PROBLEM

Suppose we are given an interval T := [t0, t1] in
R, two points ξ0, ξ1 in Rn, and functions L and ϕ =
(ϕ1, . . . , ϕq) mapping T ×Rm to R and Rq (q ≤ m)
respectively, and f mapping T ×Rn ×Rm to Rn.

Denote by X the space of piecewise C1 functions
mapping T to Rn, by Uk the space of piecewise con-
tinuous functions mapping T to Rk (k ∈ N), set
Z := X × Um,

D := {(x, u) ∈ Z | ẋ(t) = f(t, x(t), u(t)) (t ∈ T ),

x(t0) = ξ0, x(t1) = ξ1},

S := {(x, u) ∈ D | ϕα(t, u(t)) ≤ 0,

ϕβ(t, u(t)) = 0 (α ∈ R, β ∈ Q, t ∈ T )}

where R = {1, . . . , r}, Q = {r + 1, . . . , q}, and con-
sider the functional I:Z → R given by

I(x, u) :=

∫ t1

t0
L(t, u(t))dt ((x, u) ∈ Z).

The problem we shall deal with, which we label (P), is
that of minimizing I over S. Note that the functional
I is independent of x but we use the notation I(x, u)
to emphasize the fact that we shall be concerned with
elements of Z = X × Um satisfying the dynamics
and endpoint constraints defining membership ofD. In
other words, the problem is posed over those u ∈ Um
satisfying the inequality and equality constraints given
in S and for which, if x is the unique solution of the
differential equation ẋ(t) = f(t, x(t), u(t)) (t ∈ T )
together with the initial condition x(t0) = ξ0, then
x(t1) = ξ1.
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A common and concise way of formulating this
problem is as follows:

Minimize

I(x, u) =

∫ t1

t0
L(t, u(t))dt

subject to (x, u) ∈ Z and
ẋ(t) = f(t, x(t), u(t)) (t ∈ T );

x(t0) = ξ0, x(t1) = ξ1;

ϕα(t, u(t)) ≤ 0 (α ∈ R, t ∈ T ),

ϕβ(t, u(t)) = 0 (β ∈ Q, t ∈ T ).

Elements of Z will be called processes and of S ad-
missible processes. We shall say that a process (x, u)
solves (P) if (x, u) is admissible and I(x, u) ≤ I(y, v)
for all admissible process (y, v).

Given (x, u) ∈ Z we shall find convenient to use the
notation (x̃(t)) to represent (t, x(t), u(t)), and ‘∗’ will
be used to denote transpose.

We assume that L, f and ϕ are C2 and the q× (m+
r)-dimensional matrix(

∂ϕi
∂uk

δiαϕα

)
(i = 1, . . . , q; α = 1, . . . , r; k = 1, . . . ,m) has rank
q on A (here δαα = 1, δαβ = 0 (α 6= β)), where

A := {(t, u) ∈ T ×Rm | ϕα(t, u) ≤ 0 (α ∈ R),

ϕβ(t, u) = 0 (β ∈ Q)}.

This condition (see [7, 10] for details) is equivalent to
the condition that, at each point (t, u) in A, the matrix(

∂ϕi
∂uk

)
(i = i1, . . . , ip; k = 1, . . . ,m) has rank p, where
i1, . . . , ip are the indices i ∈ {1, . . . , q} such that
ϕi(t, u) = 0.

III. NECESSARY CONDITIONS AND NORMALITY

Usually first order conditions for this problem are
established in terms of the Hamiltonian function (see,
for example, [4, 7, 9, 10, 16]), and one version can be
written as follows.

For all (t, x, u, p, µ, λ) in T × Rn × Rm × Rn ×
Rq ×R let

H(t, x, u, p, µ, λ) := 〈p, f(t, x, u)〉−

λL(t, u)− 〈µ, ϕ(t, u)〉.

3.1 Theorem. Suppose (x0, u0) solves (P). Then
there exist λ0 ≥ 0, p ∈ X , and µ ∈ Uq, not vanishing
simultaneously on T , such that

a. µα(t) ≥ 0 and µα(t)ϕα(t, u0(t)) = 0 for all α ∈
R and t ∈ T ;

b. ṗ(t) = −H∗x(x̃0(t), p(t), µ(t), λ0) and

Hu(x̃0(t), p(t), µ(t), λ0) = 0

on every interval of continuity of u0.

This result assures the existence of multipliers
(p, µ, λ0) associated to a solution to the problem. Let
us denote by M(x, u) the set of such multipliers and
define a set E of “extremals” as the set of all (x, u, p, µ)
which have associated a nonzero cost multiplier nor-
malized to one.

3.2 Definition. For all (x, u) ∈ Z letM(x, u) be the
set of all (p, µ, λ0) ∈ X × Uq ×R with λ0 + |p| 6= 0
satisfying

a. µα(t) ≥ 0 and µα(t)ϕα(t, u(t)) = 0 for all α ∈ R
and t ∈ T ;

b. ṗ(t) = −H∗x(x̃(t), p(t), µ(t), λ0) and

Hu(x̃(t), p(t), µ(t), λ0) = 0 (t ∈ T ).

Denote by E the set of all (x, u, p, µ) ∈ Z ×X ×Uq
such that (p, µ, 1) ∈M(x, u), that is,

a. µα(t) ≥ 0 and µα(t)ϕα(t, u(t)) = 0 for all α ∈ R
and t ∈ T ;

b. ṗ(t) = −f∗x(x̃(t))p(t) and f∗u(x̃(t))p(t) =
L∗u(x̃(t)) + ϕ∗u(t, u(t))µ(t) (t ∈ T ).

The notion of “normality” is introduced so that the
non-vanishing of the cost multiplier can be assured.
This is accomplished by having zero as the unique so-
lution to the adjoint equation whenever λ0 = 0.

3.3 Definition. A process (x, u) ∈ S will be said to
be normal relative to S if, given p ∈ X and µ ∈ Uq
satisfying

i. µα(t) ≥ 0 and µα(t)ϕα(t, u(t)) = 0 for all
α ∈ R and t ∈ T ;

ii. ṗ(t) = −f∗x(x̃(t))p(t)

[ = −H∗x(x̃(t), p(t), µ(t), 0) ] (t ∈ T );

iii. 0 = f∗u(x̃(t))p(t)− ϕ∗u(t, u(t))µ(t)

[ = H∗u(x̃(t), p(t), µ(t), 0) ] (t ∈ T ),
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then p ≡ 0. In this event, clearly, also µ ≡ 0.

From Theorem 3.1 and the above definitions it fol-
lows that, if (x0, u0) solves (P) and is normal relative
to S, then there exists (p, µ) ∈ X × Uq such that
(x0, u0, p, µ) ∈ E . Note also that uniqueness of the
pair (p, µ) cannot be assured and, for that purpose, a
stronger notion of normality is required or, as we shall
see below, the definition of normality given before but
applied to a set S0 involving only equality constraints.

Denote the set of active indices at (t, u) ∈ T ×Rm

by
Ia(t, u) := {α ∈ R | ϕα(t, u) = 0}

and, given (x0, u0) ∈ S, consider the set

S0 := {(x, u) ∈ D | ϕγ(t, u(t)) = 0

(γ ∈ Ia(t, u0(t)) ∪Q, t ∈ T )}.

Note that (x0, u0) is normal relative to S0 if, given
(p, µ) ∈ X × Uq satisfying

i. µα(t)ϕα(t, u0(t)) = 0 (α ∈ R, t ∈ T );
ii. ṗ(t) = −f∗x(x̃0(t))p(t) and f∗u(x̃0(t))p(t) =

ϕ∗u(t, u0(t))µ(t) (t ∈ T ),
then p ≡ 0.

To be consistent with other references (see, for ex-
ample, [5–7, 20, 21]), we shall refer to normality rel-
ative to S and S0 as “weak” and “strong normality”
respectively. The following proposition is crucial. It is
a simple consequence of Theorem 3.1 and the defini-
tions given above (see also [20]).

3.4 Proposition. If (x0, u0) solves (P) then
M(x0, u0) 6= ∅. If also (x0, u0) is strongly normal
then there exists a unique (p, µ) ∈ X × Uq such that
(x0, u0, p, µ) ∈ E .

Proof: Suppose (x0, u0) solves (P). Theorem 3.1
states precisely that M(x0, u0) is not empty. Let
(p, µ, λ0) ∈ M(x0, u0). If also (x0, u0) is strongly
normal, clearly we have λ0 6= 0 and, if (q, ν, λ0) ∈
M(x0, u0), then

i. For all α ∈ R and t ∈ T ,

[µα(t)− να(t)]ϕα(t, u0(t)) = 0;

ii. For all t ∈ T ,

[ṗ(t)− q̇(t)] = −f∗x(x̃0(t))[p(t)− q(t)];

iii. For all t ∈ T ,

f∗u(x̃0(t))[p(t)− q(t)] −

ϕ∗u(t, u0(t))[µ(t)− ν(t)] = 0,

implying that p ≡ q and µ ≡ ν. The result follows
by choosing λ0 = 1 since (p/λ0, µ/λ0, 1) belongs to
M(x0, u0).

For second order conditions let us consider, for all
(x, u, p, µ) in Z×X×Uq and (y, v) in Z, the quadratic
form defined as

J((x, u, p, µ); (y, v)) :=

∫ t1

t0
2Ω(t, y(t), v(t))dt

where, for all (t, y, v) ∈ T ×Rn ×Rm,

2Ω(t, y, v) := −[〈y,Hxx(t)y〉 +

2〈y,Hxu(t)v〉+ 〈v,Huu(t)v〉]

and H(t) denotes H(x̃(t), p(t), µ(t), 1).

As mentioned in the introduction, a set of weak sec-
ond order conditions for problem (P) can be found in
the literature. In particular, the following result was
derived in [7] by reducing the original problem into
a problem involving only equality constraints in the
control. In what follows, the notation ϕγu(t, u0(t)) is

short for
∂ϕγ
∂u

(t, u0(t)).

3.5 Theorem. Let (x0, u0) be an admissible pro-
cess for which there exists (p, µ) ∈ X × Uq such that
(x0, u0, p, µ) ∈ E . If (x0, u0) is a strongly normal so-
lution to (P) then

J((x0, u0, p, µ); (y, v)) ≥ 0

for all (y, v) ∈ Z satisfying

i. ẏ(t) = fx(x̃0(t))y(t) + fu(x̃0(t))v(t) (t ∈ T ),
and y(t0) = y(t1) = 0;

ii. ϕγu(t, u0(t))v(t) = 0 (γ ∈ Ia(t, u0(t)) ∪ Q,
t ∈ T ).

It is of interest to see if, in Theorem 3.5, the assump-
tion of strong normality can be weakened and the set
of critical directions where the second order condition
holds can be enlarged. Note however that, as the fol-
lowing example illustrates, the conclusion of Theorem
3.5 may not hold if we assume weak instead of strong
normality.

3.6 Example. Consider the problem of minimizing

I(x, u) =

∫ 1

0
{u2(t)− u1(t)}dt
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subject to (x, u) ∈ Z and
ẋ(t) = 2u2(t)− (t+ 2)u1(t) + tu23(t) (t ∈ [0, 1]);

x(0) = x(1) = 0;

u2(t) ≥ u1(t), (t+ 1)u1(t) ≥ tu2(t) (t ∈ [0, 1]).

In this case T = [0, 1], n = 1, m = 3, r = q = 2,
ξ0 = ξ1 = 0 and, for all t ∈ T , x ∈ R, and u =
(u1, u2, u3),

L(t, u) = u2−u1, f(t, x, u) = 2u2−(t+2)u1+tu23,

ϕ1(t, u) = u1 − u2, ϕ2(t, u) = tu2 − (t+ 1)u1.

Note that the matrix(
∂ϕi
∂uk

)
=

(
1 −1 0

−(t+ 1) t 0

)
(i = 1, 2; k = 1, 2, 3) has rank 2 for all t ∈ T . We
have

H(t, x, u, p, µ, 1) =

p(2u2 − (t+ 2)u1 + tu23) + u1 − u2−

µ1(u1 − u2)− µ2(tu2 − (t+ 1)u1)

and so
Hu(t, x, u, p, µ, 1) =

(−p(t+ 2)− µ1 + (t+ 1)µ2 + 1,

2p+ µ1 − tµ2 − 1, 2tpu3)

and

Huu(t, x, u, p, µ, 1) =

 0 0 0
0 0 0
0 0 2tp


so that

J((x, u, p, µ); (y, v)) = −
∫ 1

0
2tp(t)v23(t)dt

for all (x, u, p, µ) ∈ Z ×X × U2 and (y, v) ∈ Z.
Clearly (x0, u0) ≡ (0, 0) is a solution to the prob-

lem. To test for normality, suppose (p, µ) ∈ X ×U2 is
such that

ṗ(t) = −f∗x(x̃0(t))p(t) = 0

and

f∗u(x̃0(t))p(t) = ϕ∗u(t, u0(t))µ(t) (t ∈ T ),

that is, p is constant and, for all t ∈ T ,−(t+ 2)
2
0

 p =

µ1(t)− (t+ 1)µ2(t)
−µ1(t) + tµ2(t)

0

 .

As one readily verifies, this implies that tp = µ2(t)
(t ∈ T ) and so

µ1(t) = tµ2(t)− 2p = (t2 − 2)p.

If there are no restrictions on the sign of the multipli-
ers, then p ≡ 1, µ1(t) = t2 − 2 and µ2(t) = t (t ∈ T )
solve the system, implying that (x0, u0) is not strongly
normal. However, if we require that µα(t) ≥ 0 (α =
1, 2), then µ1(1) = −p ≥ 0 and µ2(1) = p ≥ 0 imply
that (p, µ) ≡ (0, 0) is the only solution and so (x0, u0)
is weakly normal.

Now, note that (x0, u0, p, µ) is an extremal if
µα(t) ≥ 0 (α = 1, 2), ṗ(t) = 0 and, for all t ∈ T ,

f∗u(x̃0(t))p(t) = L∗u(x̃0(t)) + ϕ∗u(t, u0(t))µ(t).

This last relation corresponds to−(t+ 2)
2
0

 p(t) =

−1
1
0

+

µ1(t)− (t+ 1)µ2(t)
−µ1(t) + tµ2(t)

0


and thus, if p ≡ 1/2, µ1(t) = t2/2 and µ2(t) = t/2,
then (x0, u0, p, µ) ∈ E . Let v ≡ (0, 0, 1) and y ≡ 0.
Then (y, v) solves (i) and (ii) of Theorem 3.5 since
y(0) = y(1) = 0,

ẏ(t) = −(t+ 2)v1(t) + 2v2(t) (t ∈ T )

and ϕγu(t, u0(t))v(t) = 0 (γ ∈ {1, 2}, t ∈ T ). How-
ever,

J((x0, u0, p, µ); (y, v)) = −
∫ 1

0
tdt = −1/2 < 0.

IV. A CHARACTERIZATION OF NORMALITY

The purpose of this section is to characterize the no-
tion of normality given in Definition 3.3. The notion
we now introduce is that of τ -regularity, based on a
cone τ(t, u) in Rm defined for all (t, u) in T × Rm

and constructed according to how the set S of inequal-
ity and equality constraints is itself defined. This no-
tion will then be applied to other subsets of D also de-
fined by inequality and/or equality constraints. As we
shall see this will allow us to verify, in a simple way,
membership to different sets of normal processes.
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Let us point out that a similar characterization was
first established in [20] for problems where the con-
straints depend only on the control functions and are
independent of the time variable. In that reference,
each statement relating regularity with normality is
proved as a single property while all those statements
are unified (and generalized) in this section. For com-
parison reasons let us also mention that the following
set (first introduced for constraints that depend only on
the controls) corresponds to τ2(u) in [20].

For any (t, u) ∈ T ×Rm define

τ(t, u) := {h ∈ Rm | ϕαu(t, u)h ≤ 0 (α ∈ Ia(t, u)),

ϕβu(t, u)h = 0 (β ∈ Q)}.

4.1 Definition. Let (x, u) ∈ Z and set

A(t) := fx(x̃(t)), B(t) := fu(x̃(t)) (t ∈ T ).

We shall say that (x, u) is τ -regular if there is no non-
null solution z ∈ X to the system

ż(t) = −A∗(t)z(t),

z∗(t)B(t)h ≤ 0 for all h ∈ τ(t, u(t)) (t ∈ T ).

Let us prove that the notions of weak normality (nor-
mality relative to S) and τ -regularity are equivalent.

4.2 Theorem. For any (x, u) ∈ S the following are
equivalent:

a. (x, u) is τ -regular.
b. (x, u) is weakly normal.
Proof:
(a)⇒ (b): Suppose (p, µ) ∈ X × Uq is such that

i. For all α ∈ R and t ∈ T , µα(t) ≥ 0 and
µα(t)ϕα(t, u(t)) = 0;

ii. For all t ∈ T , we have ṗ(t) = −A∗(t)p(t) and
B∗(t)p(t) = ϕ∗u(t, u(t))µ(t).

Let t ∈ T and h ∈ τ(t, u(t)). Then we have

p∗(t)B(t)h = µ∗(t)ϕu(t, u(t))h

=
q∑

γ=1

µγ(t)ϕγu(t, u(t))h ≤ 0

implying, by (a), that p ≡ 0.
(b)⇒ (a): Let z ∈ X be such that

ż(t) = −A∗(t)z(t),

z∗(t)B(t)h ≤ 0 for all h ∈ τ(t, u(t)) (t ∈ T ).

Fix t ∈ T and let i1 < · · · < ip be the indices in
{1, . . . , q} such that ϕi(t, u(t)) = 0. Define

ϕ̂ = (ϕi1 , . . . , ϕip) and µ̂(t) = (µ̂i1(t), . . . , µ̂ip(t))

where

µ̂(t) := Λ−1(t)ϕ̂u(t, u(t))B∗(t)z(t) (t ∈ T )

and Λ(t) = ϕ̂u(t, u(t))ϕ̂∗u(t, u(t)). Note that, since

ϕ̂u(t, u(t))ϕ̂∗u(t, u(t))Λ−1(t) =

Λ−1(t)∗ϕ̂u(t, u(t))ϕ̂∗u(t, u(t)) = Ip×p

we have Λ−1(t) = Λ−1(t)∗.
Let µ(t) = (µ1(t), . . . , µq(t)) where

µα(t) :=

{
µ̂ir(t) if α = ir, r = 1, . . . , p

0 otherwise.

Clearly

µα(t)ϕα(t, u(t)) = 0 (α ∈ R, t ∈ T )

and, for all t ∈ T ,

µ̂∗(t)ϕ̂u(t, u(t)) = µ∗(t)ϕu(t, u(t)).

Now, let

G(t) := Im×m − ϕ̂∗u(t, u(t))Λ−1(t)ϕ̂u(t, u(t))

and note that ϕ̂u(t, u(t))G(t) = 0. If hk(t) denotes
the k-th column of G(t) for k = 1, . . . ,m, we have

∂ϕij
∂u

(t, u(t))hk(t) = 0

(j = 1, . . . , p, k = 1, . . . ,m), that is, hk(t) ∈
τ(t, u(t)), and therefore

z∗(t)B(t)hk(t) ≤ 0 (k = 1, . . . ,m).

Since also −hk(t) ∈ τ(t, u(t)), we have

z∗(t)B(t)hk(t) = 0 (k = 1, . . . ,m).

Thus we have

0 = z∗(t)B(t)G(t)

= z∗(t)B(t)− µ∗(t)ϕu(t, u(t)).

The result will follow, by weak normality, if

µα(t) ≥ 0 (α ∈ R, t ∈ T ).
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To prove it, let C(t) be the p×m matrix

C(t) := Λ−1(t)ϕ̂u(t, u(t))

and observe that

C(t)ϕ̂∗u(t, u(t)) = Ip×p = ϕ̂u(t, u(t))C∗(t).

Therefore, if cj(t) denotes the j-th column of C∗(t)
and {ej} the canonical base in Rp for j = 1, . . . , p,
then(

∂ϕij
∂u

(t, u(t))c1(t), . . . ,
∂ϕij
∂u

(t, u(t))cp(t)

)
= e∗j

(j = 1, . . . , p). Thus, if j ∈ {1, . . . , p} is such that
ij ∈ Ia(t, u(t)), then

∂ϕk
∂u

(t, u(t))(−cj(t)) =

{−1 if k = ij

0 if k 6= ij

implying that −cj(t) ∈ τ(t, u(t)) and therefore

z∗(t)B(t)cj(t) ≥ 0 (t ∈ T ).

But µ̂∗(t) = z∗(t)B(t)C∗(t) and so µ̂∗α(t) ≥ 0 for all
α ∈ Ia(t, u(t)). This proves the claim.

The set τ(t, u) defined above is a cone of “critical
directions” associated with S. In a similar way, for
any (t, u) ∈ T ×Rm, let

τ0(t, u) := {h ∈ Rm | ϕγu(t, u)h = 0

(γ ∈ Ia(t, u) ∪Q)}.

By Definition 4.1, (x, u) ∈ Z is τ0-regular if there is
no nonnull solution z ∈ X to the system

ż(t) = −A∗(t)z(t),

z∗(t)B(t)h = 0 for all h ∈ τ0(t, u(t)) (t ∈ T ).

Recall that the notion of strong normality, or normality
relative to the set S0 defined as

S0 = {(x, u) ∈ D | ϕγ(t, u(t)) = 0

(γ ∈ Ia(t, u0(t)) ∪Q, t ∈ T )}.

depends on a given admissible process (x0, u0). Note
that, in view of Theorem 4.2, (x0, u0) is τ0-regular⇔
(x0, u0) is strongly normal.

Suppose now that we are given µ ∈ Uq with µα(t) ≥
0 (α ∈ R, t ∈ T ), and we define

S1 = {(x, u) ∈ D | ϕα(t, u(t)) ≤ 0

(α ∈ R, µα(t) = 0, t ∈ T ),

ϕβ(t, u(t)) = 0

(β ∈ R with µβ(t) > 0, or β ∈ Q, t ∈ T )}.

Associate with this set, for all (t, u) ∈ T × Rm and
µ ∈ Rq, the cone of directions

τ1(t, u, µ) := {h ∈ Rm | ϕαu(t, u)h ≤ 0

(α ∈ Ia(t, u), µα = 0),

ϕβu(t, u)h = 0

(β ∈ R with µβ > 0, or β ∈ Q)}.

Again following Definition 4.1, if there is no nonnull
solution z ∈ X to the system

ż(t) = −A∗(t)z(t),

z∗(t)B(t)h ≤ 0 for all h ∈ τ1(t, u(t), µ(t)) (t ∈ T )

then (x, u) is called τ1-regular.
Note that, by Theorem 4.2, if µ ∈ Uq is such that

µα(t) ≥ 0 (α ∈ R, t ∈ T ) and (x, u) ∈ S1, then
(x, u) is τ1-regular ⇔ (x, u) is normal relative to S1.
Also, as one readily verifies, if (x0, u0) is normal rela-
tive to S0 (strongly normal) then it is normal relative to
S1 (with µ as above) which in turn implies normality
relative to S (weakly normal).

V. SECOND ORDER CONDITIONS

In this section we shall derive second order neces-
sary conditions for problem (P). Our main result will
be proved with the help of an auxiliary result estab-
lished in [5] and partially based on the theory presented
in [11]. It is a consequence of the full rank assumption
mentioned in Section 2.

Let us consider the problem, which we label (C), of
minimizing

∫ t1
t0
L(t, u(t))dt on the set

C := {u ∈ Um | (t, u(t)) ∈ A (t ∈ T )}.

5.1 Lemma. Let u0 ∈ C. Then u0 solves (C) ⇔
L(t, u) ≥ L(t, u0(t)) (t ∈ T ) whenever (t, u) ∈ A.
In this event, there exists a unique µ ∈ Uq such that
Fu(t, u0(t), µ(t)) = 0 (t ∈ T ) where

F (t, u, µ) := L(t, u) + 〈µ, ϕ(t, u)〉.

Moreover, µα(t) ≥ 0 and µα(t)ϕα(t, u0(t)) = 0 (α ∈
R, t ∈ T ), and

〈h, Fuu(t, u0(t), µ(t))h〉 ≥ 0
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for all h ∈ τ1(t, u0(t), µ(t)) (t ∈ T ).

Note that, if (x0, u0) is admissible for (P) and u0
solves (C), then (x0, u0) solves (P). However, we may
have a solution (x0, u0) to the problem (P) but u0 does
not solve (C). In fact, it may even afford a maximum
to I on C. A simple example illustrates this fact.

5.2 Example. Consider the problem of minimizing

I(x, u) =

∫ 1

0
u(t)dt

subject to (x, u) ∈ Z and

ẋ(t) = u2(t), x(0) = x(1) = 0, u(t) ≤ 0.

Then (x0, u0) ≡ (0, 0) is a solution to (P), being the
only admissible process, but u0 ≡ 0 does not solve
(C), that is, it does not minimize

∫ 1
0 u(t)dt over the set

C = {u ∈ U1 | u(t) ≤ 0 (t ∈ T )}.

In this example, u0 maximizes I on C. Note also that
(x0, u0) is not normal with respect to S since

B(t) = fu(x̃0(t)) = 0 (t ∈ [0, 1]).

The following example illustrates an opposite situ-
ation where, though one can exhibit a solution to the
problem (C), the original problem (P) may fail to have
a solution.

5.3 Example. Consider the problem of minimizing

I(x, u) =

∫ 1

0
u22(t)dt

subject to (x, u) ∈ Z and
ẋ(t) = u3(t)− u1(t) + u21(t)u2(t) (t ∈ [0, 1]);

x(0) = x(1) = 0;

u3(t)− u1(t) ≤ −2, −u3(t) ≤ 1,

u21(t)u2(t) ≤ 2 (t ∈ [0, 1]).

Clearly u0 ≡ (1, 0,−1) is a solution to the problem
(C) of minimizing

∫ 1
0 u

2
2(t)dt on the set

C = {(u1, u2, u3) ∈ U3 | u3(t)− u1(t) ≤ −2,

−u3(t) ≤ 1, u21(t)u2(t) ≤ 2 (t ∈ [0, 1])}.

However, if (x, u) is admissible, then necessarily

0 < u2(t) ≤ 2 (t ∈ [0, 1]).

This can be easily seen since, by the constraints, we
have ẋ(t) ≤ 0 and x(0) = x(1) = 0 implying that
x ≡ 0 and so u3−u1+u21u2 ≡ 0. Therefore u21u2 ≡ 2
and, since−1 ≤ u3(t) ≤ u1(t)−2, we have u1(t) ≥ 1.
This proves the claim.

5.4 Theorem. Suppose (x0, u0) solves (P) and
∃(p, µ) ∈ X × Uq satisfying

a. µα(t) ≥ 0 and µα(t)ϕα(t, u0(t)) = 0 (α ∈
R, t ∈ T );

b. For all t ∈ T ,

ṗ(t) = −f∗x(x̃0(t))p(t),

p∗(t)fu(x̃0(t)) = Lu(t, u0(t)) + µ∗(t)ϕu(t, u0(t)).

Suppose also that u0 solves (C). If p ≡ 0 then

J((x0, u0, p, µ); (y, v)) ≥ 0

for all (y, v) ∈ Z with

v(t) ∈ τ1(t, u0(t), µ(t)) (t ∈ T ).

In particular, p ≡ 0 if (x0, u0) is normal relative to S1.
Proof: Let

F (t, u, ν) := L(t, u) + 〈ν, ϕ(t, u)〉.

By Lemma 5.1,

L(t, u) ≥ L(t, u0(t)) (t ∈ T )

whenever (t, u) ∈ A, and so there exists a unique ν ∈
Uq such that

Fu(t, u0(t), ν(t)) =

Lu(t, u0(t)) + ν∗(t)ϕu(t, u0(t)) = 0 (t ∈ T ).

Moreover,

να(t) ≥ 0 and να(t)ϕα(t, u0(t)) = 0

for all α ∈ R and t ∈ T , and

〈h, Fuu(t, u0(t), ν(t))h〉 ≥ 0

for all h ∈ τ1(t, u0(t), ν(t)). Assume that p ≡ 0. By
(b), we have

Fu(t, u0(t), µ(t)) =

Lu(t, u0(t)) + µ∗(t)ϕu(t, u0(t)) = 0 (t ∈ T )
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and so, by uniqueness, µ ≡ ν. Since

H(t, x, u, p, µ, 1) = 〈p, f(t, x, u)〉 − L(t, u)−
〈µ, ϕ(t, u)〉 = −F (t, u, µ)

we have

2Ω(t, y, v) = 〈v, Fuu(t, u0(t), µ(t))v〉

and the first part follows.
To show that normality relative to S1 implies p ≡ 0,

note that

Lu(t, u0(t)) = −ν∗(t)ϕu(t, u0(t)) (t ∈ T )

and so, by (b),

p∗(t)B(t) =
q∑
1

(µα(t)− να(t))ϕαu(t, u0(t)).

This implies that, for all h ∈ τ1(t, u0(t), µ(t)),

p∗(t)B(t)h =
∑

α∈N(t)

−να(t)ϕαu(t, u0(t))h

where

N(t) = {α ∈ Ia(t, u0(t)) | µα(t) = 0}.

We conclude that

p∗(t)B(t)h ≥ 0 for all h ∈ τ1(t, u0(t), µ(t))

and therefore −p is a solution to the system

ż(t) = −A∗(t)z(t), z∗(t)B(t)h ≤ 0

for all h ∈ τ1(t, u0(t), µ(t)) (t ∈ T ). Thus, if (x0, u0)
is normal relative to S1, then p ≡ 0.

This last result yields in a natural way a fundamental
question which we shall answer with one example (for
a simpler class of problems, see also [6]). Note that
Example 5.2 provides a solution (x0, u0) to the prob-
lem (P) for which u0 does not solve (C). The solution
is not weakly normal nor, in consequence, normal rel-
ative to S1 or strongly normal. A natural question is
if, in Theorem 5.4, the assumption that u0 solves the
problem (C) is redundant if the corresponding solution
(x0, u0) to the original problem (P) is normal relative
to S1.

In the following example we provide a solution to
(P) which is normal relative not only to S1 but to S0
and is not a solution to (C). In other words, it is a sine
qua non assumption.

5.5 Example. Consider the problem (P) of minimiz-
ing

I(x, u) =

∫ 1

0
u(t)dt

subject to

ẋ(t) = u(t)x(t) (t ∈ [0, 1]),

x(0) = 1, x(1) = e, b(t)u(t) ≥ 0 (t ∈ [0, 1])

where b is any positive piecewise continuous function
mapping T = [0, 1] to R.

For this problem ξ0 = 1, ξ1 = e,

L(t, x, u) = u, f(t, x, u) = ux,

ϕ(t, u) = −b(t)u

so that the set of constraints is given by

S = {(x, u) ∈ D | b(t)u(t) ≥ 0 (t ∈ T )}

where

D = {(x, u) ∈ Z | ẋ(t) = u(t)x(t),

x(0) = 1, x(1) = e}.

Let us show that one may have a solution to (P)
which is normal relative to S0 but is not a solution to
(C). Note first that, if (x, u) is admissible, then

x(t) = exp

(∫ t

0
u(s)ds

)
and

x(1) = e = exp

(∫ 1

0
u(t)dt

)
and so ∫ 1

0
u(t)dt = I(x, u) = 1.

Therefore

(x0(t), u0(t)) := (et, 1) (t ∈ T )

is a solution to the problem (P) but not a solution to
(C). The solution to (C) is clearly u0 ≡ 0.

Now, we have

fx(x̃0(t)) = 1, fu(x̃0(t)) = et,

and ϕ(t, u0(t)) = −b(t) < 0. Since, for this solu-
tion, there are no active constraints, S0 = D. Clearly
(x0, u0) is a normal process of S0 since, given (p, µ)
satisfying

−µ(t)b(t) = 0, ṗ(t) = −p(t),
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etp(t) = −b(t)µ(t) = 0 (t ∈ [0, 1])

then p ≡ 0.
Let us now show that, for this solution, one can find

(p, µ) in X × U1 such that (a)–(c) of Theorem 5.4
are satisfied, so that (x0, u0, p, µ) is an extremal and,
moreover, (x0, u0) is not only normal relative to S1 but
also to S0. However, the conclusions of Theorem 5.4
do not hold since neither p ≡ 0 nor

J((x0, u0, p, µ); (y, v)) ≥ 0

for all (y, v) ∈ Z with v(t) ∈ τ1(t, u0(t), µ(t)) (t ∈
T ).

Indeed, if p(t) = e−t and µ ≡ 0 then (x0, u0, p, µ) ∈
E (see Definition 3.2) since

ṗ(t) = −p(t) and etp(t) = 1 (t ∈ T ).

Therefore (a)–(c) hold. Also p 6≡ 0. Moreover,

H = pux− u+ µb(t)u

and so

Hu = px− 1 + µb(t), Hx = pu,

Huu = Hxx = 0, Hux = Hxu = p

all evaluated at (t, x, u, p, µ, 1). Thus

2Ω(t, y, v) = −2p(t)yv

and so

J((x0, u0, p, µ); (y, v)) = −2

∫ 1

0
e−ty(t)v(t)dt.

Since there are no active constraints,

τ0(u0(t)) = τ1(u0(t), µ(t)) = τ(u0(t)) = R.

Thus, if y ≡ v ≡ 1, the above integral is negative.

REFERENCES

[1] A.V. Arutyunov and F.L. Pereira, Second-order
necessary optimality conditions for problems
without a priori normality assumptions, Mathe-
matics of Operations Research 31, 2006, pp. 1-
12.

[2] A.V. Arutyunov and Y.S. Vereshchagina, On nec-
essary second-order conditions in optimal control
problems (Russian) Differentsial’nye Uravneniya
30, 2002, pp. 1443-1450; translation in Differen-
tial Equations 38, 2002, pp. 1531-1540.

[3] J.F. Bonnans and N.P. Osmolovskii, Quadratic
growth conditions in optimal control problems,
Israel Mathematical Conference Proceedings,
Contemporary Mathematics 514, 2010, pp. 85-
98.

[4] F.H. Clarke and M.R. de Pinho, Optimal control
problems with mixed constraints, SIAM Journal
on Control and Optimization 48, 2009, pp. 4500-
4524.

[5] K.L. Cortez del Rı́o and J.F. Rosenblueth, A
second order constraint qualification for certain
classes of optimal control problems, WSEAS
Transactions on Systems and Control 11, 2016,
pp. 419-424.

[6] K.L. Cortez del Rı́o and J.F. Rosenblueth, Three
examples related to weak and strong normality in
optimal control, Systems & Control Letters, sub-
mitted.

[7] M.R. de Pinho and J.F. Rosenblueth, Mixed con-
straints in optimal control: an implicit function
theorem approach, IMA Journal of Mathematical
Control and Information 24, 2007, pp. 197-218.

[8] G. Giorgi, A. Guerraggio, and J. Thierfelder,
Mathematics of Optimization: Smooth and Non-
smooth Case, Elsevier, Amsterdam, 2004.

[9] E.G. Gilbert and D.S. Bernstein, Second or-
der necessary conditions in optimal control:
accessory-problem results without normality
conditions, Journal of Optimization Theory &
Applications 41, 1983, pp. 75-106.

[10] M.R. Hestenes, Calculus of Variations and Op-
timal Control Theory, John Wiley, New York,
1966.

[11] M.R. Hestenes, Optimization Theory, The Finite
Dimensional Case, John Wiley, New York, 1975.

[12] E. Levitin, A. Milyutin, and N.P. Osomolovskii,
Conditions of high order for a local minimum for
problems with constraints, Russian Math Surveys
33, 1978, pp. 97-168.

[13] P.D. Loewen and H. Zheng, Generalized conju-
gate points for optimal control problems, Non-
linear Analysis, Theory, Methods & Applications
22, 1994, pp. 771-791.

[14] H. Maurer and H.J. Oberle, Second order suf-
ficient conditions for optimal control problems
with free final time: the Riccati approach, SIAM
Journal on Control and Optimization 41, 2002,
pp. 380-403.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 10



[15] H. Maurer and S. Pickenhain, Second order suffi-
cient conditions for control problems with mixed
control-state constraints, Journal of Optimization
Theory and Applications 86, 1995, pp. 649-667.

[16] A. Milyutin and N.P. Osmolovskii, Calculus of
Variations and Optimal Control, Translations
of Mathematical Monographs, 180, American
Mathematical Society, Providence, Rhode Island,
1998.

[17] N.P. Osmolovskii, Second order conditions for a
weak local minimum in an optimal control prob-
lem (necessity, sufficiency), Soviet Math Dokl 16,
1975, pp. 1480-1484.

[18] N.P. Osmolovskii and H. Maurer, Applications
to Regular and Bang-Bang Control: Second-
Order Necessary and Sufficient Optimality Con-
ditions in Calculus of Variations and Optimal
Control, SIAM Advances in Design and Control
24, Philadelphia, 2012.

[19] C.C. Remsing Linear Control, Lecture Notes,
Department of Mathematics, Rhodes University,
2006.

[20] J.F. Rosenblueth and G. Sánchez Licea, Cones
of critical directions in optimal control, Interna-
tional Journal of Applied Mathematics and Infor-
matics 7, 2013, pp. 55-67.

[21] J.F. Rosenblueth, Modified critical directions for
inequality control constraints, WSEAS Transac-
tions on Systems and Control 10, 2015, pp. 215-
227.

[22] G. Stefani and P.L. Zezza, Optimality conditions
for a constrained control problem, SIAM Journal
on Control and Optimization 34, 1996, pp. 635-
659.

[23] J. Warga, A second-order Lagrangian condition
for restricted control problems, Journal of Op-
timization Theory and Applications 24, 1978,
pp. 475483.

[24] J. Warga, A second order condition that strength-
ens Pontryagin’s maximum principle, Journal of
Differential Equations 28, 1978, pp. 284-307.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 11




