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Improved whale optimization algorithms based
on inertia weights and theirs applications

Hongping Hu, Yanping Bai, and Ting Xu

Abstract—Whale optimization algorithm (WOA), which mimics
the social behavior of humpback whales, was proposed by Seyedali
Mirjalili and Andrew Lewis in 2016.This paper introduces the inertia
weights to WOA to obtain the improved whale optimization
algorithms(IWOAs). IWOAs are tested with 27 mathematical
benchmark functions and are applied to predict daily air quality
index(AQI) of Taiyuan.The results show that IWOAs with inertia
weights are superior to WOA,FOA,ABC,and PSO on the minimum of
benchmark functions and are very competitive for prediction
compared with WOA and PSO.
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I. INTRODUCTION

HERE are more and more meta-heuristic optimization

algorithms which are used extensively in science,
engineering and business because they: (i) have a few
parameters; (ii) do not require gradient information; (iii) can
bypass local optima; (iv) can be utilized to solve the practical
problems.

The fruit fly optimization algorithm(FOA) first proposed by
Pan [1] in 2012, who provided an easy and powerful approach
to handle the complex optimization problems,simulates the
intelligent foraging behavior of fruit flies or vinegar flies in
finding food. Fruit flies live in the temperate and tropical
climate zones. They have very sensitive osphresis and vision
organs which are superior to other species. Therefore, FOA is
composed of sensitive osphresis and vision part. Fruit flies
mainly use osphresis and vision to find food and can collect
different kinds of airborne smells, even when the food source is
40 km away. Fruit flies use osphresis to search for food along
the scent concentration path, and then use visual flight to the
group gathering place or the food source.Since then, more and
more researchers improve FOA and apply FOA to different
regions[2-4].

As a relatively new optimization method inspired by
swarm intelligence, artificial bee colony algorithm(ABC)
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proposed by Karaboga [5] in 2005 imitates the foraging
behavior of honeybees, which consists of three kinds of honey
bees:employed bees, onlooker bees and scout bees.In ABC, the
number employed bees equal to the number of onlooker bees,
and also equal to the number of food sources. A food source
position represents a possible solution to the problem that is to
be optimized and the nectar of a food source corresponds to the
quality of the solution represented by the food source. During
each cycle, the employed and onlooker bees are moving toward
the food sources, thus calculating the nectar amounts and
determining the scout bee and then moving them randomly
onto the possible food sources. If the solution does not improve
by a predetermined number of trials, the food source is
abandoned and the corresponding employed bee is converted
to the scout bee. Since 2005, researchers devote themselves to
the search methods and applications of ABC[6-10].

The particle swarm optimization algorithm(PSO)was first
proposed by Kennedy and Eberhart (1995)[11], which was
used to simulate the group behavior. In PSO, the swarm
changes its direction during its movement and therefore there
are velocity update and position update. The swarm in PSO
contains a lot of candidate solutions,which are treated as birds
and are also called particles. Initially, these particles have the
random direction and velocity. Then each particle changes its
own position and velocity based on the experiences of itself
and its neighbors. Finally, by the fitness values of each particle
and iterations,the global solution for the overall swarm is
obtained. In PSO, many researchers introduce “inertia weight”
and propose many dynamic variations of PSO based on the
inertia weight.Different inertia weight strategies imply
different incremental changes in pursuit of a better solution
[12-19].

Besides the above three swarm intelligence algorithms, there
are other swarm intelligence algorithms such as the ant colony
optimization(ACO)[20-21], genetic algorithm(GA) [22-23]
that simulates the Darwinian evolution, Evolution Strategy(ES)
[24-26], and differential evolution algorithm(DE) [27-28].

In 2016, Seyedali Mirjalili and Andrew Lewis first propose a
new meta-heuristic optimization algorithm(namely, Whale
Optimization  Algorithm,WOA) mimicking the hunting
behavior of humpback whales[29].

Fig.1[29]shows the special hunting method of the humpback
whales. Humpback whales prefer to hunt school of krill or
small fishes close to the surface,whose foraging is done by
creating distinctive bubbles along a circle or ‘9’ -shaped
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path that can only be observed in humpback whales as shown
inFig. 1.

Fig.1 Bubble-net feeding behavior of humpback whales

In this paper, we introduce different inertia weights into
whale optimization algorithm (IWOA) to get the better of
benchmark functions and apply for AQI prediction of Taiyuan.

The structure of the rest of the paper is as follows. In Section
I1, basic whale optimization algorithm is described. In Section
I11, the inertia weight is introduced into WOA and improved
whale optimization algorithm(IWOA\) is proposed. In section
IV, 27 benchmark functions are introduced and IWOA,WOA,
FOA,ABC,and PSO are compared. In section V, we apply
IWOA ,WOA,and PSO for AQI prediction of Taiyuan. Section
VI summarizes the main findings of this study and suggests
directions for future research.

Il. BASIC WHALE OPTIMIZATION ALGORITHM

In this section, we describe the mathematical modal of the
basic whale optimization algorithm in [29].

A. Encircling Prey
Humpback whales can recognize the location of prey and
then encircle them. For the unknown position of the optimal
design in the search space, the current best candidate solution is
the target prey or is close to the optimum in WOA. Once the
best search agent is defined, the other search agents will hence
try to update their positions towards the best search agent. The
updated method is represented by the following equations:
D=[C.X" ()~ X(1)] oy
X(t+1)=X"(t)- AD )
where the meanings of t,A,C, X", X,| |and . are shown in

Table 1.
Table 1. Meanings of {4, C.A* Y| | and .

Symbol Meaning

§ the curmrent iteration

A coefficient vectors

c coefficient vectors

bal the position vector ofthe best solution obtamed zo
far
the position vector

the abzolute value
! an element-by-element nmiltiplication
The vectors A and C are calculated in the following:
A=2ar-a 3)
C=2r 4

where a is linearly decreased from 2 to 0 over the course of

iterations (in both exploration and exploitation phases) and r

is a random vector in [0,1].

—
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B. Bubble-net Attacking Method (Exploitation Phase)

Two improved approaches are designed as follows for
mathematically simulating the bubble-net behavior of
humpback whales:

One is Shrinking encircling mechanism obtained by
decreasing the value of a inthe (3). Note that A isarandom
value in the interval [-a,a] where a is decreased from 2 to 0

during iterations. Setting random values for A in[ —1,1], we
can define the new position of a search agent anywhere in
between the original position of the agent and the position of
the current best agent.

The other is spiral updating position created between the
position of whale and prey to mimic the helix-shaped
movement of humpback whales as follows:

X(t+1) = D'e™ cos(2A) + X " (t) 5)

where D'<| X “(t) — X (t) | is the distance of the ith whale to

the prey (best solution obtained), b is a constant connected
with the shape of the logarithmic spiral, | is a random number
in [-11], and . is an element-by-element multiplication.

Humpback whales swim around the prey within a shrinking
circle and along a spiral-shaped path simultaneously. So we
assume that there is a chance of a probability about 50% to
choose between either the shrinking encircling mechanism or
the spiral updating position of whales during optimization. The
mathematical model is shown as (6):

X(t41) = X (t)-AD if p<0.5
D'e”.cos2d)+ X" ® if p>05
where p is a random number in [0,1].

C. Search For Prey (Exploration Phase)

The humpback whales search for prey randomly except for
the bubble-net method. Similar to the approach based on the
variation of the A vector, humpback whales search randomly
according to the position of each other. Therefore, A with the
random values greater than 1 or less than —1 is utilized to make
search agent move far away from a reference whale. Different
from the exploitation phase, we update the position of a search
agent in the exploration phase when a randomly chosen search
agent is in place of the best search agent found so far. The

mechanism and |A| >1focus on exploration and allow the

(6)

WOA algorithm to perform a global search. The mathematical
model is as shown in the following:
D=CXang — X |
X(t+1) = X anq — AD

where X ang IS @ random position vector (a random whale)
chosen from the current population.

In WOA algorithm, a set of random solutions are taken. The
a parameter is decreased from 2 to O providing both
exploration and exploitation. At each iteration, search agents
gradually update their positions using either a randomly
chosen search agent or the best solution obtained so far. If
|A| >1, a random search agent is chosen, otherwise the best

()
(8)

solution is selected for updating the position of the search
agents. According to p, WOA is able to switch between either
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a spiral or circular movement. Then the WOA is terminated
according to a termination criterion.

The concrete steps of the WOA are the following:

Stepl. Initialize the whales population X; (i =1,2,---,n) and
Maxgen(maximum number of iterations).Let t =1.

Step2. Calculate the fitness of X;(i=12,---,n) ,and find the

best search solution X"

Step3. Repeat the following:

For every X; (i =1,2,---,n) ,update a, A,C,I,p.

If p<0.5,thenif | Al<1,update the position of the current
search agent by the (1) and if | A|>1,select a random search
solution X,,,q and update the position of the current search
agent by the (8).

If p>0.5,update the position of the current search by the
(5).

Check if any search agent goes beyond the search and amend
it.Calculate the fitness of X;(i=12,---,n),and if thereis a

better solution,find the best search solution X ™.
Lett=t+1.
Until t reaches Maxgen iteration, the algorithm is finished.
Step4. Return the best optimization solution X “and the
best optimization value of fitness values.

1. IMPROVED WHALE OPTIMIZATION ALGORITHM

In WOA, the updated solution is mostly depended on the the
current best candidate solution. Similar to PSO algorithm, an
inertia weight @ <[0,1] is introduced into WOA to obtain the

improved whale optimization algorithm (IWOA).
In Encircling prey, the updated method is represented by the
following equations:

D= C.oX (t)-X(t)] 9)
X(t+1) =X (t)-AD (10)
where the meanings of t, A,C, X", X,| |and . are shown in
table 1.
In exploitation phase, a spiral equation created between the

position of whale and prey to mimic the helix-shaped
movement of humpback whales is as follows:

X (t+1) = D'e® .cos(2A) + wX " (t) (11)
where D'=| @X " (t) — X (t) | and indicates the distance of the
ith whale to the prey (best solution obtained so far), b isa
constant for defining the shape of the logarithmic spiral, | is a
random number in [ —1,1], and . is an element-by-element
multiplication.

Similar to WOA,we assume that there is a chance of a
probability about 50% to choose between either the shrinking

encircling mechanism or the spiral updating position of whales
with inertia weight during optimization. The mathematical

model is as follows:
X (t+1) = IDIa)X (t)-AD ) !f p<0.5
D'e”.cos(2Ad) + X ® if p>05
where p is a random number in [0,1]. In addition to the

(12)
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bubble-net method, the humpback whales search for prey
randomly.

In search for prey (exploration phase),the same approach
based on the variation of the A vector can be utilized to search
for prey (exploration). The mathematical model is as follows:

D = WC.X gng — X | (13)
X(t+1) =wX z0g — AD (14)
where X4 IS @ random position vector (a random whale)
chosen from the current population.

The concrete steps of the IWOA are the following:

Stepl. Initialize the whales population X; (i =1,2,--
Maxgen(maximum number of iterations).Let t =1.

Step2. Calculate the fitness of X;(i =1,2,---,n) ,and find the

best search solution X"

Step3. Repeat the following:

For every X;(i =1,2,---,n) ,update a, A,C,I,p.

If p<0.5,thenif | Al<1,update the position of the current
search agent by the (9) and if | A|>1,select a random search
solution X, and update the position of the current search
agent by the (14).

If p>0.5,update the position of the current search by the
(112).

Check if any search agent goes beyond the search and amend
it.Calculate the fitness of X;(i =1,2,---,n) ,and if there is a

better solution,find the best search solution X"
Let t=t+1.
Until t reaches Maxgen, the algorithm is finished.

Step4. Return the best optimization solution X " and the best
optimization value of fitness values.

There are the formulas of inertia weight » in PSO algorithms
in the following:

-,n) and

t
o(t) = Oynitial — (Dinitial — @ final )? , (15)
1
w;(t) = Lrsvt’ (16)
(1) = Orerinal + (Oinitial = @final )€ T (17)

where t is the number of current iterative steps, T is the
maximum number of iterative steps allowed to continue,
Oinitiaa 18 the initial inertia weight, w4 IS the final

inertia weight, s is a constant larger than -1 and c is controlling
parameter to control the convergence rate of the inertia weight,
¢ > 0. Equation(15) is introduced by Shi and Eberhart[12]
who introduce a Linear Decreasing Inertia Weight(LDIW)
strategy in 1998, (16) is introduced by Lei et al. [14]who
propose a Sugeno function as inertia weight(SFIW) method in
which the inertia weight is neither set to a constant value nor set
as linearly decreasing time-varying function, and (17) is
introduced by Lu,Hu and Bai[17] who propose an Exponential
Decreasing Inertia Weight (EDIW) strategy.

Thus four kinds of IWOAs are obtained as follows:

(1) IWOA with constant inertia weight(IWOA-CIW),
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(2) IWOA with dynamic inertia weight shown (15)
(IWOA-LDIW),

(3) IWOA with dynamic inertia weight shown (16)
(IWOA-SFIW),

(4) IWOA with dynamic inertia weight show (17)
(IWOA-EDIW).

IV. NUMERICAL SIMULATIONS

A. Benchmark Functions

In order to test the performance of the IWOA, 27 benchmark
functions commonly used in the literature [2-3,29] are taken,
which consist of 18 unimodal functions and 8 multimodal
functions. 27 benchmark functions with n-dimension are

concrete in the following where fg=f,+f5 and f, = f,o+ f;;.
o f, = Zin:l X7 where =100 < x, <100 . The minimum
value is 0.

@ f,=Y " [%|+] ]I % | where —10<x, <10. The
minimum value is 0.

3) fy=max{| x | 1<i<n}, where 100 <x <100. The
minimum value is 0.

(4) f,= Y 100(x,;~x?)° where —30<X <30. The
minimum value is 0.

(5) fs= Z::l(xi ~1) ,where —30<x <30 . The minimum
value is 0.

6) o=\ T100(x,,; ~x)? + (x, ~1)] where
-30<x;<30. The minimum value is 0.

7 f, = Z:‘:l(in +0.5))% where —100< x. <100 . The
minimum value is 0.

8) f, :Z:Llix{‘ +rand() where —1.28 <, <1.28. The
minimum value is 0.

) fy= Z:inzzixi2 where —5.12 <X, <5.12. The minimum
value is 0.

(10) fo = z:in:zi(ZXi2 —%i_1)? ,where —10<x, <10. The
minimum value is 0.

(11) fy, = (% —1)? ,where —10<x <10. The minimum value
is 0.

(12) f, =" i2x" =%4)* +(x -1* where ~10<x <10.
The minimum value is 0.

(13) fi3= —exp(—O.SZin:lxiz) where —1<X, <1. The
minimum value is -1.

(14) fy, = Zi”:l(loﬁ)% x2 where —100 < x. <100 The

minimum value is 0.
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(19) 5= Yy X%, | where ~100.<x <100, The

minimum value is 0.

(16) fig = Zin:ll x; [ where —1< X <1. The minimum

value is 0.

(17) fi; =-20 exp[— 0.2,[%2;% j—exp(ﬁ lecos(ani)} 20+e,Where

—32 <%, £32. The minimum value is 0.

(18) fig=> " Ixsin(x)+0.1x | where ~10<x; <10. The

minimum value is 0.

Fxy) =0 5+sin2(w/x2 +y%)-05
) T (1+0.001(x? + y?))?
minimum value is 0.

(20) fyo = fio (X0, Xp) +-+-+ f10 (X1, Xq) + Fio(Xy, X;) where
fio (X, y) = (¢ +y?)*#[sin®(50(x* + y*)™") +1],
—100 < x; <100 . The minimum value is 0.

__1 no2 n xi)
(21) f21_w2“i:lxi —Hizlcos(—ﬁ +1,where

—600 < x, <600 . The minimum value is 0.
(22) ¢, - —z::(exp(— 7“2”51;0'5‘*“1jcos(4m D,

where —5< X, <5. The minimum value is 1—n.

(23) f23 =zinll(0-5+ sin (m)—O.S

14+0.001(x2 —2%;X;,1 +X2 1)
-100 < x; <100 . The minimum value is 0.

,—100< x, <100. The

2
j ,where

(24) f,, = Z:Ll(xi2 ~10c0s(27x; ) +10) ,where

-5.12 <X, £5.12 . The minimum value is 0.

(25) fp5=1- cos(zml >ox ) +0.1,/>"" X7 where

-100 < x; <100 . The minimum value is 0.

(26) fo = Z:in:lixi2 where —10 < x; <10 . The minimum
value is 0.

(27) ;== xsinyfix | where ~500 < X, <500. The

minimum value of f,, is -418.9829*5.

2D representations of the above 27 benchmark
mathematical functions with n = 2 are shown in Fig.2-Fig.4.

In this section,we compare the proposed IWOAs with basic
WOA basic ABC algorithm,basic FOA, and the basic PSO
based on 27 benchmark functions. For all the algorithms, a
population size and maximum iteration number equal to 30 and
500,respectively,have been utilized. We run 30 replications for
these 27 benchmark functions.
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B. IWOA-CIW vs. WOA

In IWOA-CIW experiments, the mean values and standard
deviations(std) are obtained with the increase of @ varying
step length 0.1 from 0 to 1. When @ =1, IWOA becomes
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WOA.When o =0, updated solution does not depends on the f,— 1, 7, g, fi0 fia - £ @re increasing with the inertia weight’s
current best solution. Table 2-table 4 show that the mean and increase. But the value of the function fll is decreasing with
the stan_dard deviation of IWOA based on the increase of the inertia weight’s increase. And functions f, , f,, f,,cannot
w varying step length 0.1 from 0 to 1. 516
From Table 2-Table 4, it is shown that IWOA-CIW is trend to the minimum values. Although functions f4, f10 can
superior to WOA. The values of all the functions reach the minimum values, function f, f,; cannot reach the
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minimum value, so fg = f, + fg, f;, = fo + f;; cannot reach Hence, it can be concluded that as a whole the proposed

the smaller value of inertia weight is taken,the easier
IWOA-CIW is to trend the minimum value of function.

[Paramanar spaca [Paramesr space Farameater smacs Farsms s somoe
; ¥ =~ .-_‘.\\
- d___-l‘"- E \?\
= S FPIRPE. L A
. oL
- STRCONN Rk Lt O o
.-E:.’m : i A o E
i bl
] : !
] : :
T *
froaa) " l :
P IR S ”‘h R J:. - ?“
™ ! Y : - -1 T -
" g Tl A e L SealeTT Ve
3 1 = " 1 = |I ! -
Z o= H A T
o i L0 BN ot .
o oo \‘M". :?_ﬁé'__#’#E .
° \v.-f’ o o
X -0 00 i . 5 =5 %, xg -l0T-R0
(&) Jau (£ (8 Jfi
Patirrstar space Caramate apacs
S
- el e LT I,_ ™
. R B N O oe AN
- - - ] H =" - o
.?' g o 20 { = A At
;o L ' Los o ih LW
= il ] z *‘ ¥ |
o e = muF«u A
' H ) = ' "
. TR !
e o 'a_;'.ﬁ"'suu
" ?EE’ "o
%, =m0 am g
@ fas () fas ® fi

Fig4 2D representations of functions £ — £

ISSN: 1998-4464 17



INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Volume 11, 2017

Tablz 2 The mean and standard deviation of IWOA-CTW based onthe increase of g varying step length 0.1 from 0 to 1 from g, to fi

G I 5 I IS I £ fa
0 mean 1] 0 0 0 11647 28.5804 0 50332=405 0
Std ] 0 0 0 0.7049 0.7024 0 55715405 0
01 mean 0 Q7ERle273 1.3884=-260 ] 1.1461 2B2B0E ] 5876405 ]
’ Std ] 0 0 0 05713 0337 0 4 6065205 0
02 mean 1] 013952218 3.07952-221 0 13790 28.1812 0 51179405 0
- Std ] 0 0 0 0.7804 03197 0 50852a405 0
03 mean 1] 14647.-192 1.2851=-183 0 12956 28.1090 0 7077105 0
- Std 0 0 0 0 05638 03218 0 4 804305 0
04 mean 1] 2.7450e-167 1.04862-152 0 1.0954 28.0748 0 02813a405 0
) Std J] 0 5.56T0e-152 0 04976 03954 0 0 .7630e05 0
05 mean 16771e-274 4 4696=-144 4.0812=-123 159985a-274 09352 279438 0 E0091=05 0
- Std ] 12140.-143 1.6887a-122 0 04400 03404 0 6.7512a05 0
06 mean 1.1027=-224 379362123 3748194 1.1708B=-227 07384 2740135 ] Boo0B=05 ]
) Std ] 13634.-122 18858293 0 02646 03516 0 02 702a05 0
07 mean 52662=-184 1.7259e-101 08701267 E2835a-18B3 05858 27.8389 0 Q6107205 0
- Std ] 6.0877e-101 52914266 0 02038 03414 0 10087204 0
08 mean 1.7841a-142 B65642-83 13256246 2.1361a-144 04229 27.8984 0 12481=04 0 1861a-263
' Std 71847e-142 2420182 41233246 ED505e-144 0.1837 03393 0 1.1877={4 0
09 mean 3 2628e-106 23786a-65 E21530a-24 12952a-107 2780 278157 0 3087104 5 4649:-184
’ Std 13377e-105 7 2710a-65 20755a-23 4 3302a-107 0.1304 03737 0 24146204 0
1 mean S6T73e- T709402=-51 522806 3 6590268 04382 28.0018 0 0.0042 13330=-114
Std 340652-73 4 0809e-30 30.8406 14110=-67 02928 04320 0 0.0038 4 21%4a-114

However,the IWOA-CIW generates small gaps with the true
optimal values. There is a room for the IWOA to be further
improved in the future research.

C. IWOAs vs. WOA vs. ABC vs. FOA vs. PSO

By a lot of experiments, we take @ = 0.1for example in
IWOA-CIW. Here, four IWOA algorithms(IWOA-CIW,
IWOA-LDIW, IWOA-SFIW,and IWOA-EDIW) are
compared with WOA,FOA,ABC,and PSO. Optimization
results reported in Table 5-table 7 show that the IWOAs can
well balance exploration and exploitation phases.

From table 5-table 7, the values of functions f, — f,,

f, — f,,using IWOAs are all less than those using WOA,FOA,

ABC,and PSO and trend to their minimum values by the less
iteration number. But IWOAs cannot solve the minimum
values of functions f,, f.and f,,. It can be seen that IWOAs

are competitive with other meta-heuristic algorithm: WOA,

ISSN: 1998-4464

18

FOA,ABC, and PSO can hence provide very good
exploitation.

D. Analysis Of Convergence Behavior

Convergence curves of four IWOAs,WOA,FOA, ABC, and
PSO are compared in Fig. 5-Fig.7 for 27 benchmark functions.
It can be seen that IWOAs are enough competitive.

The convergence curves of four IWOAs,WOA,FOA, ABC,
and PSO are provided in Fig.5-Fig.7 to see the convergence
rate of the algorithms. Here average best-so-far in each
iteration over 30 runs.

Although fg = f, + fs5, f;, = fio + f;; and f,, ;o have an
ability to reach the minimum values within 500 iterations as
shown in Fig.5-Fig.7, fgand f;, cannot trend to the minimum

values owing to f;and f;; without the convergence of the
minimum values.



INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

Volume 11, 2017

Tabla 3 The mean and standard devistion of IWOA-CTW basad on the increass of @ varving staplength 0.1 from{ to 1 from fiu 2

Er .lf_\: .lfll .-Kl: .lf_j .lfli .IF_E .lf_é .lflT "’“
,  mem 0 1335207 09833 1 0 0 0 58818216 0
Std 0 3287207 00104 0 0 0 0 0 0
o == 0 1137007 08672 .| 0 0 0 I PN A FE LTS
: Std 0 25164207 647774 0 0 0 0 0 0
0y mem 0 1979708 06668 1 0 0 0 SESI8=16  68634=210
< s 0 6911808  73830=45 0 0 0 0 0 0
0;  mem 0 F5610:08  0R6ES .| 0 0 0 SRSI8=1F 148052103
Std 0 1047707 1474004 0 0 0 0 0 0
ba  mem 0 I0008:08  0R6ES .| 0 TE6se080 0 SREIS=1F 14390166
: Std 0 7002708 1342004 0 0 0 0 0 0
0s  mem 330B:11d 19708:08 06668 | 11189270 523762219 0 8818216 303882143
S s 0 5077208 9899705 0 0 0 0 0 153352142
vg  mem  S55HMel8 1£33.08 0666 .| TR006=03 57372160 12550:304 21908=15 27 0=112
: Std 0 3314808 19409=04 0 0 0 0 1741315 74797122
07 mem  491B=181 131%0e08 06669 ) 10597178 95177124 313582255 30198=15 123302103
2 Std 0 2431908 18176204 0 0 36297123 0 24277215 392722103
g mem 980T 153300 06689 .| TR 141  13686=81  35560=005 17008135  S8607e55
: Std  2707=142  50060e09 4416204 0 666852141  4.0961=-81 0 17702e-15 17866284
g mem L0XBe106 5380.10 0667 .| T104:1020 03366240 1581154 32567=15 176787
: Std 5637106  10350e09  44162e04  29156e17 167422101 1261530 149122153 25265215 55500e67
[ mem 200675 12382e15 06671 1 T3006a49 46135704 12370s107 38488e15 134839
Std 10297274 44336215  50043=04  61849e17 68643269 128256404 650162107 33747215 12408248
Table 4 The mean and standard deviation of IWOA-CTW based onthe increass of & varving stap langth 0.1 from 0 to 1 from £ 0 1
o fin Fae Fa fa fa Fae faz T fam
. == ) 0 i) 5 PR EE ") 0 ) 0 B R Py
Std 0 0 0 0 0 0 0 0 1482557
o == 0 0 0 5 PR EE ™) 0 0 0 135090
: Std 0 0 0 0 0 0 0 0 161.6693
0 mem 0 0 0 5 T3 0 0 0 I35
< s 0 0 0 0 0 0 0 0 §1.9206
0 mem 0] 0] 0] I R R 0] 0] 0] W) P
Std 0 0 0 0 0 0 0 0 49,531
0a  mem 0] 0] 0] 5 AR5 0] 710672163 0] 1359470
: Std 0 0 0 0 0 0 0 0 75,0868
05 mem 0 T8510:73 0 5 R EVPRE! 0 T P R WP
S g 0 32577273 0 0 9 8641=-14 0 00182 0 441 3611
0g  mem 0 1337842 0 8 64087215 0 00033 4300=138  -12310e+0d
: Std 0 5285962 0 0 33571e-14 0 00182 0 7331612
o mem 0 161553 0 3 7340813 0 50100 TRET 188 -LI06H
T e 0 14895252 0 0 7.5007=-13 0 0.0305 0 7594011
by mem 0] T105=35 0] 5 1735108 0] 00266 ST TR R
: Std 0 31710244 0 0 7.09572-08 0 00449  437M=140 12588243
oy mem 00N BB 0 5 77707208 0 00%8  1532=106 -LOai—
: Std 14962 10517235 0 0 243707 0 00503 96745106 2017623
[ mem  10W  14Bel 37007=18 1933 1138607 0 01166 1066673 -L0S30=+4
Std 40965 8347228 2027017 41260 1.08782-06 0 00699 35973a73  16987e+03
Table 5 Comparison with four TWOA WOAFOAABC, andPSO from ] to ki
Algorithm I 5 I I3 I £ f
i T mem ) TTRSIeTS 135542260 i) 1168 253746 0 SEEel 0
TWOA-CTW "oy 0 0 0 0 06645 02586 0 46065e05 0
-  mem 0] 0158 12759030 0] 06T 1790 T 119520 0]
IWOALDIW "oy 0 0 0 0 02160 04094 0 7948915 0
- mem 0] [7731s 350 351932385 0] 00693 251363 0 73590 0]
[WOASFTW "oy 0 0 0 0 04365 03386 0 59930105 0
3 T mem 0 T30 211 14551308 0 BT 50572 T 13650 0
TWOAEDIW "oy 0 0 0 0 05093 04427 0 1260404 0
m— mem 636754 70M0Ze31 2806 3650968 043 I800IS 0 00042 133%=113
: Std 3406373 40809250 308406  14110=67 02928 04320 0 00038 421942114
— mem  L0010=08 00053  1835=05 3038 T 25004 0 0008 585405
Std  14142e-10 34600e05 15755207 08696 04144 00047 0 7924e04 8057907
e mem 4107108 670%=03 630490 60137 1448603 B56653 1430 026068 30747405
: Std  50621=-04 31589e43 483185 270241 30852503 261978 0770 00670099  685987=03
250 mea 03663 15007 1045 T91.9301 0235 D340 121667 0035 NEE)
Std 01035 14724 18696 174.2475 00761 201484 74282 00395 01198
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Tabla 6 Comparison with fourJW0A WOAFOA ABC P50 and DE from ot g,
Algm'iﬂ:lm ,r:_;; f: 1 (_ fia _."’;‘ _."’;_: ;r:_é _."’;7 f: 1
- R 3 1137007 ) i) i) i) TRRI8=16 691552772
TWOACTW gy 0 2.5164-07 0 0 0 0 0 0
X R i 51917209 1 i) i) i) TR8I8=16  3.5060=1
[WOA-LDIW "oy 0 1.54412-08 0 0 0 0 0 0
) R 7 18155208 1 i) i) i) TEEIS16 G136
TWOA-SFIW "oy 0 5.62262-08 0 0 0 0 0 0
) R ] 1770408 1 i) i) i) TREI8=16 L0812
WOA-EDIW gy 0 5.63012-08 0 0 0 0 0 0
— mean 10016a75 LB 15 06671 ) 1300668 361508  1230:107 3848815 134830
‘ Std  10207e74  44536a-15 5904304 61849217 68643260 128252404 659162107 3374715 12408248
— mean 09978 02105 09978 0999 B 8e0d 313006  3371e06 2275=0F 4554
: Std  29911e05 01795 3175605 55532207 83306=06  44639e08 47056208 1590206 44818206
e mean 08943 5991605 101636 1 36,7196 179657 3551209 0113%683 003815
‘ Std 0878592 LI370=-04 0806525  65510a08  27.1426 03186 55003909 0150522  0.0285267
— mean 110836 3550100 116639 T 71 P L L i i) 33480 1967
Std 74848 6.094%-09 52364 01360  31086e05 267810 0 07359 083599
Tabla 7. Comparison with five TW0A W0A FOA ABCPS0 and DE from fa 0 fun
Algorithm Fa Jaa f:] i -nr_ Jfaa Fr Jae I
- R———— i) i 3 5 pREE ) 7 7 i) W]
WOALTW "oy 0 0 0 0 0 0 0 0 161.6693
S ——— 0 0 0 % 4876813 0 8 42962 123 0 12204104
IWOA-LDIW "oy 0 0 0 0 2658112 0 46171122 0 890.8391
) ———— i) i i) % 1543916 ] 3 i) 13570400
IWOASFIW "oy 0 0 0 0 20139215 0 0 0 4267174
S i) i i) % 1063019 0 7865370 i) 1%
TWOA-EDIW "oy 0 0 0 40712409 0 4200178 0 489.7182
— mem 217914 TT007e18 T79M5 1158607 0 01166 10666273 -1.0830=+04
: Std 40963 2027017 41260 10878206 0 0.0699 1597373 1.6987e+03
o mem 1994608 T1496:10 289999 50786 7365604 1019805 1543005 10131
A Std 2565110 07373 2683312 97549e07 (1763  LI23%-05 94037208 22077ed7 07013
e mem 3318 ®5595 01501 DEE PR T10815 T4 4358205 1186
‘ Std 04311 27812 00320711 0708797 0166755 0610904 0629669  414654a05 172349
— mem 55288 107968 15846 54390 0478 SERER 13707 5453 560405
Std 11389 100164 47892 15440 0.0021 14.3689 03826 39217 3614954

As shown in Fig.5-Fig.7, the IWOAs shows that three
different convergence behaviors when optimizing 27
benchmark functions:

(1) The convergence of IWOAs tend to be accelerated as the
iteration increase,

(2) IWOAs trend to convergence within less iterations,

(3) IWOA s have the rapid convergence from the initial steps of
iterations.

These behaviors are obvious in functions f, - f,, f, - f;,,

f,,— f,5- 1he results show that the IWOAs are high in solving
benchmark functions.

V. APPLY IWOAS FOR AQI PREDICTION OF TAIYUAN

According to the convergences of the four IWOAs, WOA,
FOA, ABC,and PSO on 27 benchmark functions, we can see
that FOA and ABC are inferior to IWOAs,WOA,and PSO.
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Therefore, we apply IWOAs,WOA,and PSO for prediction of
Taiyuan.

In recent years, more and more people focus on the the air
quality problem and find out some methods to improve the air
quality and analyze the influence factors. Daily air quality
index(AQI) is described by the six indicators: sulfur dioxide
(SO2), nitrogen dioxide(NO2), particulate matter (PM10:
particle size is less than or equal to10 microns), particulate
matter(PM2.5: particle size is less than or equal to 2.5 microns),
carbon monoxide(CO),and ozone(O3). Among
them,SO2,NO2,and CO are all the 24-hour average density; O3
is the 8-hour moving average density. We choose 1100 sets of
data from December 2 in 2013 to December 5 in 2016 as train
data and 22 sets of data from December 6 in 2016 to December
27 in 2016 as test data. Fig.8 show that the actual daily AQI of
Taiyuan from December 2 in 2013 to December 27 in 2016.

In this section, IWOAsWOA,and PSO are used for
optimizing the parameters of linear regression(LR) model for
air quality index(AQI) prediction of Taiyuan.
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Fig.2. The actual daily air quality index{AQI) of Taiyuan
from December 2 in 2013 to December 27 m 2016,
As shown above, AQI depends on the six indicators: PM2.5,

PM10, SO2, CO,NO2,03. We decide to approximate AQI as a
linear function of these six indicators’ values Xpy, 5, Xppio+

g

i

] T

Xs0, 1 Xco1 Xno, 1 Xo, -
AQI= 6, + 6, Xopz5 + Oy Xomno + OaXso,

(18)
+0,X0 + HSXNOZ + Hexog.

where the 6, ’s are the parameters of linear functions.

In order to asses the performance of the above model, we
take mean square error (MSE),relative mean square
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error(RMSE) and mean absolute percentage error(MAPE) as
criteria, defined as

N A
MSE:iZ(Vi _yi)z’ (19)
N4
N 2
N —
RMSE= 1| Y|, (20)
N i3
Yi
L3y -y,
MAPE =3 | =1 1x100%, (21)

i=1

Yi

where Y; and Y; denote the actual value and the output value

by (18), respectively. Fig. 9 shows the trained output curve by
the IWOAs for the AQI of Taiyuan. Fig. 10 shows the plots of
trained absolute errors between the trained outputs and the
actual valued by the IWOA algorithms. And the values of
MSE,RMSE, and MAPE(%) of trained output by the IWOAs
for AQI of Taiyuan are shown in Table 8.

Based on the trained optimal parameters of (18) by the
IWOA algorithms,respectively, we predict the AQI index of
Taiyuan of following 22 days from December 6 in 2016 to
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December 27 in 2016. Table 9 shows the predicted outputs by
using the IWOA algorithms. Table 10 shows that the values of
MSE,RMSE, and MAPE(%) of predicted output by the IWOA
algorithms for AQI of Taiyuan. From Table 8 and Table 10, we

L T T T T T 450

Volume 11, 2017

can see that IWOAs with stable inertia weights or dynamic
inertia weights are superior to WOA and PSO with respect to
MSE,RMSE, and MAPE and therefore are more adaptive to
predict the AQI values.
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Table &. The values of MSE EMSE, and MAPE(%) of trained cutput by IWOAs, WOA, and P3O for AQI of Taiyuan

Emor IWOA-CTW  ITWOA-LDIW IWOA-SFIW TWOA-EDIW WOA P30
MSE(*e*) 0.9905 0.8447 08234 08277 10135 0.2042
EMSE 0.0104 0.0103 oo 0.0110 0.0139 0.0135
MAPE( %) 77567 76323 7.8525 78604 20627 87730
Table 9. The predicted owutpits by using IW0As, WOA and PS0O for AQI of Taiyuan
Daw Actual IWOA-CTW IWOA-LDIW  TWOA-SFIW  TWOA-EDIW WOA P30
1 143 1572687 1539617 148.1389 153.0401 1496477 151.3613
2 133 1440815 1411212 137.4794 1401434 1384456 1386943
3 139 1424272 140.1033 137.1792 1396982 1369146 13728110
4 04 1022062 076425 05.7131 033261 00 0838 037054
5 208 2003517 2077187 207321 206.9071 2006435 2058370
& 193 1822236 1807762 183.70809 1804548 1220603 1770846
7 377 3636333 3720338 3803302 377.7501 3IGE0T4] 371.7747
g 156 1331924 1348706 1302012 136.2761 133285 1318703
9 201 1784328 1784492 1822282 180.6347 1747013 1752570
10 196 1882178 1882976 1906199 190.0493 1851273 185.8449
11 201 198 7608 197.3573 19490014 198.0620 1936999 1953587
12 248 2438703 2418791 240.8426 2424487 2386637 2387176
13 230 2458880 2440664 2441924 2446814 2416229 240.8397
14 229 2253582 2230888 2241830 2231567 2224431 2196031
15 174 1670413 164.8724 166.3462 164.2483 1646581 1603428
16 173 1529039 153.4943 1570378 155.5422 15308027 1503884
17 58 36.90536 3407032 346613 55.1670 309397 321687
18 117 1264711 121.7301 1189606 120 2806 119.1360 1173300
19 150 1502562 147.0683 146.4567 146.6440 1443212 1433140
20 240 2242156 2244810 2265871 226.1980 2216362 2220375
21 137 131.8470 1323340 1316138 1341950 1261813 1302541
22 46 3703645 36.1308 33.7004 35.8148 351303 34,7713
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Table 10.The values of MSE EMSE, and MAPE( %) of predicted outputby IWOAs, WOA, and P50 for AQI of Taivuan

Ermror IWOA-CIW I'WOA-LDIW IWOA-SFIW IWOA-EDIW WOA P3O
I“-‘ISEI:*E‘J} 1.1802 10784 07223 09029 1.4044 14673
EMSE 0.0038 0.0035 0.0044 0.0030 0.0073 00073
MAPE (%) 3.8378 3.5963 47705 30382 6.6213 6.4032
[12] Y.Shi,R.Eberhart,“ AmodiJedparticleswarmoptimizer,”in Proceedings
VI. CONCLUSION of the 1998 IEEE International Conferenceon Evolutionary

This study introduces the inertia weight to whale
optimization algorithm (WOA) by the hunting behavior of
humpback whales. Thus the improved whale optimization
algorithm (IWOA) is obtained. According to four different
inertia weights, the corresponding IWOA becomes
IWOA-CIW, IWOA-LDIW, IWOA-SFIW, and IWOA-EDIW,
respectively.

We conducted the proposed IWOAs on 27 mathematics
benchmark functions to analyze exploration,exploitation,local
optima avoidance and convergence behavior by comparison
with WOA,FOA,ABC,and PSO. IWOAs were found to be
enough competitive.

At the same time, we found that FOA and ABC were inferior
to IWOAs,WOA,and PSO. Therefore, we only applied
IWOA WOA,and PSO for AQI prediction of Taiyuan. The
results obtained from MSE,RMSE and MAPE were shown that
IWOAs with inertia weights are superior to WOA and PSO and
were very competitive for applications.

We also improve whale optimization algorithm and apply it
for different regions.
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