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Abstract— The search for a stationary point in the study of 
Discrete Event Simulation models is a complex problem. This is 
because the equation of the objective function is never known a priori 
to the experimenter. In the case of restricted investigation domains 
the Response Surface Methodology typically provides, through the 
use of Central Composite Design, the experimental design most 
suitable for the construction of first and second order regression 
meta-models. The problem becomes more complex when the domain 
to be investigated is larger because, in that case, it becomes 
impossible to identify a meta-model regression able to describe the 
behaviour of the objective function on the entire domain. Such a 
limitation can be overcome by an appropriate use of research 
techniques such as gradiental or direct search methods. However, the 
presence in the domain of local stationary points may affect their 
effectiveness and forces the experimenter to track the investigation 
starting from several points of the domain, with a consequent 
increase in the number of function evaluations and computational 
time. In more recent times global research techniques have been 
developed, often inspired by natural processes. However they 
generally not perform well applied to Discrete Event Simulation 
models. For this reason the Authors have developed a new search 
algorithm called Attraction Force Optimization (AFO). The proposed 
approach applied to industrial problems up to 10-dimensional, offers 
significant advantages in terms of both exploration capacity and 
convergence speed. An application of the proposed technique to a 
real industrial case completes the discussion. 

Keywords—Discrete Event Simulation, Optimization, Optimal 
region, Nature-Inspired Heuristic, Response Surface Methodology 

 

I.  INTRODUCTION  
The problem of discrete event simulation-based 

optimization is the finding of an optimal configuration for a 
stochastic function with an unknown structure [1]. This kind of 
problem in the past was approached through the use of 
different classes of optimization techniques, possibly adapted 
to the simulation-based applications [2]. In general it can be 
stated that each of the available techniques in the literature 
presents both advantages and limitations. Therefore a more 
powerful search algorithm in absolute terms is not identifiable 
but, from case to case, some techniques are more effective than 

others. Below there is a brief description of the principal 
algorithms available in the literature. 

BFGS algorithm is a quasi-Newton local search method 
and it is considered one of the most efficient gradient 
methodologies [3]. This technique uses information derived 
from the calculation of partial derivatives in order to locally 
approximate an objective function through a second order 
quadratic form without the explicit estimation of Hessian 
matrix. 

In addition to gradient techniques (such as Steepest 
Descent/Ascent, Newton and quasi-Newton methods), Direct 
search techniques can be implemented in order to find points of 
minimum/maximum. The main idea of these algorithms is to 
reach optima using only function evaluations, without 
estimating partial derivatives. Nelder-Mead simplex is one of 
the most popular direct search techniques for unconstrained 
non-linear multi-dimensional minimization [4,5].  

Pattern Search methods [6] are a class of numerical 
algorithms which does not use gradient calculation and, 
consequently, they can optimize highly non-continuous target 
functions.    

At each step, the procedure selects a set of points, called 
Mesh, in the neighborhood of the current point, called centroid. 
Mesh is built by a set of vectors, called Pattern. If the search 
finds a point in the Mesh which is better than the current point, 
it becomes the new centroid for the next iteration. 

Among the Pattern Search methodologies, the most popular 
are: Generalized Pattern Search (GPS) and Mesh Adaptive 
Direct Search (MADS). Given that the main loop of the first 
one doesn’t use random numbers, GPS is a deterministic 
search, while the second one is a stochastic algorithm. They 
can also be classified in function of the vector basis 
implemented for the Mesh building in N+1 or 2N search. 

The most well-known global optimization methodologies 
are the so-called “nature inspired” heuristics. The main feature 
of these approaches is to simulate the behavior of a group of 
individuals (agents) that cooperates in order to reach a common 
objective (Genetic Algorithm and Particle Swarm 
Optimization) or a natural law (Simulated Annealing)[7]. 
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Genetic Algorithms are a global heuristic based on the 
metaphor of natural selection of a species [8]. These 
methodologies dynamically modify a population of individuals 
(a set of points in the feasible domain) in order to form a better 
group in the next generation (iteration). The goodness of the 
solutions is directly linked with the topology of the target 
function: individuals that fit the environment has a higher 
probability to belong to the next generation. Usually, the best 
members pass without undergoing a change (elites children), 
the others are selected after some modification of their 
chromosomes (coordinates of the independent variables). The 
classic operators applied to these classes of individuals are 
mutation and cross-over. The first operation simulates the 
changes caused by the environment on a single member (the 
coordinates of one point are modified through a stochastic 
perturbation), while the second operator represents the 
coupling (the coordinates of two points are mixed randomly).  

Simulated Annealing is a global heuristic which models the 
physical process of heating a material and the following 
gradual cooling till a minimum-energy particle configuration 
has been reached [9]. 

At each iteration of the main loop, the algorithm generates 
randomly a new point in the domain of the feasible solutions: 
its distance from the previous one is proportional to the current 
temperature. The technique accepts all the new points which 
improve the solution of the objective function and, with a 
certain probability, linked proportionally to the temperature, 
the points for which the system increases the energy. The 
expedient to accept solution that doesn’t improve the current 
one, allows to avoid local minima and to explore better the 
domain, especially when the temperatures are high. A cooling 
schedule decreases the temperature: the main control parameter 
tends to be zero at the end of the optimization. Iteration after 
iteration, a smooth decrease of temperature leads to a lower 
acceptance probability of not-good solutions and a smaller 
search space. This process converges to the individuation of the 
optimal region of the objective function. 

Kennedy and Eberhart, inspired by the social collaborative 
models used by groups of animals (flocks of birds, shoal of 
fishes) in order to find food, proposed an agent-based method 
which allows to optimize highly non-linear functions, called 
Particle Swarm Optimization (PSO) [10]. The main idea 
consists in modeling the exchange of information between 
agents, oriented to the common objective of finding the best 
source of food (the optimum of the target function). In the 
process of finding good solutions for the problem two 
operators, characteristic of social sciences, are simulated: the 
individual influence on the group, called simple nostalgia, and 
the group influence on the single agent, called publicized 
knowledge. 

Many other researchers have extended their studies to test 
other routines inspired mainly by natural processes and social 
behaviors [11].  

Among the most recent, are described briefly below the 
Harmony Search (HS), Artificial Bee Colony (ABC) and 
Continuous Ant Colony Optimization (CACO). 

Z.W. Geem, J. H. Kim and G. V. Loganathan in 2001 
proposed the HS: a music-inspired metaheuristic for 
optimization [12-14]. The process of finding optimal solutions 
is compared to the so called “improvisations” performed by a 
musician tuning his instrument in order to achieve the standard 
harmony, considered aesthetically perfect (the optimum of the 
target function). 

The Artificial Bee Colony (ABC) Algorithm has been 
developed in 2005 by Dervis Karaboga to solve optimization 
problems [15]. Such Metaheuristic simulates the behavior 
adopted by the honeybees to exchange information within the 
hive leading to the identification of the most promising food 
source (ie the optimal region) in the surrounding environment 
(the objective function). 

The Ant Colony Optimization, designed in discrete context 
by Marco Dorigo in 1992 [16] and later extended in the 
continuous [17], aims to simulate the transmission method of 
the information adopted by the ants (based on the distribution 
of pheromone). The regions in which it will be deposited the 
greater amount of pheromone will be those in which you will 
have a greater probability of finding the global optimum of the 
target function. 

Among the techniques available in the literature, in 
stochastic simulation-based optimization problems, both DES 
both Monte Carlo, the Authors have so far preferred to use the 
Simplex Method and the Steepest Descent [18,19]. However, 
both methods have clear limitations. On the one hand both 
techniques are likely to find a local minimum and not the 
global one and, on the other hand, the local search techniques 
require, to avoid this problem, the utilization from more 
starting points of the domain, necessitating, consequently, a  
very high number of function evaluations.  

Since in complex models such as those of industrial type 
many variables are often involved and being generally the 
execution time of each single simulation run very high, also the 
global search heuristics are not efficient and too expensive 
from the computational point of view. For this reason in recent 
times the Authors developed a new heuristic in order to 
overcome the limitations of traditional techniques, ensuring the 
convergence with a reduced number of iterations [20]. Such 
technique was only evaluated using the main benchmark 
functions suggested in the literature, and comparing its 
performances with those of the search algorithm mentioned 
above. 

In this paper, the authors applied AFO technique in a real 
industrial optimization problem, comparing the results with 
those achieved by the other consolidated techniques available 
in the Optimization Toolboxes developed by MathWorks and 
other more recent techniques before described.  

II. AFO  
The technique “Attraction Force Optimization”, AFO, is a new 
algorithm inspired by the attractive forces existing in Nature 
(for instance gravitational or electrostatic ones). 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 28



( )
( )BASE

i
iEQ

xf
xf

r
x

ω+
=

1

2
,



 A general description of this heuristic, which is applied to 
an industrial simulator with the aim of finding the optimum 
area, is presented in this section. 

 This technique tries to inherit the advantages of both classic 
and modern philosophies. From the traditional approach, AFO 
allows a greater analytical tractability, tracking of convergence 
to the solution, the ability to always get the same result, starting 
from the same initial conditions. From the modern approach, 
AFO is able to present a thorough exploration of the 
experimental domain, the use of rather simple calculation 
operators and, also, the presence of a population of points 
interacting between them. 

 The algorithm starts placing a particle for each vertex, 
defined by the lower-bound and upper-bound of the problem 
and the scheme is then completed by adding m-2 particles for 
each parallel direction to the generatrix base of the vectorial 
space.  

 The attractive force associated to each particle f(xi) is 
proportional to the potential assumed by the vectorial field 
(fitness function to maximize) in that point, xi and the number 
of particles is the population of agents which remains constant 
for every iterations. 

In the current scheme, the particle that has the best function 
evaluation, called base particle, x BASE , is related to the others, 
identifying the distance at which the attractive forces are 
counterbalanced. The coordinates for these equilibrium points 
are estimated applying the following classic physic formula: 

 

                                                                                                  (1) 

 
 
where: 

2
r the 2-norm distance between the i-th particle and the base 

particle 
ω  calibration parameter of the heuristic (typically 1=ω ) 
 
 AFO generates the scheme for the next iteration starting 
from the base and the less attracted equilibrium particle, i.e. the 
xEQ with the bigger distance from xBASE. The measure of the 
next scheme will be less than the previous one and the 
experimenter will be confident to find the optimal region inside 
the next scheme or on its frontier. The heuristic ends when the 
convergence has been reached. 

III. THE INDUSTRIAL TEST CASE 
The problem that has been studied in this work is related to a 
manufacturing system used for the production of transmission 
shaft for rotors of hydraulic pumps at high pressure. The goal 
of the study is to identify the optimal configuration of the 
industrial plant, namely the number of machines for each work 
station, in order to maximize the profit on a ten-years 
operating period. 

Figure 1 shows the steps of the manufacturing process 
under examination. For each work station some different 
machines are placed in parallel.  
 

 
Fig. 1. Phases of the manufacturing process  

The simulation software that was used to model the real 
system is SIMUL8, a particularly flexible software that allows 
to implement models based on Discrete-Event Simulation 
logic (DES). Appropriate probability distributions have been 
associated with each work station, with the aim of reproducing 
the stochasticity characterizing the timing set-up of the 
machine, the inter-arrival time of the materials, failures, etc. 
Table I shows the distributions used for each work station.  
 

After studying the significance of the variables involved in 
the considered real case, based on the application of Design of 
Experiments techniques (DOE) [21-24], it was considered 
appropriate to limit the optimal configuration of the study 
analyzing the two most significant variables on the objective 
function, that is the number of machines used for the Nitriding 
(x1) and the number of machines for the Final Control (x2). 
Both variables have been considered varying in a range 
between 4 and 20. 
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TABLE I.  WORKING TIME (HOURS/LOT SIZE) 

Working Station 
Type of Probability 

Distributions 
(parameters) 

Lathing Normal (3.8,0.5) 

Milling Uniform (3,5) 

Multi-step Grinding Normal (2.5, 1.1) 

Balancing Uniform (1,2) 

Nitriding Normal (4.5,1) 

Hardness Control Triangular (1,2,3) 

One-step Grinding Normal (2.4,0.5) 

Washing Fixed value 2.2 

Final control Normal (7.6, 1.5) 

Packaging Normal (1.7, 0.4) 

 

Once the simulation model has been validated from the 
analogic point of view, the Authors determined the minimum 
run time in order to obtain statistically reliable results from the 
model [25-28]. From the analysis of the graph of Figure 2 the 
Authors decided to use a simulation run of 1000 days. 

 

 
Fig. 2 Experimental error evolution curve of the simulation model 

IV. AFO APPLICATION  
The just mentioned heuristic has been applied in order to find 
the area of the optimal response surface obtained by the 
simulation approach described previously. 

 In particular, in this section the results that have been 
obtained from an application of AFO are outlined, pointing out 
that the goodness of the proposed solution does not depend on 
a specific calibration parameters at the discretion of the 
investigator, but rather is almost independent from it.  
 
In the first case, the parameters are set as follows: 

• number of particles along x-axis: 4; 
• number of particles along y-axis: 4; 
• number of AFO iterations: 3; 
• parameter 1=ω .  

The algorithm proceeds as well in identifying the optimum 
area needing the calculation of 36 function evaluations. Figure 
3, starting from the investigated experimental domain, 
highlights the progressive narrowing of the schemes during the 
three iterations of the technique. It is worth noting the rapid 
convergence of the schemes, with the final identification of the 
optimum point of coordinates (10.8756 , 17.1862). 
 

 
Fig. 3. AFO results: progressive narrowing of the schemes around optimum 
area 

 
The scheme in Figure 4 shows the progressive value of 

the objective function, i.e. the optimal value, computed by 
AFO as a function of the number of iterations: it can be 
underlined that, given the set of parameters that have been 
fixed in this scenario, only two iterations would be sufficient 
to converge to the optimum zone.  

 
The graphs in Figure 4 shows, always in function of the 

progressive number of experiments, the value of the basis-
particle (graph on the  top), which is the numeric value of the 
potential associated with the same particle and the value of the 
area subtended the schemes (graph on the bottom). 

 
Fig. 4 Analysis of results: output of Matlab code after AFO implementation 

 
It has been proceeded varying sequentially the parameters that 
can be set a-priori by the modeler, in order to evaluate if the 
technique is sensitive to the variation of any of them. Four 
different cases have been identified, whose parameters are 
configured as follows: 
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Case 1: 

• number of particles along x-axis: 4; 
• number of particles along y-axis: 4; 
• number of AFO iterations: 4; 
• parameter ω=1.  

 
Case 2: 

• number of particles along x-axis: 5; 
• number of particles along y-axis: 5; 
• number of AFO iterations: 3; 
• parameter ω=1.  

Case 3: 
• number of particles along x-axis: 3; 
• number of particles along y-axis: 3; 
• number of AFO iterations: 4; 
• parameter ω=1.  

 
Case 4: 

• number of particles along x-axis: 4; 
• number of particles along y-axis: 4; 
• number of AFO iterations: 4; 
• parameter ω=1,5. 

 
In Figures 5-8 the graphs obtained with Matlab for each of the 
four cases considered are reported. The first (Figure 5) is the 
one related to the case 1, namely that in which it was left 
unchanged the amount of particles placed along the sides of 
the schema, but there is an additional iteration than previously 
presented: the number of function evaluations required in this 
case is equal to 48 (12 more than before) and this additional 
computational effort does not justify an improvement of the 
solution, since the algorithm finds the same point than before.  
The second graph (Figure 6), with the addition of a particle on 
each side of the scheme, for a total of 48 function evaluations, 
identifies a very "near" point on the domain than they did in 
the first case (10.8805 ; 17.8818). Figure 7 shows the case 3, 
i.e. one in which a particle has been removed from each side, 
leaving the number of experiments set at 4, for a total of 32 
function evaluations: the candidate point has coordinates 
(10,9572 ; 17.9892). Figure 8 shows the optimization results 
carried varying the contraction parameter that, if it is set to a 
higher value, allows a slower and more accurate investigation 
of the domain: in this case, the optimum can be found in 
(10.9104 , 17.8870) . 
 

 
 

 
Fig. 5. AFO results for Case 1: progressive narrowing of the schemes around 
optimum area 

 
Fig. 6. AFO results for Case 2: progressive narrowing of the schemes around 
optimum area 

 

 
Fig. 7. AFO results for Case 3: progressive narrowing of the schemes around 
optimum area 
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Fig. 8. AFO results for Case 4: progressive narrowing of the schemes around 
optimum area 

 
When studying the graphics that have been just shown, it is 
worth underlining the robustness of Attraction Force 
Optimization, since it is capable of performing optimally 
independently from how the set of parameters is varied. It is 
possible to examinate figures 9-12 in which, for each one of 
the four cases, the value of the optimal objective function and 
the value of the area subtended the schemes are shown, both 
as function of the progressive number of AFO iterations. 
 

 
Fig. 9. Analysis of results for Case 1: output of Matlab code after AFO 
implementation 

 

 
Fig. 10. Analysis of results for Case 2: output of Matlab code after AFO 
implementation 

 

 
Fig. 11. Analysis of results for Case 3: output of Matlab code after AFO 
implementation 

 

 
Fig. 12. Analysis of results for Case 4: output of Matlab code after AFO 
implementation 
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V. BENCHMARK AMONG OPTIMIZATION TECHNIQUES 
After finishing the tests with AFO, the Authors have 

compared AFO’s  performances with those of some other 
traditional optimization techniques.  

In order to get a comparison in terms of performance 
efficiency, all optimization techniques have been set with the 
same external conditions and a limit of 50 function evaluations 
has been put. 

At the end of the experimental tests, all techniques have 
shown moderate-high efficiency and have correctly identified 
the optimum region.  

 In the grid of Figure 13 there is a summary of the 
coordinates of the optimum points found by the different 
techniques and the corresponding values of the objective 
function. 

 
Fig. 13.  Grid of the objective function values for each combination of the two 
independent variable. The upper letter indicates the convergence point from the 
different techniques.  

The grid has been built in order to assess in comparative 
terms the performance of the implemented optimization 
methods. From the knowledge of the objective function values 
obtained for each possible combination of the investigated 
variables, it has identified the optimum area of the objective 
function, i.e. the profitability of the company in terms of 
future cash flows over a period of 10 years (yellow area 

highlighted in Figure 12). The procedure for the grid 
generation has required the calculation of the 256 possible 
combinations, by varying at each iteration the number of the 
machines of the two work centers (Nitriding and Final 
Control) from 4 to 20 units. The computational cost for the 
grid construction has been particularly high and can be 
estimated at 25 hours of simulation time. 

  The construction of the grid, however, allowed an immediate 
and objective comparison  of the results obtained. 

It is useful to underline that AFO has identified the 
optimum zone needing just the explicit calculation of 36 
evaluations of the objective function, while for all the other 
techniques the maximum limit of fval is rather higher, since it 
was fixed equal to 50. This highlights the goodness of AFO 
heuristic, being able to find an optimal solution requiring a 
greatly reduced computational burden. 

VI. STATIONARY POINT ANALYSIS  
Once identified the supposed stationary point by AFO 

algorithm, given the stochastic nature of the problem studied, 
the authors have analyzed the behavior of the response in the 
region around the identified optimum point. There may be in 
fact other coordinates within the optimal region equally 
interesting from an industrial point of view, for example by 
engaging less resources compared to the optimal point 
identified. These problems can be addressed through the proper 
construction of the confidence region centered on the location 
of the stationary point [29]. 

Let consider a second order metamodel equation: 
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The stationary point of the regression model can be computed 
setting the derivatives to zero as follows: 
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The j-th derivative )(xd j


can be written as:  
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 ˆ2)( +=              (4) 

where vector T
jB̂  represents the j-th row of the second order 

coefficients matrix B̂ . 

These derivatives are simple linear functions in 

kxxx ,...,, 21 .  

Let denote the vector of derivatives as the k-dimensional 
)(xd 



 and let suppose to calculate the derivatives in )(td




, 
obtaining the coordinates of the true stationary point of the 
system,  unknown a priori.  

If the errors of the model of the equation (2) are i.i.d., then  
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It can be noticed that the elements of )](Var[ td




 has been 
derived from the variance-covariance matrix of the regression 

coefficients  ( ) 21
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Based on relationship (6), we have:  
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where pNkF −,,α  is the upper α -th percent point of the F-
Distribution having k  and pN −  degrees of freedom. 

It follows that the unknown values of  ktttt ,...,, 21=


, that 
fall inside the )%1(100 α−  confidence region for the 
stationary point, satisfy the inequality below:   
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                  (13)    

Concerning the application presented in this paper, the Authors 
built a Central Composite Design centered in the stationary 
point )17;11(=Sx , as shown in Figure 14 .  

 
Fig. 14. Central Composite Design centered in the stationary point 

 

The experimental responses obtained are reported in Table 2. 

TABLE II.  CENTRAL COMPOSITE DESIGN EXPERIMENTAL RESPONSES 

Nitriding Final Control Simulation response 

X1 X2 f(X1, X2) 

9,586 17 26400335 

10 18 28010780 

11 18,4142 28124470 

12 18 28151480 

12,414 17 27667715 

12 16 26133980 

11 15,5858 25267715 

10 16 26407055 

11 17 28297280 

11 17 28444730 

11 17 28437205 
 

The regression meta-model equation obtained is reported 
below. 

 
 

 
 
 

 
 
                      (14) 

 
 

 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 34



ANOVA table reported in Fig. 15 shows that the regression 
model suitably fits the experimental data. 

 

 
Fig. 15 ANOVA table for the quadratic regression model   

 
Also the 9453.02 =R  and 8905.02 =adjR  parameters confirm 
the goodness of fit of the quadratic form identified, whose 
graphical representation is shown in Figure 16. 
 
 

 
Fig. 16 Response Surface of the optimal region  

 
 

The authors then proceeded with the construction of the 
optimal region through the elements )(td





 and )](Var[ td




.  

For the calculation of )(td




, having an estimation of b


, 
you can easily find an expression of the system starting from 
(6). 

According with (8), it is necessary the 
elements )](Var[ 1 td



, ])(),(Cov[ 21 tdtd


and )](Var[ 2 td


. 

These elements derive from the variance-covariance matrix 
of regression coefficients ( ) 21

σ
−

− =Ψ XX T
COVVAR , where 2σ  is 

replaced by the magnitude of experimentally obtained 2s , 
whose best estimator is MSE . 

Along the main diagonal of COVVAR−Ψ  can be derived 

]Var[ 1b , ]Var[ 2b , ]Var[ 12b , ]Var[ 11b , ]Var[ 22b  and the 
covariance ],[Cov 2211 bb . 

According with (8), (9) e (10) it is possible to calculate 
)](Var[ 1 td


, )](Var[ 2 td


and ])(),(Cov[ 21 tdtd


, consequently 
the matrix )](Var[ td





 is determined.  

Being known all elements the Author proceed to the 
confidence region construction using 05.0=α .  

Applying the (11) to the industrial problem, we obtain 

{ } 5722.117861.52)()](r[âV)( 5611,2,05.0

1
=⋅=≤ =−=−==

−

pNk
T Fktdtdtd α













 
The region highlighted in yellow in Fig. 17, represents the 
confidence region for the stationary point  Sx . 
 

 
Fig. 17 Confidence region of the stationary point 

 

The procedure identifies an optimal region consistent with 
the results obtained by the search algorithms and the grid 
reported in Fig. 13. The domain portion detected is more 
skewed to the right of the stationary point. This is reasonable 
since the response surface actually has values close to those of 
stationarity in this experimental region. 

The technique used was therefore suitable to describe the 
confidence region of the analyzed industrial problem. 

VII. CONCLUSIONS 
The aim of the study has been to test the effectiveness and 

the efficiency of a new nature-inspired heuristic applied in the 
simulation-based optimization problems. The technique, called 
AFO, has been compared with other consolidated optimization 
techniques in a real industrial optimization problem. The goal 
was to determine the optimal plant configuration in a 
manufacturing line in order to obtain the maximum profit over 
a 10 years period.   
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The results demonstrate how the analyzed heuristic reaches 
the optimum area with a considerable saving in terms of 
number of function evaluations, compared to traditional 
techniques. It would be interesting to test its effectiveness in 
other optimization problems with a higher number of 
independent variables in order to understand if and under what 
conditions the algorithm can be more powerful than the other 
techniques available in literature. 
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