
 

 

 

Abstract— We study an optimization problem for a wireless 

telecommunication network stated as a generalized transportation 

problem (TP), where m  (the number of “sellers” ) is the number of 

network providers, and n  (the number of “buyers”) is the number of 

connections established at a given time moment. Since in practice 

initial data of such problems are, generally speaking, inexact and/or 

vary rather quickly, it is more important to obtain an approximate 

solution of the problem (with a prescribed accuracy) within a 

reasonable time interval rather than to solve it precisely (but in a 

longer time). We propose to solve this problem by a technique that 

explores the idea of penalty functions, namely, the so-called Partial 

Penalty Method (PPM, for short). As distinct from exact solution 

methods for TP (e.g., the method of potentials), our approach allows 

us to further extend the class of considered problems by including to 

it TP with nonlinear objective functions. As an example, we consider 

a TP, where the objective function (expenses connected with resource 

allocation) is such that the price of the unit amount of the resource is 

not constant but depends on the total purchase size. In addition, we 

study the limit behavior of solutions to TP whose data are subject to 

fading disturbances. Since in our approach the initial point is not 

necessarily admissible, we use an approximate solution of each 

problem as the initial point for the next one. As expected, under 

certain requirements to disturbances the sequence of solutions to 

“disturbed” problems tends to a solution of the limit problem. We 

prove experimentally that PPM is more efficient than the usual 

variant of the Penalty Function Method (the Full Penalty Method, or 

FPM). The preference of PPM over FPM is more evident for n much 

greater than m. 

 

Keywords— Optimization, telecommunication networks, 

provider, network connection, open transportation problem, penalty 

function methods, nonlinear objective function, random disturbances, 

approximate solution, decaying perturbations, limit behavior. 

I. INTRODUCTION 

One of modern trends in the development of information 

technologies on a global scale is a radical modernization of 

economy through the ubiquitous implementation of wireless 

networks. Owing to sensors, electronics and software that 

provide the interaction of wireless devices with each other and 

with the environment, wireless networks open enormous 

opportunities for data collecting, storing, exchanging and 
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processing. This gives new possibilities for the development of 

artificial intelligence, robotics, 3D printing, nanotechnology, 

biotechnology, quantum computing and other breakthrough 

technologies. 

At the same time, increasing and variable demand of 

information services and users movement lead to serious 

congestion effects, whereas significant network resources may 

be utilized inefficiently, especially in the case when fixed 

allocation mechanisms are implemented. This situation forces 

us to apply more flexible and dynamical allocation 

mechanisms; see e.g. [1, 2]. For this reason, it seems more 

suitable to find an approximate solution of a proper resource 

allocation problem, which does not require high accuracy, 

within an acceptable time interval rather than to calculate the 

exact one. Usually, resource allocation problems are based on 

the utility maximization approach; see e.g. [3, 4, 5]. 

In this paper, we study a general problem of the optimal 

assignment of users to providers of wireless 

telecommunication networks that minimizes the total expenses 

under certain resource allocation restrictions. That is, each 

provider has a certain coverage area with the required level of 

service quality for each connection within this area, whereas 

users have lower bounds for their volume of the resource and 

their desired prices. We should also take into account expenses 

of providers for maintaining the required volume of service. 

We show that the problem allows the statement in the form of 

the transportation problem (TP for short) with bilateral 

constraints on variables. We propose a technique that implies 

the use of penalty functions but only for certain constraints, 

whereas the rest constraints form a set of points having a 

special structure. It is used as a feasible set for an auxiliary 

problem. The key moment is that in spite of the presence of 

binding constraints, the suggested auxiliary problem is 

solvable by a simple finite algorithm. We have performed 

extensive numerical experiments that confirmed the advantage 

of the proposed method in comparison with the custom one 

involving penalization of all the constraints. We consider both 

linear and nonlinear variants of the objective function of the 

problem and experimentally prove that the proposed technique 

(PPM) is applicable in both cases. In addition, we demonstrate 

the efficiency of the use of the PPM for finding an 

approximate solution of the limit problem obtained from a 

sequence of problems whose data are subject to fading 

disturbances. 
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II. THE PROBLEM STATEMENT 

Within a certain fixed planning time period we consider a 

region (territory) where wireless network services of several 

providers are used by mobile devices owners. Each of these 

users can be either a transmitter or a receiver of a signal. 

Denote by m  the number of providers; let us numerate 

providers using the index i  ( mi ,1,=  ). Within the given 

time period there arise connections (signal transmissions) 

between certain users. Denote by n  the number of (pair) 

connections; let us numerate connections using the index j  

( nj ,1,=  ). Signal transmissions require certain 

expenditures of providers’ resources (say, the bandwidth or 

power of the wireless channel). It is natural to assume that the 

resource amount possessed by each provider i  is bounded by 

some value i . Let the symbol jix ,  stand for the unknown 

amount of the resource allotted by provider i  for pair 

connection j  (below for brevity we just say "flow ),( ji "). 

Denote by ji,  the upper bound for flow ),( ji  and by j  

the lower bound for the total flow for connection j . Let jb  

be the price (willingness to pay) proposed by pair j  and let 

jia ,  be expenses per unit for connection j  incurred by 

provider i . Then the pure total expenses are given by the 

expression  
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where jjiji bac  ,, . The goal is to minimize the pure total 

expenses due to a proper distribution of the load upon network 

providers. 

Note that any connection can be supported and accomplished 

at the proper service level only by selected providers in 

accordance with their quality service coverage areas. That is, 

each connection j  can be accomplished by selected providers 

whose indices belong to the set jP . However, for all jPi  

we can set 0=, ji , which implies 0=, jix . Therefore, 

without loss of generality we can consider only the case where 

},{1,= mPj   for each },{1, nj  . The problem takes 

the form  
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 Problem (1)–(4) is nothing but the so-called open 

transportation problem with bilateral constraints on variables. 

It turns into the classical transportation problem if =, ji  

for all ji, ; see [6] for more details and references. 

In spite of the existence of finite solution methods for the TP 

(see, for example, [6]), we intend to apply some other iterative 

methods for this problem. The most influential factor that 

affects the applicability of exact methods for solving the TP, 

evidently, is the fast growth of the problem dimension, which, 

in turn, leads to the accumulation of computation errors and 

poor conditionality of the constraint coefficient matrix. 

Moreover, in practice, the feasible set of the open TP is not 

necessarily nonempty. In such cases one can find a solution 

close to the optimal (feasible) one only by approximate 

methods. Another factor that contributes to the relevance of 

the development of approximate solution methods for the TP 

is the appearance of new applications of the transportation 

model; for example, along with classical applications in the 

optimization of production, transportation, and sales of some 

commodity, this model appears to be applicable in the 

optimization of the performance of mobile networks. Such a 

problem usually has a large dimensionality, and its initial data 

are inexact and non-stationary. Moreover, in practice, problem 

(1)–(4) are often being solved in order to estimate certain 

characteristics of the network performance; in this case it is 

more important to find an appropriate solution of the problem 

within an acceptable time frame rather than to obtain a high 

accuracy solution. 

In this paper we propose an approximate solution method for 

problem (1)–(4) which is based on application of penalty 

functions. Since we “fine” the violation of only one group of 

constraints (rather that all of them) we call the proposed 

approach the Partial Penalty Method (PPM). We show that the 

PPM allows us to essentially widen the class of solved 

problems, namely, to waive the requirement of the linearity of 

the objective function of the problem. We also study the 

application of the PPM to finding an approximate solution 

(with a given accuracy level) to the limit problem when 

disturbances of data tend to zero. 

III. THE PARTIAL PENALTY METHOD 

As distinct from the custom penalty method, in the partial 

penalty method (PPM for short) we impose penalties only on 

selected constraints. The set formed by the rest constraints has 

a special structure which allows us to solve the corresponding 

auxiliary problem by a simple finite algorithm. Thus we intend 

to attain higher quality of solutions. 

First we introduce the so-called cut function  

                                   },{0,max=][ tt   

and then define the penalty function for the constraints in (3):  

                           .)(

2

,

1=1= 









  iji

n

j

m

i

xX   (5) 

 We take a positive penalty parameter   and define the 

auxiliary function  

                           ).(,=),( XXCX    (6) 
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 Hereinafter C  and X  are nm -matrices and the 

denotation  XC,  stands for the double sum  
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 We treat the matrix X  as a point (in the space of nm -

matrices). Denote the sets of points satisfying the inequalities 

in (4) and (2) by A  and B , respectively, and set  

                       ).,(minarg)(*  XX
BAX




 (8) 

 Note that the function in (6) is continuous by definition and 

the set BA  is closed and bounded, hence the point in (8) 

exists for any  . Let us construct an iteration sequence 

)}({ *

kkX  , where k  is the iteration number, such that the 

sequence }{ k  is positive, increasing, and tending to   as 

k , while each point )(*

kkX   obeys formula (8) with 

k = . Since the set BA  is bounded, so is the sequence 

)}({ *

kkX  , which means that it has limit points as k  

and all these limit points 
*X  are solutions of problem (1) – 

(4) (see, for example, [7], Section 7.1). Moreover, this is the 

case for some approximations of points )(*

kkx  , 0,1,=k  

Let us now consider the technique for finding the points 

)(*

kkX  , 0,1,=k  

IV. SOLUTION OF AUXILIARY PROBLEMS 

Assume that certain real numbers jid , , mi ,1,=  ; 

nj ,1,=  , are given (we concretize them below). Denote 

the corresponding nm -matrix by D . Let us use the 

denotation  XD,  in the sense of formula (7) with the 

symbol D  in place of C . Let us describe an algorithm which 

solves the problem  

                                   .,min 


XD
BAX

 (9) 

 Let us show that in spite of the existence of constraints (2) 

which bound the problem variables, problem (9) falls into n  

independent problems which are solvable explicitly. Fix some 

connection }{1, np   and describe the algorithm for 

finding components pix , , mi ,1,=  , of a solution x  to 

problem (9). Since this algorithm solves the auxiliary problem, 

we call it “ Algorithm A”, for short. 

Algorithm A.  

Step 0 . Given p , number providers in ascending order of 

pid ,  and thus get a set of numbers },,{ 1 miiI  . Introduce 

a new variable s  and put 1:=s . 

Step 1 . If  
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do 0:=, p
v

ix  for msv ,1,=  , and Algorithm A  stops. 

Step 2 . If ms < , then put 1:= ss  and go to Step 1 ; 

otherwise Algorithm A  stops.  

Evidently, sequentially applying Algorithm A  for 

np ,1,=  , in n  steps we get a point )(
~

DX , whose 

feasibility and optimality for problem (9) is evident, provided 

that BA  (in what follows we assume that this 

condition is fulfilled). 

Let us now consider the basic problem  

                         ),(min X
BAX




 (10) 

 for finding a point satisfying (8) with some fixed 0> . We 

can solve problem (10) by the well-known conditional gradient 

method (CGM for short) (see, for example, [8]). Let us fix 

arbitrary indices },{1,0 mi  , },{1,0 nj  , and a 

number 0>  and write the partial derivative of the function 

in (6) at a point X  with respect to the variable 
0

,
0
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 Denote by ),( X  the nm -matrix composed of 

elements (11) and treat it as the gradient of the function 

),( X  at the point X  with fixed  . Let us now describe 

CGM applied to problem (10). 

(CGM).  

Step 0 . Given 0> , choose a point BAX 0
. Assume 

that a point 
lX  is known already; 0,1,=l  Let us describe 

the way to find the next point 
1lX . 

Step 1 . Find a solution 
lZ  to the linear programming problem  

                         ,),,(min 


XX l

BAX

  (12) 

 and go to Step 2 . 

Step 2 . Calculate  

 ),)(1(minarg:=
[0,1]




ll

l ZX 


 (13) 

 and put 
l

l

l

l

l ZXX )(1:=1  
, 1:= ll  and go to 

Step 1 .  

For each 0,1, = l  by putting ),(:= lXD   we get 

problem (9) in (12) and solve it by Algorithm A . Problem 

(13) can be solved by any one-dimensional minimization 

method (see, for example, [7], Section 3.7). In numerical 

experiments we used the well-known golden section method 

(see, for example, [7], p. 84). 
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V. THE USUAL PENALTY METHOD 

As distinct from the PPM, where the penalty function is 

introduced only for constraints in (3). In the usual (or full) 

penalty method (FPM for short) we define penalty functions 

for both groups of constraints, namely, for those in (3) and (2):  
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 where   is a positive penalty parameter. We now outline the 

main differences from the PPM. 

The auxiliary problem which is solved at each step k  of the 

FPM consists in finding the point  
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for 0,1,=k  Analogously, we can solve this auxiliary 

problem by the conditional gradient method (CGM). Its each 

iteration involves a solution to the linear programming 

problem  
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 with k = . The components of the gradient ),(
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view of (14) obey the formula 
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Since its feasible set A  represents a rectangle, problem (15) 

falls into nm  independent one-dimensional problems, each 

of them is solved explicitly. The other parts are implemented 

similarly. 

VI. RESULTS OF NUMERICAL EXPERIMENTS 

We have numerically tested the described methods via the 

package Wolfram Research Mathematica 9.0.1.0 by using a 

computer with Processor Intel  Core
TM

 i5-430M (4M 

Cache, 2.26 GHz). In order to prove the efficiency of the new 

method (PPM) we compared the results of solving problem (1) 

– (4) with those of (FPM). We used the same rule for 

decreasing values of accuracy of inner problems. For changing 

the penalty parameter we used the rule kk  2:=1 . 

We modeled the initial data of the problem so as to know its 

optimum point (and, correspondingly, the exact optimal value 

of the objective function 
*F ). We stopped the process when 

either the absolute value of the relative deviation of the current 

approximation to the optimal value of the objective function 

from optF  was not greater than 10% or the norm of the 

difference of neighboring points was less than some predefined 

value   (we put 0.001:= ). For each concrete problem 

(i.e. concrete collection of initial data) we performed 10  tests 

for both methods, randomly choosing an initial point. In what 

follows the subscript h  stands for the test number (within a 

series of 10  tests); symbols )(FPMhF  and )(PPMhF  denote, 

respectively, approximate values of the objective function of 

problem (1) – (4) calculated by FPM  and PPM  at test 

number h ; symbols 
*

PPMF  and 
*

PPMF  stand, respectively, 

for average values of )(FPMhF  and )(PPMhF  in each series of 

10 tests, i.e.  
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the relative approximation errors  
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and values FPMt  and PPMt  are average time consumptions in 

a series of 10  tests. These values are given in Table 1 (see the 

Appendix). 

According to results shown in Table 1, with small m  (not 

greater than 20 ) PPM attains the given accuracy with respect 

to the value of the objective function (in our tests the allowed 

error was 10 % ) much faster than FPM. Moreover, the actual 

error introduced by PPM has never exceeded 2.17% ; mainly 

it was even less than 0.5% , whereas the the actual error 

introduced by PPM was mostly greater than 3% , sometimes 

approaching (or even attaing) the limit admissible value of 

10% . We also calculated the ratios 
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 (after performing a series of 10  tests) in order to study the 

sensitivity of these methods to the choice of the initial point. 

As appeared, both methods are insensitive to the choice of an 

initial point (not necessarily a feasible one), since these 

characteristics always equaled zero. It is evident that PPM 

gives better results both with respect to time and to the 

solution accuracy (which was much less than the allowed value 

of 10% ). As expected, the advantage of PPM  over FPM  

was more evident when m  is small (not greater than 3 ) and 

n  is very large (up to 3000 ), whereas the growth of m  

(with fixed n ) impairs the performance of both methods at 

approximately the same rate. In certain cases time 

consumption of PPM  was even greater than that of FPM . 

For example, the case when 2=m  and 2000=n  (i.e., the 
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number of variables equals 4000 ) the time consumption 

equals 9.89  and 2.63  sec. for FPM  and PPM , 

respectively, (see row 16  in Table 1). There were some 

examples with 20=m  and 20=n , where PPM  showed 

better performance. In general, PPM  appeared more 

efficient than FPM  in most examples and is suitable for 

calculations. Nevertheless, due to the necessity of tuning 

several parameters, its convergence needs further 

investigations. 

VII. GENERALIZATION OF THE PROBLEM: THE CASE OF A 

NONLINEAR OBJECTIVE FUNCTION 

In previous sections we have described the application of the 

penalty function method (both full and partial versions) to the 

transportation problem (1)–(4), i.e. under the assumption that 

the objective function is linear. However, as one can easily 

see, the linearity of the objective function is not essential for 

the use of the penalty function method. More precisely, we 

need only the auxiliary problems to be linear (namely, problem 

(8) in the PPM and (15) in the FPM). This fact allows us to 

replace the linear function in (1) with any function )(XG  

which is defined and continuously differentiable on the space 

of nm -matrices X  and satisfies the condition  
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at any point X  with any },{1, mi   and },{1, nj  .  

Consider a more general statement of the transportation 

problem, namely, assume that, as distinct from (1), prices 

depend on variable values jix ,  nonlinearly. Let, for 

definiteness, for arbitrary numbers },{1, mi   and 

},{1, nj   the total cost of the purchase of jix ,  equal  
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 here jic ,  and ji,  are some positive constants; the unit in the 

radical is used only for the sake of convenince, namely, it 

ensures the finiteness of the derivative of function (16) at zero. 

According to formula (16), the price of the unit amount of 

product depends on the size of the purchase; evidently, it tends 

to jijic ,,   as 0, jix  and does to jic ,  as jix , . 

Note that this model is more realistic than that with constant 

prices, because usually the greater is the purchase volume, the 

lower is the price of the unit amount of the commodity. Thus, 

the problem takes the form  
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 subject to (2)–(4), where  
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 functions )( ,, jiji xg  obey formula (16), },{1, mi  , 

},{1, nj  . This leads to certain modifications in the 

PPM and FPM.  

In particular, in the PPM, formula (6) turns into  
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 and formula (11) does to  
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Correspondingly, now we understand ),( X  as the 

nm -matrix composed of elements (20) and treat it as the 

gradient of the function ),( X  at the point X  with fixed 

 .  

Analogously, in the FPM, formula (14) takes the form  
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 and components of the gradient in formula (15) obey the 

formula 
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jiji xg  satisfying (21).  

For experimentally proving the efficiency of the PPM in 

application to problem (17), (2)–(4), similarly to cases 

considered above, we performed numerical tests with modelled 

data. In these tests, we compared time consumptions by the 

PPM and FPM for attaining the necessary accuracy (i.e., for 

obtaining a solution whose error with respect to the known 

optimal value of the objective function does not exceed 10%). 

Results of numerical tests are given in Table 2 (see the 

Appendix). Note that negative errors of solutions mean their 

infeasibility, but since absolute values of errors are small, 

solutions are located very close to the admissible domain. As a 

whole, according to results of numerical tests, PPM proved to 

be more efficient than FPM, especially when n  was much 

greater than m . This can be easily explained by the fact that 

PPM exactly solves auxiliary problems by Algorithm A within 

a finite number of steps. 

VIII. THE LIMIT BEHAVIOR OF APPROXIMATE SOLUTIONS OF 

THE TRANSPORTATION PROBLEM OBTAINED BY PPM AND FPM 

In above sections we have studied the efficiency of PPM (in 

comparison with that the FPM) for solving the extended 

transportation problem in form (1)–(4) or (17), (1)–(4) with 

increasing dimensions of the problem. In this section we 
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consider the behavior of approximate solutions of this problem 

obtained by both methods when the initial data of the problem 

are subject to random decaying perturbations.  

Since, as was shown in the previous section, both variants of 

the penalty function method are insensitive to the form of the 

objective function (i.e., it can be either linear or not), here we 

restrict ourselves to considering the limit behavior of a 

sequence of solutions to problems in form (1)–(4) with 

disturbed data. In numerical experiments, as above, for each 

fixed values of m  and n  we first generated initial data of 

problem (1)–(4) so as to know its exact solution, i.e., an 

optimal point 
*X  and the optimal value of the objective 

function  ** , XCF . Then we assumed that coefficients 

of the function in (1) were subject to random perturbations 

with zero mean value and some standard deviations eventually 

tending to zero. Namely, for fixed },{1, mi  , 

},{1, nj  , and fixed time moment k , 0,1,=k ,  
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each time moment k  we get the problem  
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 subject to (2)–(4).  

The computational experiment was organized as follows: we 

repeatedly solved problem (24), (2)–(4) first by the FPM and 

then by the PPM till obtaining the desired accuracy (the 

maximal absolute error was to be no greater than 10% with 

respect to the optimal value of the objective function). Note 

that unlike experiments described above, now we continuied 

the solution process untill we attain the desired accuracy with 

respect to the solution of the  limit problem rather than the 

current one. The obtained results are given in Table 3 (see the 

Appendix). According to obtained results, PPM usually solves 

gets a solution to the limit problem, satisfying the accuracy 

requirement, in a shorter time interval. 

IX. CONCLUSION 

We studied a general optimization problem that occurs in 

wireless telecommunication networks, namely, the problem of 

the assignment of users to providers minimizing the total sum 

of the corresponding expenses. We have demonstrated that the 

mentioned problem can be stated as an extended open 

transportation problem, whose objective function is 

continuously differentiable but not necessarily linear. We have 

proposed an approach based on exploring the idea of the 

penalty function method (PFM) for solving the mentioned 

problem. We have developed a variant of the PFM called the 

partial penalty method (PPM) which has an essential 

distinction from its general scheme. Namely, according to the 

PPM, instead of imposing penalties on all constraints in the 

problem, we “fine” only the violation of certain linear 

inequalities, and exactly solve the auxiliary problem (i.e., an 

optimization problem with respect to the “fined” objective 

function and the rest constraints) within a finite number of 

steps. The algorithm for solving the auxiliary problem is 

described in the paper as Algorithm A. It essentially uses the 

specific structure of the admissible set of the auxiliary 

problem. We have performed an extensive numerical 

experiment for studying the efficiency of PPM in comparison 

with the classical (full) penalty function method (treated by us 

as the FPM). As expected, results of numerical tests have 

proved preferences of the PPM over the FPM in speed 

especially when n is much greater than n . Since this is just 

the case in wireless telecommunication networks, where the 

number of connections n  essentially exceeds the number of 

providers m , this characteristic of the PPM is especially 

important for wireless networks optimization. The 

applicability for nonlinear problems (even not necessarily 

quadratic or convex) is the second strong feature of the PPM 

as a technique for solving wireless networks optimization 

problems, because in real world economy the dependence of 

the unit cost of goods usually is not constant but demonstrates 

an inverse relationship on the purchase size. Finally, the use of 

PPM seems most promising for getting an approximate 

solution to the  limit problem by eventually solving problems 

with inexact and/or varying data. 
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Table  1: Comparison of FPM and PPM in application  

to problem (1)–(4) 

 m   n   optF    Avg. optF    Avg.err. (%)   Avg. t (sec) 

         
 

*

FPMF    
*

PPMF   FPME
  

PPME
 

 FPMt    PPMt  

 3   20   230.22   236.78   230.22   2.85   0.00   0.11   0.03 

 3   20   422.03   431.31   422.03   2.19   0.00   0.13   0.03 

 3   20   376.24   397.35   376.24   5.60   0.00   0.04   0.03 

10   20   1895.37   2057.44   1902.22   8.55   0.36   0.78   0.44 

10   20   1596.32   1614.69   1600.98   1.15   0.29   0.37   0.08 

10   20   1159.42   1201.77   1162.29   3.65   0.24   0.13   0.11 

10   50   2089.31   2269.17   2089.31   8.61   0.00   1.30   0.13 

10   50   1097.54   1986.86   1940.41   4.16   1.72   0.84   0.13 

10   50   1856.6   1944.87   1892.4   4.75   1.93   0.86   0.56 

10   100   6108.86   6335.65   6108.86   3.71   0.00   8.55   0.26 

10   100   6907.88   7598.67   6943.07  10.00   0.52   15.75   3.97 

10   100   7570.59   8326.72   7678.28   9.98   1.42   1.18   0.87 

10  1000   46905.2   50378.4  47923.77   7.40   2.17  400.38   3.72 

10  1000   55520.4   57728.4   55520.4   3.97   0.00   61.53   4.99 

10  1000   49232.6   51894.4   49312.4   5.41   0.16  150.96   5.86 

 2  2000   22248.8   22556.4   22573.1   1.38   1.46   9.89   2.63 

 3  2000   77472.0   79799.0   77472.0   3.00   0.00   77.20   4.78 

 3  2000   58028.2   59964.6   58028.2   3.34   0.00  479.63   4.59 

 3  2000   43151.8   44687.6   43151.8   3.56   0.00  206.12   4.66 

 3  3000  200776.0  202756.0  200776.0   0.99   0.00  376.06  10.49 

Average values  4.91  0.540   89.64   2.42 

20   20  2780.15   2780.26   2786.39  0.004   0.22   0.31   0.52 

20   20  5111.52   5284.78   5114.05   1.43   0.05   0.20   2.46 

20   20  5137.82   5311.33   5140.05   3.37   0.04   0.26  23.34 

Average values  1.60   0.10   0.26   8.77 

Table  2: Comparison of FPM and PPM in application to problem  

(17), (2)–(4) 

m   n   optF    Avg. optF    Avg. err. (%)   Avg. t (sec) 

         
 

*

FPMF    
*

PPMF   FPME
  

PPME
  

FPMt   PPMt  

 3   20   54.52   54.52   54.52   0.00   0.00   0.03   0.03 

 3   40   102.964   105.002   102.963   1.98   -0.001   0.34   0.27 

 3   50   123.757   134.180   123.756   8.42   -0.001   0.41   0.23 

 3   80   121.098   214.056   121.094   8.12   -0.001   2.03   0.50 

 3  100   238.358   261.091  238.358  9.54   0.00   3.03   0.148 

Average values (for m=3) 5.612 -0.001 1.167 0.236 

 10   20   68.452   75.161   68.451   9.8   -0.001   11.07   8.52 

 10   50   197.979   142.341   197.978   1.5   -0.001   6.02   4.18 

 10   60   167.923   169.314   167.918   0.83   -0.003   13.56   10.38 

 10   80  211.389  217.76 211.385   3.01   -0.002   17.43   13.27 

 10  100   261.385   287.412   261.381   9.96   -0.002   29.43   19.07 

Average values (for m=10) 5.02 -0.002 15.50 11.08 

 20   20  93.9735   101.615   93.9695   8.13   -0.004   19.46   13.85 

 20   50  164.491  179.338  164.486   9.03   -0.003   73.14   57.86 

 20   100   291.543   319.923   291.535   9.73   -0.003  218.43  112.98 

Average values (for m=20) 8.96 -0.003 103.67 61.56 

Table  3: Comparison of time consumption values by FPM and PPM 

for the limit problem 

 m   n   optF    Avg. optF    Avg.err.(%)   Avg. t (sec) 

   *

FPMF  
*

PPMF  FPME
 

PPME  FPMt  PPMt  

 3   20   433.365   439.641   433.366   1.45   0.00   0.07   0.04 

 3   50   957.78   988.429   977.893   3.20   2.10   0.67   0.12 

 3   100   1567.43  1707.088  1605.519   8.91   9.13   1.43   0.49 

Average values (for m = 3)  4.52   3.74   0.72   0.21 

10   20   1493.18   1599.49   1524,98   7.12   2.13   1.37   0.31 

10   50   4996.09   5404.77   5223.91   8.18   4.56   7.64   1.12 

10   100   6468.59   7037.18   6814.01   8.79   5.34   20.31   5.19 

10  1000   47557.7  51894.96  50953.32   9.12   7.14  490.74  71.28 

Average values (for m = 10)  8.30   4.79  130.0 19.48 

20   20   3897.05   4187.38   3988.24   7.45   2.34   2.54   1.36 

20   50   6473.61   6997.97   6622.50   8.10   2.30   17.31   9.12 

20   100  13438.95  14742.53  14460.31   9.70   7.60  148.73  23.12 

Average values (for m = 20)  8.41   4.08   56.19  11.20 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 43




