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Optimization of wireless networks performance:
an approach based on a partial penalty method

I.V. Konnov}, O.A. Kashina?, E. Laitinen®

Abstract— We study an optimization problem for a wireless
telecommunication network stated as a generalized transportation

problem (TP), where m (the number of “sellers” ) is the number of

network providers, and n (the number of “buyers”) is the number of
connections established at a given time moment. Since in practice
initial data of such problems are, generally speaking, inexact and/or
vary rather quickly, it is more important to obtain an approximate
solution of the problem (with a prescribed accuracy) within a
reasonable time interval rather than to solve it precisely (but in a
longer time). We propose to solve this problem by a technique that
explores the idea of penalty functions, namely, the so-called Partial
Penalty Method (PPM, for short). As distinct from exact solution
methods for TP (e.g., the method of potentials), our approach allows
us to further extend the class of considered problems by including to
it TP with nonlinear objective functions. As an example, we consider
a TP, where the objective function (expenses connected with resource
allocation) is such that the price of the unit amount of the resource is
not constant but depends on the total purchase size. In addition, we
study the limit behavior of solutions to TP whose data are subject to
fading disturbances. Since in our approach the initial point is not
necessarily admissible, we use an approximate solution of each
problem as the initial point for the next one. As expected, under
certain requirements to disturbances the sequence of solutions to
“disturbed” problems tends to a solution of the limit problem. We
prove experimentally that PPM is more efficient than the usual
variant of the Penalty Function Method (the Full Penalty Method, or
FPM). The preference of PPM over FPM is more evident for n much
greater than m.

Keywords—  Optimization, telecommunication  networks,
provider, network connection, open transportation problem, penalty
function methods, nonlinear objective function, random disturbances,
approximate solution, decaying perturbations, limit behavior.

I. INTRODUCTION

One of modern trends in the development of information
technologies on a global scale is a radical modernization of
economy through the ubiquitous implementation of wireless
networks. Owing to sensors, electronics and software that
provide the interaction of wireless devices with each other and
with the environment, wireless networks open enormous
opportunities for data collecting, storing, exchanging and
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processing. This gives new possibilities for the development of
artificial intelligence, robotics, 3D printing, nanotechnology,
biotechnology, quantum computing and other breakthrough
technologies.

At the same time, increasing and variable demand of
information services and users movement lead to serious
congestion effects, whereas significant network resources may
be utilized inefficiently, especially in the case when fixed
allocation mechanisms are implemented. This situation forces
us to apply more flexible and dynamical allocation
mechanisms; see e.g. [1, 2]. For this reason, it seems more
suitable to find an approximate solution of a proper resource
allocation problem, which does not require high accuracy,
within an acceptable time interval rather than to calculate the
exact one. Usually, resource allocation problems are based on
the utility maximization approach; see e.g. [3, 4, 5].

In this paper, we study a general problem of the optimal
assignment of users to  providers of  wireless
telecommunication networks that minimizes the total expenses
under certain resource allocation restrictions. That is, each
provider has a certain coverage area with the required level of
service quality for each connection within this area, whereas
users have lower bounds for their volume of the resource and
their desired prices. We should also take into account expenses
of providers for maintaining the required volume of service.
We show that the problem allows the statement in the form of
the transportation problem (TP for short) with bilateral
constraints on variables. We propose a technique that implies
the use of penalty functions but only for certain constraints,
whereas the rest constraints form a set of points having a
special structure. It is used as a feasible set for an auxiliary
problem. The key moment is that in spite of the presence of
binding constraints, the suggested auxiliary problem is
solvable by a simple finite algorithm. We have performed
extensive numerical experiments that confirmed the advantage
of the proposed method in comparison with the custom one
involving penalization of all the constraints. We consider both
linear and nonlinear variants of the objective function of the
problem and experimentally prove that the proposed technique
(PPM) is applicable in both cases. In addition, we demonstrate
the efficiency of the use of the PPM for finding an
approximate solution of the limit problem obtained from a
sequence of problems whose data are subject to fading
disturbances.
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Within a certain fixed planning time period we consider a
region (territory) where wireless network services of several
providers are used by mobile devices owners. Each of these
users can be either a transmitter or a receiver of a signal.
Denote by m the number of providers; let us numerate
providers using the index i (1 =1,...,m). Within the given
time period there arise connections (signal transmissions)
between certain users. Denote by N the number of (pair)
connections; let us numerate connections using the index |

(J=1,...,n). Signal transmissions require  certain

expenditures of providers’ resources (say, the bandwidth or
power of the wireless channel). It is natural to assume that the
resource amount possessed by each provider 1 is bounded by

some value ;. Let the symbol X; ; stand for the unknown

THE PROBLEM STATEMENT

amount of the resource allotted by provider 1 for pair
connection | (below for brevity we just say "flow (i, j)").

Denote by ¢; ; the upper bound for flow (i, J) and by f3;

the lower bound for the total flow for connection | . Let b;
be the price (willingness to pay) proposed by pair | and let
aIVJ
provider i. Then the pure total expenses are given by the

expression
m n n m m n
DD A% —Zlbj(;m J =D DG %
=L \li=

i=1 j=1 i=1 j=1
where C; ; =& ; —D;. The goal is to minimize the pure total

be expenses per unit for connection | incurred by

expenses due to a proper distribution of the load upon network
providers.

Note that any connection can be supported and accomplished
at the proper service level only by selected providers in
accordance with their quality service coverage areas. That is,
each connection | can be accomplished by selected providers

whose indices belong to the set P; . However, for all 1¢ P,
we can set ¢ ; =0, which implies X;; =0. Therefore,
without loss of generality we can consider only the case where

P, ={1,...,m} foreach je{1,...,n}. The problem takes
the form

min azmlzn:ci]jxi]j,

i=1 j=1

M

subject to

(4)
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Problem (1)-(4) is nothing but the so-called open
transportation problem with bilateral constraints on variables.

It turns into the classical transportation problem if a; j = +o0

forall i, ] ; see [6] for more details and references.

In spite of the existence of finite solution methods for the TP
(see, for example, [6]), we intend to apply some other iterative
methods for this problem. The most influential factor that
affects the applicability of exact methods for solving the TP,
evidently, is the fast growth of the problem dimension, which,
in turn, leads to the accumulation of computation errors and
poor conditionality of the constraint coefficient matrix.
Moreover, in practice, the feasible set of the open TP is not
necessarily nonempty. In such cases one can find a solution
close to the optimal (feasible) one only by approximate
methods. Another factor that contributes to the relevance of
the development of approximate solution methods for the TP
is the appearance of new applications of the transportation
model; for example, along with classical applications in the
optimization of production, transportation, and sales of some
commodity, this model appears to be applicable in the
optimization of the performance of mobile networks. Such a
problem usually has a large dimensionality, and its initial data
are inexact and non-stationary. Moreover, in practice, problem
(1)-(4) are often being solved in order to estimate certain
characteristics of the network performance; in this case it is
more important to find an appropriate solution of the problem
within an acceptable time frame rather than to obtain a high
accuracy solution.

In this paper we propose an approximate solution method for
problem (1)-(4) which is based on application of penalty
functions. Since we “fine” the violation of only one group of
constraints (rather that all of them) we call the proposed
approach the Partial Penalty Method (PPM). We show that the
PPM allows us to essentially widen the class of solved
problems, namely, to waive the requirement of the linearity of
the objective function of the problem. We also study the
application of the PPM to finding an approximate solution
(with a given accuracy level) to the limit problem when
disturbances of data tend to zero.

As distinct from the custom penalty method, in the partial
penalty method (PPM for short) we impose penalties only on
selected constraints. The set formed by the rest constraints has
a special structure which allows us to solve the corresponding
auxiliary problem by a simple finite algorithm. Thus we intend
to attain higher quality of solutions.

First we introduce the so-called cut function

[t], = max{0,1},
and then define the penalty function for the constf@hts in (3):

2
q)(X)EZ in,j_yi © () ®)
= e

+

THE PARTIAL PENALTY METHOD

We take a positive penalty parameter 7 and define the
auxiliary function

W(X,7)=(C, X)+D(X). ®)
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Hereinafter C and X are MxnN-matrices and the
denotation (C, X') stands for the double sum

(€. X)=33% X,

i=1 j=1
We treat the matrix X as a point (in the space of mxn-
matrices). Denote the sets of points satisfying the inequalities
in (4) and (2) by A and B, respectively, and set

X"(z)=arg min ¥(X,7). ®)
Note that the function in (6) is continuous by definition and

the set AN B is closed and bounded, hence the point in (8)
exists for any 7. Let us construct an iteration sequence

{X,(z,)}, where K is the iteration number, such that the

U]

sequence {7, } is positive, increasing, and tending to + o as
K —> oo, while each point X, (z,) obeys formula (8) with
7 =17,. Since the set AN B is bounded, so is the sequence
{X, (z,)}, which means that it has limit points as K —> oo

and all these limit points X" are solutions of problem (1) —
(4) (see, for example, [7], Section 7.1). Moreover, this is the

case for some approximations of points X (z, ), K =0,1,...
Let us now consider the technique for finding the points
X (), k=0,1,...

IV. SOLUTION OF AUXILIARY PROBLEMS
di;, i=1...,m;

j=1,...,n, are given (we concretize them below). Denote

Assume that certain real numbers

the corresponding MxnN-matrix by D. Let us use the
denotation (D, X) in the sense of formula (7) with the

symbol D in place of C . Let us describe an algorithm which
solves the problem
min_— (D, X).

9)
XeAnB
Let us show that in spite of the existence of constraints (2)
which bound the problem variables, problem (9) falls into N
independent problems which are solvable explicitly. Fix some
connection peq{l,...n} and describe the algorithm for

finding components X i=1,...,m, of a solution X to

i,p"
problem (9). Since this algorithm solves the auxiliary problem,
we call it “ Algorithm A”, for short.

Algorithm A.
Step 0. Given p, number providers in ascending order of

di,p
anew variable S and put S:=1.
Step 1. If

and thus get a set of numbers | ={i,...,1}. Introduce

jikxnp < By

i=iy
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ey

Is1
Xigp = By _Zai,p’
i=i;
do X = 0 for v=s+1,...,m, and Algorithm A stops.
»

then put X; b and go to Step 2 ; otherwise put
s’ s’

Step 2. If S<m, then put S:=S+1 and go to Step 1;
otherwise Algorithm A stops.

Evidently, sequentially applying Algorithm A
p=1,...,n, in n steps we get a point X (D), whose
feasibility and optimality for problem (9) is evident, provided
that ANB=#O (in what follows we assume that this
condition is fulfilled).

Let us now consider the basic problem

min — Y(X,7)

XeAnB
for finding a point satisfying (8) with some fixed 7 > 0. We
can solve problem (10) by the well-known conditional gradient
method (CGM for short) (see, for example, [8]). Let us fix

arbitrary indices 1, €{1,...,m}, J,€{1,...,n}, and a
number 7 > 0 and write the partial derivative of the function
in (6) at a point X with respect to the variable Xiof :

o’
oV(X,t .
oX. 0'Jo i o
lo-Jo 1= +

Denote by W'(X,7) the mxn-matrix composed of
elements (11) and treat it as the gradient of the function
W(X,7) atthe point X with fixed 7 . Let us now describe
CGM applied to problem (10).

(CGM).

Step 0. Given 7 >0, choose a point X° € AN B . Assume
that a point X' is known already; | = 0,1,... Let us describe

for

(10)

(11)

the way to find the next point X "**.
Step 1. Find a solution Z' to the linear programming problem
min — (¥’ (X',7), X), (12)
XeAnB
and goto Step 2.
Step 2. Calculate
A, =arg min Y(AX' +(1-1)Z',7)
A€[0,1]

(13)
and put X" :=A4X'+(1-4)Z", 1'=1+1 and go to
Step 1.

For each 1=0,1,... by putting D:=W¥'(X',7) we get

problem (9) in (12) and solve it by Algorithm A. Problem
(13) can be solved by any one-dimensional minimization
method (see, for example, [7], Section 3.7). In numerical
experiments we used the well-known golden section method
(see, for example, [7], p. 84).
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V. THE USUAL PENALTY METHOD

As distinct from the PPM, where the penalty function is
introduced only for constraints in (3). In the usual (or full)
penalty method (FPM for short) we define penalty functions
for both groups of constraints, namely, for those in (3) and (2):

- m n 2 n m 2
O(X) = Z|:in,j _7’& +Z|:ﬂj _in,ji| )
i=1] j=1 T i=1 +
and
Y(X,7)=(C, X)+1D(X), (14)
where 7 is a positive penalty parameter. We now outline the
main differences from the PPM.

The auxiliary problem which is solved at each step K of the
FPM consists in finding the point

X" (@) =argmin ¥ (X, 7)

for k=0,1,... Analogously, we can solve this auxiliary
problem by the conditional gradient method (CGM). Its each
iteration involves a solution to the linear programming
problem

min = (¥'(X',7), X)

XeA

(15)

with 7 = 7,. The components of the gradient ‘i”(X ,7) in
view of (14) obey the formula
X

= Cio'io +2T{ino’j _y‘oJ
oo j=1
—27Lﬂ Zx, JOJ :

+

ob(X,7)

+

Since its feasible set A represents a rectangle, problem (15)
falls into Mx N independent one-dimensional problems, each
of them is solved explicitly. The other parts are implemented
similarly.

VI. RESULTS OF NUMERICAL EXPERIMENTS
We have numerically tested the described methods via the
package Wolfram Research Mathematica 9.0.1.0 by using a
computer with Processor Intel Core ™  i5-430M (4M

Cache, 2.26 GHz). In order to prove the efficiency of the new
method (PPM) we compared the results of solving problem (1)
— (4) with those of (FPM). We used the same rule for
decreasing values of accuracy of inner problems. For changing

the penalty parameter we used the rule 7, , = 27, .

We modeled the initial data of the problem so as to know its
optimum point (and, correspondingly, the exact optimal value

of the objective function F*). We stopped the process when
either the absolute value of the relative deviation of the current
approximation to the optimal value of the objective function

from F, opt Was not greater than 10% or the norm of the
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difference of neighboring points was less than some predefined
value & (we put £:=0.001). For each concrete problem

(i.e. concrete collection of initial data) we performed 10 tests
for both methods, randomly choosing an initial point. In what
follows the subscript h stands for the test number (within a

series of 10 tests); symbols F, ) and F ey denote,
respectively, approximate values of the objective function of
problem (1) — (4) calculated by FPM and PPM at test
number h; symbols FPPM and FPPM stand, respectively,
for average values of F ) and Fppyy in each series of
10 tests, i.e.

10
ZFh(FPM ) ZFh(PPM )

—

Frew =22 ;Fepy ==
10 10
the relative approximation errors
E;PM -F E;PM -F
opt and opt :
Fopt Fopt

and values trpm and tepw are average time consumptions in
a series of 10 tests. These values are given in Table 1 (see the
Appendix).

According to results shown in Table 1, with small m (not
greater than 20 ) PPM attains the given accuracy with respect
to the value of the objective function (in our tests the allowed
error was 10 % ) much faster than FPM. Moreover, the actual
error introduced by PPM has never exceeded 2.17% ; mainly
it was even less than 0.5%, whereas the the actual error
introduced by PPM was mostly greater than 3%, sometimes
approaching (or even attaing) the limit admissible value of
10% . We also calculated the ratios

F

max(FPM )

- Fmin(FPM) and

F (rem)
-F

min(PPM )

F

max(PPM )

F (ppm)

(after performing a series of 10 tests) in order to study the
sensitivity of these methods to the choice of the initial point.

As appeared, both methods are insensitive to the choice of an
initial point (not necessarily a feasible one), since these
characteristics always equaled zero. It is evident that PPM
gives better results both with respect to time and to the
solution accuracy (which was much less than the allowed value
of 10% ). As expected, the advantage of PPM over FPM
was more evident when M is small (not greater than 3) and
n is very large (up to 3000), whereas the growth of m
(with fixed N) impairs the performance of both methods at
approximately the same rate. In certain cases time
consumption of PPM was even greater than that of FPM .
For example, the case when m =2 and n = 2000 (i.e., the
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number of variables equals 4000) the time consumption
equals 9.89 and 2.63 sec. for FPM and PPM ,
respectively, (see row 16 in Table 1). There were some
examples with m =20 and n =20, where PPM showed
better performance. In general, PPM appeared more

efficient than FPM in most examples and is suitable for
calculations. Nevertheless, due to the necessity of tuning
several  parameters, its convergence needs further
investigations.
VII. GENERALIZATION OF THE PROBLEM: THE CASE OF A
NONLINEAR OBJECTIVE FUNCTION

In previous sections we have described the application of the
penalty function method (both full and partial versions) to the
transportation problem (1)—(4), i.e. under the assumption that
the objective function is linear. However, as one can easily
see, the linearity of the objective function is not essential for
the use of the penalty function method. More precisely, we
need only the auxiliary problems to be linear (hamely, problem
(8) in the PPM and (15) in the FPM). This fact allows us to

replace the linear function in (1) with any function G(X)
which is defined and continuously differentiable on the space
of mxn-matrices X and satisfies the condition

0G(X) <w
OX; ;
atany point X withany i e{1,...,m} and je{1,...,n}.

Consider a more general statement of the transportation
problem, namely, assume that, as distinct from (1), prices

depend on variable values X nonlinearly. Let, for
ie{l,...,m} and
j €{1,...,n} the total cost of the purchase of X ; equal

ij

definiteness, for arbitrary numbers

A

- ) .

gi,j(xi,j):(ci,j + )Xi,j1 (16)
1+%

here C; ; and A, ; are some positive constants; the unit in the

radical is used only for the sake of convenince, namely, it
ensures the finiteness of the derivative of function (16) at zero.
According to formula (16), the price of the unit amount of
product depends on the size of the purchase; evidently, it tends

to C;+A;; as X;; >0 and does to C;; as X; ; —> .
Note that this model is more realistic than that with constant
prices, because usually the greater is the purchase volume, the

lower is the price of the unit amount of the commodity. Thus,
the problem takes the form

min — G(X) 17)
subject to (2)—(4), where
G(X)Ezzgi,j(xi,j)’ (18)

i=1 j=L
functions g; ;(X; ;) obey formula (16), ie{1,...,m},

j€{1,...,n}. This leads to certain modifications in the
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PPM and FPM.
In particular, in the PPM, formula (6) turns into

Y(X,7) =G(X)+7D(X),
and formula (11) does to

ovY(X,7) _ , .
S —— gio,jo (Xio,j0)+27L;Xio,j _7iOJ

(19)

20
o (20)

igJp +
with

.

2
+A A% ) 2+
1 _3
+=-A 1+x ) 2.

2 io-Jo

gilo,jo (Xio,jo) = Cio,jo

Iy g I9:Jg

Correspondingly, now we understand W'(X,7) as the
Mx N -matrix composed of elements (20) and treat it as the
gradient of the function W(X,7) at the point X with fixed
T.
Analogously, in the FPM, formula (14) takes the form
P(X,7)=G(X)+®(X), (22)
and components of the gradient in formula (15) obey the
formula

oo(X,7) _ ,

(%) +

ig+Jo

_ 27\‘@.0 - Zl:Xiij

ig-Jo

+ ZT{ZXW =%, J
=1

+

with g"oJo (XiO’jO) satisfying (21).

For experimentally proving the efficiency of the PPM in
application to problem (17), (2)—(4), similarly to cases
considered above, we performed numerical tests with modelled
data. In these tests, we compared time consumptions by the
PPM and FPM for attaining the necessary accuracy (i.e., for
obtaining a solution whose error with respect to the known
optimal value of the objective function does not exceed 10%).
Results of numerical tests are given in Table 2 (see the
Appendix). Note that negative errors of solutions mean their
infeasibility, but since absolute values of errors are small,
solutions are located very close to the admissible domain. As a
whole, according to results of numerical tests, PPM proved to
be more efficient than FPM, especially when N was much
greater than M. This can be easily explained by the fact that
PPM exactly solves auxiliary problems by Algorithm A within
a finite number of steps.

VIIIl. THE LIMIT BEHAVIOR OF APPROXIMATE SOLUTIONS OF
THE TRANSPORTATION PROBLEM OBTAINED BY PPM AND FPM

In above sections we have studied the efficiency of PPM (in
comparison with that the FPM) for solving the extended
transportation problem in form (1)-(4) or (17), (1)—(4) with
increasing dimensions of the problem. In this section we
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consider the behavior of approximate solutions of this problem
obtained by both methods when the initial data of the problem
are subject to random decaying perturbations.

Since, as was shown in the previous section, both variants of
the penalty function method are insensitive to the form of the
objective function (i.e., it can be either linear or not), here we
restrict ourselves to considering the limit behavior of a
sequence of solutions to problems in form (1)-(4) with
disturbed data. In numerical experiments, as above, for each
fixed values of M and N we first generated initial data of
problem (1)-(4) so as to know its exact solution, i.e., an

optimal point X" and the optimal value of the objective
function F~ =(C, X"). Then we assumed that coefficients

of the function in (1) were subject to random perturbations
with zero mean value and some standard deviations eventually

tending to zero. Namely, for fixed ie{l,...,m},
j €{1,...,n}, and fixed time moment k, k =0,1,...,
Cij =G +&ij) (23)

where fi‘fj is a gaussian random variable such that
ky — ky __ kK

M(&') =0, and o(&';)=0;; >0 as k—>o0. So at

each time moment K we get the problem

min —>Zmlzn:ci'fjxiyj

i=1 j=1

(24)

subject to (2)—(4).

The computational experiment was organized as follows: we
repeatedly solved problem (24), (2)—(4) first by the FPM and
then by the PPM till obtaining the desired accuracy (the
maximal absolute error was to be no greater than 10% with
respect to the optimal value of the objective function). Note
that unlike experiments described above, now we continuied
the solution process untill we attain the desired accuracy with
respect to the solution of the limit problem rather than the
current one. The obtained results are given in Table 3 (see the
Appendix). According to obtained results, PPM usually solves
gets a solution to the limit problem, satisfying the accuracy
requirement, in a shorter time interval.

IX. CONCLUSION

We studied a general optimization problem that occurs in
wireless telecommunication networks, namely, the problem of
the assignment of users to providers minimizing the total sum
of the corresponding expenses. We have demonstrated that the
mentioned problem can be stated as an extended open
transportation  problem, whose objective function s
continuously differentiable but not necessarily linear. We have
proposed an approach based on exploring the idea of the
penalty function method (PFM) for solving the mentioned
problem. We have developed a variant of the PFM called the
partial penalty method (PPM) which has an essential
distinction from its general scheme. Namely, according to the
PPM, instead of imposing penalties on all constraints in the
problem, we “fine” only the violation of certain linear
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inequalities, and exactly solve the auxiliary problem (i.e., an
optimization problem with respect to the “fined” objective
function and the rest constraints) within a finite number of
steps. The algorithm for solving the auxiliary problem is
described in the paper as Algorithm A. It essentially uses the
specific structure of the admissible set of the auxiliary
problem. We have performed an extensive numerical
experiment for studying the efficiency of PPM in comparison
with the classical (full) penalty function method (treated by us
as the FPM). As expected, results of numerical tests have
proved preferences of the PPM over the FPM in speed

especially when Mis much greater than . Since this is just
the case in wireless telecommunication networks, where the
number of connections " essentially exceeds the number of
providers M| this characteristic of the PPM is especially
important for wireless networks optimization. The
applicability for nonlinear problems (even not necessarily
quadratic or convex) is the second strong feature of the PPM
as a technique for solving wireless networks optimization
problems, because in real world economy the dependence of
the unit cost of goods usually is not constant but demonstrates
an inverse relationship on the purchase size. Finally, the use of
PPM seems most promising for getting an approximate
solution to the limit problem by eventually solving problems
with inexact and/or varying data.
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Table 2: Comparison of FPM and PPM in application to problem

m |n Avg.err. (%) |Avg.t (sec 7). -(4)
Fopt A_v? Fopt_* _9 _() _ g (_) nh F,. A Fop Avg. err. (%) | Avg. t (sec)
Feew | Feem |EFev|Eprem | tepm | trem Eor | oy |E o |Eveut [treu | oo
3 |20 [230.22 |236.78 |230.22 |2.85 |0.00 |0.11 |0.03
3 120 122203 143131 42203 1219 o000 To13 looz | |3 120 5452 [5452 |5452 [0.00 |0.00 [0.03 [0.03
3 120 137622 130735 137622 560 To.00 Tooa Toos | 3140 [102.964]105.002[102.963|1.98 |-0.001[034 [0.27
o T20 T1895 37 T2057 42 1190222 T6.55 To36 To78 To4a | |3_|50 |123.757 [134.180123.756 [8.42 |-0.001[0.41 [0.23
3 (80 |121.098|214.056 |121.094 [8.12 |-0.001|2.03 |0.50
10 |20 |1596.32|1614.691600.98 |1.15 ]0.29 |0.37 |0.08 | f37190 [238.358 [261.091 [238.358 |9.54 |0.00 |3.03 |0.148
10 120 |1159.42]1201.77]1162.291365 |0.24 013 |0.11 | |average values (for m=3) 5.612 | :0.001 [1.167 [0.236
10 |50 |2089.31|2269.172089.31 |8.61 |0.00 |1.30 |0.13 10[20 [68.452 [75.161 [68.451 [9.8 [-0.001][11.07 |8.52
10 [50 [1097.54[1986.86|1940.41[4.16 |1.72 [0.84 [0.13 | [10[50 |197.979|142.341[197.978|15 |-0.001]6.02 |4.18
10 |50 |1856.6 |1944.87 |1892.4 |4.75 |1.93 |0.86 |0.56 | [10|60 |167.923|169.314 |167.918|0.83 |-0.003|13.56 |10.38
10 [100 |6108.86 |6335.656108.86 |3.71 |0.00 |855 |0.26 | |10/80 [211.389 [217.76 [211.385 |3.01 |-0.002|17.43 |13.27
10 100 16907.8817598.67 16943.07 [10.00 052 [15.75 [3.97 10100 |261.385|287.412|261.381|9.96 |[-0.002|29.43 [19.07
10 1100 |757059(8326.72 17678.28 (998 |1.42 |1.18 |0.87 IAverage values (for m=10) 5.02 [-0.002 (15.50 [11.08
10 1000 |46905.2 [50378.4 [47923.77|7.40 |2.17 [400.38|3.72 | [20]20 193.9735 |101.615]93.9695|8.13 |-0.004]19.46 |13.85
10 000 (58520 4 57728 4 (585204 1397 T0.00 16153 [299 | |20/50 [164.491 [179.338 [164.486 [9.03 |-0.003]73.14 |57.86
T Ti000 T45035.6 | o194 2 1403054 1241 0.6 5066 5 ae | 20100 291543 |310.923[291.635[9.73 _|-0.003[218.43 [112.98
IAverage values (for m=20) 8.96 |-0.003 [103.67 [61.56
2 2000 [22248.822556.4 [22573.1 [1.38 |1.46 |9.89 |2.63
3 2000 |77472.0|79799.0 | 77472.0 [3.00 |0.00 |77.20 |4.78
3 2000 [58028.2 [59964.6 [58028.2 [3.34 |0.00 |479.63|4.59
3 2000 [43151.8[44687.6 [43151.8 [3.56 |0.00 [206.124.66
3 3000 [200776.0202756.0200776.0(0.99 |0.00 [376.06 [10.49
Average values 491 |0540 89.64 |2.42 Table 3: Comparison of time co_ns_umption values by FPM and PPM
20 [20 [2780.15 |2780.26 |2786.39 0.004 |0.22 |0.31 |0.52 for the limit problem __
20 |20 [5111.52 |5284.78|5114.05]1.43 [0.05 020 (246 | | |" | Fopr |Ave: Fop Avgerr.(%) | Avg. t (sec)
20 [20 [5137.82 |5311.33 [5140.05 |3.37 |0.04 |0.26 [23.34 — — = T1= I =
Average values 160 |0.10 |0.26 |8.77 Frew |Feem |Erem (Erew [trew |teew
3 (20 |433.365|439.641 [433.366 |1.45 |0.00 |0.07 |0.04
3 (50 |957.78 |988.429 [977.893[3.20 |2.10 |0.67 |0.12
3 (100 |1567.43 [1707.088[1605.519/8.91 |9.13 |1.43 |0.49
IAverage values (for m = 3) 452 |3.74 |0.72 |0.21
10 [20 [1493.18[1599.49 [1524,98 [7.12 |2.13 |1.37 |0.31
10 [50 |4996.00 |5404.77 [5223.91 (8.18 |4.56 |7.64 |1.12
10 100 |6468.59 | 7037.18 |6814.01 [8.79 |5.34 |20.31 |5.19
10 [L000 |47557.7 [51894.96/50953.329.12 |7.14 |490.74[71.28
IAverage values (for m = 10) 8.30 (4.79 [130.0 [19.48
20 [20 |3897.054187.38[3988.24 |7.45 |2.34 |254 |1.36
20 [50 |6473.61|6997.97 |6622.50 [8.10 |2.30 |17.31 |9.12
20 |100 [13438.95[14742.53[14460.31]9.70 |7.60 [148.73 [23.12
IAverage values (for m = 20) 8.41 |4.08 |56.19 |11.20
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