
 

 

 


 

Abstract— Flow apportionment of a 8-parameter flow manifold 

is dealt in this paper.  We deal with a one-by-four manifold. We have 

to optimally locate the guide plates. The objective of the work is to 

minimize the standard deviation of the actual flow rates from the set 

points by controlling 8 parameters four of which are lengths and four 

of which are angles of deflection. We take the input as the 50 data 

points generated by the process of CFD. Using the combination of 

ordinary least squares and genetic algorithms we develop the 

minimization algorithm for the objective function. We have 

successfully evaluated the objective and 8 parameters and found that 

the algorithm employed in this work yields a solution that is lower 

than the lowest of the 50 data points. Therefore we concluded that 

our method works successfully without having the need to resort 

further to CFD computations. 

 

Keywords—Flow manifold, genetic algorithms, least squares, 

optimization. 

I. INTRODUCTION 

Flow manifolds are encountered in a variety of chemical 

process operations like heat exchangers; fuel cells etc. and 

their uses are versatile. Optimization algorithms are divided 

into gradient based algorithms and non-gradient based 

algorithms and genetic algorithms also come under non 

gradient based algorithms. The use of genetic algorithms needs 

a fairly large population solution to start the optimization 

algorithm. Thus the approach we need to follow is to use the 

meta models. Elsayed[1], Elsayed & Lacor[2] and Elsayed & 

Lacor[3] constructed prior CFD simulations using the method 

of ordinary least squares.  

 

 

 

 
 

Thulasiram A.R, Research Scholar in the department of Chemical 

Engineering Indian Institute of Technology Madras, Chennai, India -600036 

(Corresponding author, email: ch14d414@smail.iitm.ac.in)  

Dr. Bura Sreenivas, associated with the Department of Mechanical 

Engineering, Indian Institute of Technology Madras, Chennai-600036 for his 

doctoral degree and is currently working as a Professor and Head of the 

department of Mechanical Engineering , School of Engineering in Nalla 

Narasimha Reddy Education society’s Group of Institutions, Hyderabad, 

India-500088 (email: sreenivas.b@nnrg.edu.in) 

Dr. Sreenivas Jayanti, Professor in the Department of Chemical 

Engineering, Indian Institute of Technology Madras, Chennai, India-600036 

(email:sjayanti@iitm.ac.in). 

 

 

Li, Fevens & Krzyz[4] present an automated algorithm for 

clinical image segmentation. In order to facilitate principal 

component analysis(PCA) and support vector machine 

application, they classified the image processing process into 

two steps. These two steps are learning and segmentation. The 

images are segmented and then feature extraction is applied for 

image extraction. Then principal component analysis is 

applied to these extracted images. The results of PCA are used 

to train a support vector machine classifier. By training a 

support vector machine, it would be possible to do any 

medical image segmentation. The domain of application for 

clinical image segmentation applies to dental x-rays, chest 

images, scans in 2-d and 3-d etc.. 

Among many applications that are possible for PCA like 

process monitoring, fault diagnosis and model identification, 

Narasimhan[5] use PCA for model identification. They 

propose a method by which it becomes possible to obtain a 

nearly exact estimate of the model and error covariance 

matrix. They also provide an approach for model order 

determination and data scaling. The data scaling has been 

noted and used in this work. In addition to usual PCA, they 

have also evaluated results using iterative principal component 

analysis (IPCA). The converging singular values that were 

obtained from iterative principal component were noteworthy, 

as the last 3 singular values were close to unity, as per 

theoretical prediction. However when we don’t perform 

scaling, the singular values were not near unity. This 

demonstrates the importance of scaling while performing PCA. 

Shariati-rad and Hasani[6] employed PCA for determining the 

number of species that form during the equilibrium in the 

complex metal formation of ions with 1-10-phenantroline. 

Along with using PCA, they used second order global hard 

modeling. To compare the results of PCA and second order 

global hard modeling, they used an alternative technique. This 

alternative method employs multivariate curve resolution-

alternating least squares (MCR-ALS). The results from the 

both approaches were compared and it was found that PCA 

and second order global hard modeling is better than MCR-

ALS. They have pointed out that among all the methods for 

rank determination, the use of eigen values based on principal 

component analysis is the best technique. 

Coussement, Gicquel and Parente[7]  employ PCA to 

investigate low dimensional manifold in the combustion 

process. The usual difficulty arises because it is generally 
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difficult to couple the manifold with the flow-solver. In order 

to achieve the coupling, the authors propose a new algorithm 

called manifold generated by a local PCA (MGLPCA). This 

algorithm successfully couples manifold generated by PCA 

with a DNS based flow solver. For manifold identification, 

they employ a premixed one-dimensional freely propagating 

hydrogen-air laminar flame. This was performed at a specified 

equivalence ratio and free gas temperature. They have also 

used a clustering method where they determine the number of 

principal components along with the number of clusters in 

MGLPCA. 

Lindau et al.[8] build upon PCA to obtain statistical shape 

modeling for the virtual assemblies. Virtual assembly 

technique is useful to consider the mating requirement of 

various geometric shapes that arise when we join two parts. 

They have presented a method to achieve this mating. This 

paper demonstrates how PCA can be extended to larger 

applications to develop more tailor-made and robust 

applications that are suitable for the given domain. The 

application they considered were car-bodies. The virtual 

assembly tool is employed for geometric simulation of various 

factors like tolerance in geometry, geometric stability issues 

etc.. This comes under the category of non-rigid assembly 

simulations, where is assumed that joined parts are not perfect 

and have manufacturing deviations. 

This paper is a continuation of a more realistic flow 

optimization of the work carried out by Srinivasan & 

Jayanti[9] . They used Box complex method, which is a 

gradient based method as an optimization algorithm while in 

this work we use evolutionary algorithms for optimization. 

From the literature it is evident that CFD coupled with genetic 

algorithms is a versatile strategy but still has not been 

employed for manifold flow optimization. Till now only Box 

complex method has been employed for optimization of flow 

apportionment in a manifold. But that was the trend in the past 

when the fast computing devices were not available and hence 

it was not feasible to use computationally demanding methods 

like genetic algorithms. But in the recent years with the advent 

of fast computers, it became easy to use methods like genetic 

algorithms which require heavy calculations. Hence in this 

work we use genetic algorithm as the evolutionary algorithm 

and CFD as the evaluation mechanism. Another difference 

with the work of Srinivasan & Jayanti[9] is that they deal with 

3 cases out of which 2 cases are 4-paramter problems that have 

fixed vane lengths and the third case is 8 parameter problem in 

which 4 lengths and 4 angles are design variables. However in 

that work the evaluation of flow apportionment for first two 

cases is easier as it is not complex. But the 8 parameter 

problem which is the third case is fairly complex and results 

have further scope for improvement. Thus in this work we deal 

with the complex 8-parameter problem extensively which is 

the third case in the work of Srinivasan & Jayanti[9]. Besides 

Srinivasan & Jayanti[9], Avvari & Jayanti[10] had also carried 

a similar work. But the difference is that Avvari & Jayanti[10] 

employed normal gradient approach which is semi-analytical 

method, while Srinivasan & Jayanti[9] employed a fully 

computational method by using Box complex method. 

II. PROBLEM FORMULATION 

The objective of the present work is to explore the 

feasibility of utilizing genetic algorithms to the problem of 

determination of optimal flow distribution in a manifold by 

positioning the angles of the vanes and constructing the lengths 

of the vanes.  To achieve this, the problem is formulated as a 

constrained optimization problem whose objective is to 

minimize the deviation of the actual flow rate from the set 

point in all the four outlets. 

A. Description of geometry of the manifold 

The geometric description of the 2-dimensional flow 

manifold is described in Fig.1. The fluid flow manifold 

consists of one inlet and four outlets where the breadth of the 

inlet duct is 0.1 m and that of the four outlet ducts is 0.05 m. 

The breadth header section is 0.1 m. The outlet ports are 

placed at a distance of 0.05 m with each other. Extended 

protruding sections of length 0.5 m at the inlet and 2m at the 

outlets have been facilitated to achieve fully developed flow. 

Air at a velocity of 15 m/s is specified at the inlet and 1 

atmospheric pressure is specified at the outlets. 

Physically it is not possible to exceed the length of the 

plates by 0.05 m and the angle of the guide vanes cannot be 

less than 90
0
 as there is wall behind it (angles are measured in 

anti-clockwise direction). However as we see in the following 

sections more severe constraints are imposed on these 

parameters. 

                                      

 

Fig.  1 Schematic of 8-parameter manifold 

B. Formulation of the optimization problem 

The aim of the current work is to accomplish a 

predetermined flow apportionment in the outlets. Hence the 

objective function is given as the additive square root of the 

deviations of the actual flow rates from the set points in the 

single channels. The two kinds of parameters which are length 

and angle of deflection of the guide vanes influence the flow in 

the manifold and hence the flow apportionment. Hence the 

objective is obtained as the function of plate parameters. We 

try to optimize the deviation in the flow apportionment by 

changing the parameters which are length and angle of the 

guide vanes. Then, mathematically stating the optimization 

formulation becomes as: 
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Minimize f(x) where f(x) =    

and x=                         (1) 

where, q is the total number of outlets,  is the actual flow 

rate and  is the set point of flow rate through the j
th

 stream. x 

is the parametric set which consists of the angles of deflection 

 and the lengths of the plates, ,  for i number of guide 

plates. 

Even though physical realizability limits are different we 

impose more severe constraints on the parameter values in 

equation (1) which are as: 

 

100
0
≤ , ,  ≤ 350

0
 

100
0   

≤  ≤ 260
0
 

0.005 ≤  , , ,  ≤ 0.045 

We always obtain non zero flow rates in any channel since the 

maximum length of the vanes is smaller than the duct breadth. 

 

C. Multi-dimensional ordinary least squares regression 

using principal component analysis 

Regression is the process of fitting a smooth function to a 

given set of independent data points. That data can be one-

dimensional or multi-dimensional. In case the independent 

variable data is multidimensional then the regression of 

independent variables to the dependent variable is called 

multi-dimensional regression. In addition the data can be linear 

or nonlinear. If the data is nonlinear, then we call the method 

of regression employed as nonlinear regression.  

PCA is a technique used to reduce the number of variables 

of data into fewer scores and instead of dealing with large 

number of variables we now deal with fewer number of scores. 

These scores are stored and subsequently used for further 

analysis. We can do data recovery or regression using these 

scores. In case of data recovery, however, based on the 

number of principal components employed, there is 

proportional loss in the data. In case of data storage, this is an 

advantage because sometimes as in case of image processing 

there is need to store very large amounts of data and due to 

hardware restrictions we cannot store all the variables and so 

we need to store only scores. 

The case of use of PCA in the case of flow manifold is to 

reduce redundancy and model the problem effectively.  The 

reason why the modeling is effective is that there are few 

dominant variables among all the variables which affect the 

value of the objective function.  When we are able to model 

the objective function as a function of these dominant 

variables, when can be able to do regression effectively 

because once accurate model is built, then we can do accurate 

regression. Since the modeling is based on use of principal 

components, this type of regression is termed Principal 

component regression (PCR).In our problem we have 8 

independent variables and 1 dependent variable which is the 

objective function. However some of the 8 parameters are 

redundant as there are few dominant variables which affect the 

objective function strongly. The reason why PCA is 

particularly suitable to this 8 parameter problem is that this 8 

parameter case has so many redundancies which reduce the 

effectiveness of the modeling phenomenon. PCA addressed 

such issues by reducing the redundancy. Hence PCR is ideally 

suited for this 8 parameter problem.  

Godoy, Vega, and Marchetti[11] present a detailed 

comparison between PCA and partial-least squares regression 

(PLSR) and brings out a relationship between them. They also 

brought out their utility to various applications like output 

prediction, modeling and monitoring of multi-variate data. 

They initially present the geometric properties of the 

decomposition of input(X-PCA) and output data(Y-PCA) in 

relation to the PCA. They have achieved the decomposition 

using partial least squares regression. They have then 

presented the analogies of data subject to PLSR and YXPCA 

(input-output PCA). They have concluded that PLSR and 

YXPCA have similar ability for fault detection. But PLSR was 

found out to be more reliable for output-prediction, while 

YXPCA was more reliable for reducing redundancies. They 

have pointed out that the main difference between YXPCA 

and PLSR is that YXPCA does not distinguish between inputs 

and outlet and combines them in a single matrix, while PLSR 

differentiates between inputs and outputs. They have presented 

the derivations for the modeling for both PLSR and YXPCA in 

a separate sub-section. They have presented another section 

containing the relationship between PLSR and PCA. 

D. Evaluation of objective using least squares and 

optimization using genetic algorithms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Flow chart for the optimization code 

50 data points are generated using CFD and we do multiple  

regression to curve fit a  model for the data. This model yields 

the objective function as a function of the 8 design parameters. 
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Next initial random population is chosen in genetic algorithms. 

The values of the initial population are evaluated using the 

objective function that is curve-fitted by ordinary least squares. 

The optimum is evaluated and next again new population is 

chosen. This new population is again run through the genetic 

algorithms code and new objective is evaluated to generate 

another new population. In this way the code is run through 

many iterations till the steady state is achieved. The flow sheet 

is shown in Fig.2. 

III. RESULTS AND DISCUSSIONS 

50 random data points in 8-dimensions for the 8 parameter 

problem are generated and the value of the objective function 

is evaluated in ANSYSFLUENT work bench for the 50 data 

points. It is noted that each CFD evaluation is computationally 

expensive and the computational time increases as we try to 

make the grid finer. The point where we halt for grid 

refinement is discussed below. 

A. Grid refinement and evaluation of objectives 

The grid refinement is a very important topic in the CFD 

based evaluations. Unless the grid convergence is established 

for a sufficiently fine grid size, we cannot be sure that our 

results are accurate. The approach we take is that we check the 

results for a particular grid size, then we reduce the grid size 

by 25%-75%, check the values if they are same or not. If they 

are not same we further reduce the grid size. As we make the 

grid size finer and finer, at one point of sufficient finest grid 

we can expect the numerical solution to match the analytical  

solution after which however finer we go the solution remains 

same. This point is selected for CFD based evaluations. In our 

case we have initially tried to simulate at 6mm and then do the 

same simulations for 3mm but the results are not same. Then 

we tried 3mm and 1.5 mm, still the results varied. We try to 

evaluate grid convergence. It was found that grid converges at 

1.5 mm. To demonstrate the grid convergence after 1.5 mm we 

choose two grids 1.5mm and 1 mm values and show that the 

values obtained by CFD and the plots and graphs are same. 

B. Use of genetic algorithms and ordinary least square 

regression 

The angles are in degrees which range between 0 to 360, 

while the lengths specified are in meters in the range of 0 to 

0.045. Before employing genetic algorithms we scale and non-

dimensionalize them to maintain uniformity in the code. We 

choose to non-dimensionalize the angles by 360
o
and the 

lengths by 0.05m which is the duct width of the manifold. 

Fig.3 shows the value of the standard deviation of the flow 

rates. It can be observed that the standard deviation of the flow 

reaches a steady value after 190 iterations or generations. It 

attains a steady state value of 1.2589 ×10
-5

. Fig.4 shows the 

values of the design parameters for this case. As the case of 

Fig.3, the oscillations are arrested after 168 generations. The 

final values obtained by the 8 parameters are shown in table 1. 

These are the values obtained before scaling that are shown in 

column 3 of table 1.  When we scale theta by 360
0
 and length 

by 0.05m, the values obtained are shown in column 4 of table 

1.  

C. Validation of results using CFD simulations 

Once the values of 8 parameters are obtained, we plug 

these values in CFD software and try to validate the results.  

We use ICEM software for geometry creation and Fluent for 

simulations. When we successfully perform CFD simulations, 

we get the values of the mass fluxes at the four outlets. The 

value of fluxes obtained for these set of parameters are 

plugged in MATLAB to compute the value of the objective 

function.  
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Fig. 4 Values of design parameters before non-dimensionalizing 

 

 

 

Fig. 5 Contours of static pressure for the final result 

 

Fig.6 Contours of velocity for the final result 
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Fig.7 Velocity vectors for the final result 

 

Fig.8 Velocity vectors in the header 
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Table 1 Summary of values obtained 
S. 

No. 

Variable Value 

obtained 

before 

scaling 

Final values 

1 
 

0.3944 142.0010 

2 
 

0.9700 349.2120 

3 
 

0.4420 159.1110 

4 
 

0.4556 164.0130 

5 L1 0.2006 0.01003m 

6 L2 0.0006 0.00003m 

7 L3 0.6258 0.03129m 

8 L4 0.6606 0.03303m 

9 Standard 

Deviation(SD) 

- 1.2589× 10-5 

 

10 CFD based 

SD 

- 0.0281 

 

The contours of static pressure for the final computed 

result of Table 1 are shown in Fig.5. It can be observed that 

there is uniform pressure distribution through all the legs of the 

manifold. We can observe that regions of low pressure are 

formed behind the vanes in the outlet leg of the manifolds. 

This is because low pressure eddies are generated at the back 

of the manifold. At the entrance of the inlet leg, the pressure is 

more than the pressure at the exit of the outlet legs. It can also 

be observed that the pressure at all the four outlet legs is same.  

The contours of velocity by magnitude are shown in Fig.6. 

This is also observed to be uniform in all the four legs of the 

manifold. It can also be observed that the velocity is more at 

the inlet legs than the outlet legs. In addition it can be 

observed that the velocity behind the vanes is lowest while the 

velocity at the openings of the vanes is the highest. The 

velocity vectors are shown in Fig.7. These are arrows instead 

of colors. The magnitude of the velocity here is indicated by 

the length of the arrow. The arrows at the inlet are larger than 

the arrows at the outlet. It can be observed that the length of 

arrows show similar velocity magnitude in all the four legs in 

the manifold. The zoomed view of the velocity vectors 

corresponding to Fig. 7 are shown for the header in Fig.8. It 

can be observed that the size of the arrows is larger in the 

opening of the outlet created by the vanes, while it is smaller 

behind the vanes. The Fig. 9-12 give further zoomed view of 

the velocity vectors in the four legs. Fig. 9 shows the velocity 

vectors for the first leg. As we can observe that for leg 1, the 

vane is situated at an angle of 142
o 

to the horizontal in anti-

clockwise direction. With respect to the wall the angle is 52
o
. 

Then length of the vane is  0.01 m which is 20%  of the leg 

width. We can observe that, near the vane, the flow direction is 

parallel to the vane. This is because the arrows in front of the 

vane are parallel to the vane and are pointed in the direction 

from the inlet to the outlet. However, we can see that this flow 

direction which is indicated by the direction of arrows is 

opposite behind the vanes. This indicates reverse flow behind 

the vanes. We can also observe that within the opening in the 

entrance of the outlet, as we move farther from the arrows, the 

flow is directed parallel to the walls. Some of the fluid hits the 

wall and rebounds back, which is also indicated by the 

direction and magnitude of the arrows. 

Fig. 10 shows the zoomed view of the velocity vectors for 

leg that is located second from the left side. We can observe 

that the vane is situated at an angle of 349.212
o 

to the 

horizontal in anti-clockwise direction. In clockwise direction, 

the angle is 10.8
o
. The length of the vane is 0.00003 m. It is 

almost a complete opening in the outlet leg. Most of the fluid 

flowing from the header is going perpendicular to the vane due 

to inertia in the direction and hence a very little amount of 

fluid is flowing into the opening of the outlet leg. It can be also 

observed that the size of the arrows is larger in the left side 

than the right side. This happens due to the presence of the 

wall. It can also be observed that in the right side of the 

opening within the outlet leg, there is small amount of reverse 

flow. 

 

 

 

Fig.9 Velocity vectors(zoomed view) in leg 1(left most leg) 
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Fig.10 Velocity vectors(zoomed view) in leg 2 

 

 

Fig.11 Velocity vectors(zoomed view) in leg 3 
 

Fig.12 Velocity vectors(zoomed view) in leg 4(right most leg)
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Fig. 11 shows the zoomed view of the velocity vectors in 

the leg that is situated in third position from the left. The vane 

is situated at an angle of 159.111
o 

in the anti-clockwise 

direction starting from the header wall. With respect to the 

outlet wall, the angle is 69.111
o
. The length of the vane is 

0.03129 m which is 63% of the vane opening. We can observe 

that because the vane is slanted in this case the flow is created 

in slanting direction and there is good amount of flow inside 

the opening due to the favorable position of the vanes. It can 

be also observed that towards the left side of the vane, there is 

strong magnitude of the flow, while behind the vane there is 

reverse flow. This illustrates the role of guide vane in the 

manifold application which is to appropriately control the flow 

orientation and magnitude. Fig. 12 shows the zoomed view of 

the velocity vectors in the leg that is situated in fourth position 

from the left or first position from the right. The vane is 

situated at an angle of 161.013
o
 in the anti-clockwise direction 

starting from the header wall. With respect to the outlet wall, 

the angle is 71.013
o
.The length of the vane is 0.03313 m which 

is 66% of the vane opening. We can observe that because the 

vane is slanted in this case the flow is created in slanting 

direction and there is good amount of flow inside the opening 

due to the favorable position of the vanes. Since the outlet leg 

is situated directly in line with the flow inlet leg, we can 

observe that the flow is coming moving into the outleg leg. 

The role of guide vane becomes more predominant for this 

first vane than the other 3 vanes of the other legs. This is 

because more flow deflection is needed in this leg. It can be 

observed that in the vicinity of the vane, the flow magnitude is 

less, as it is rightly indicated by the length of the arrows. There 

is even small amount of reverse flow, especially behind the 

vanes and in front of the vanes. But still the flow in the 

opening to the left of the vane is very large due to inertia of 

direction from the inlet. 

IV. CONCLUSIONS 

In this paper we use genetic algorithm and modeling through 

ordinary least squares instead of direct CFD simulations and 

box complex method to solve for flow minimization in a 

manifold problem. It has been found that a significant 

improvement in the standard deviation has been obtained with 

very less CFD computations. If we observe the standard 

deviations of the initially chosen 50 random data points, the 

lowest value is 0.0526. But using our method, we have 

improvised the solution by achieving a standard deviation of 

0.028. Therefore the optimization using genetic algorithms 

combined with least squares regression has yielded an 

improvised solution. Further it is noted that we have achieved 

this result without resorting to computationally expensive CFD 

simulations. The velocity contours obtained for the final 

solution through CFD simulations have been demonstrated for 

illustration. 
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