

Analysis of developers choices for API Rest or
Soap protocols

Alen Šimec, PhD; Polytechnic of Zagreb; alen@tvz.hr
Lidija Tepeš Golubić, PhD; Polytechnic of Zagreb; Lidija Tepeš Golubić ltepes2@tvz.hr

Abstract - This paper is about analysis and comparison of SOAP
protocol and REST architecture, their possibilities and use in
everyday scenarios. The structure, way of work and area of
application, as well as the most famous cases of application of one
or the other approach have been described in short.

Keywords - rest protocol, soap protocol, comparison,
applications, World Wide Web, XML language

I. INTRODUCTION

The World Wide Web is the most popular distributed
application in history, and Web services and mashups have
turned it into a powerful distributed computing platform [2].

By sudden development of computer technology broader
world population have gained access to computers and
network services. The biggest network in the world, World
Wide Web, has become a daily used server for information
access and exchange. As the Internet has been growing, the
number of servers and services that users access on a daily
basis has been growing as well. Nowadays, an average user
wants a fast, quality, functional and simple access to
information and services. Web service and Internet website
designers need to adjust to those demands and from possible
available technologies get the maximum needed for
fulfilling the expectations of end users.

Considering that all the Internet traffic is based on HTTP
protocol, designers of websites, applications and online
services have at hand a whole range of different protocols
and technologies for creating a service that will make the
use of the Internet simpler and more functional. Special
attention needs to be paid to the Internet of things, which is
a phenomenon of connecting more and more devices
through the Internet, and that demands an even higher data
flow and more and more ways of connecting those devices
with different applications, services and operating systems.
The difference of technologies, protocols and program
languages that are being used today is making simple
communication, mutual connection and information
circulation more difficult, and there is a need for some kind
of tool that will enable the solving of this problem.

The two most popular tools for independent connecting
and communication between applications and services
nowadays are SOAP protocol and REST architecture. Those
are technologies that have many characteristics in common,
but at the same time, many differences as well. What they
have in common is giving a possibility of connecting and
joint work of different subjects, such as computers, servers,

mobile phones, clients, programs, applications and services,
and they can all work on different protocols, operating
systems and they can be designed by different program
languages. SOAP and REST use the application HTTP
protocol for transmission of hypertext and messages in
XML language.

We cannot say which of those two tools is better because
the answer to that question depends on the allocation of
service and application that is being used. In some cases
SOAP protocol is better, while in the other ones it is
preferable to use REST architecture. This term paper will
make the analysis of both tools, their structure, through
studying their use in the real world and of some of their
advantages and disadvantages.

II. SOAP PROTOCOL

SOAP protocol (Simple Object Access Protocol)
represents a simple and data light mechanism for
exchanging structural information between different users in
distributed and decentralized surroundings using XML
language. Such exchange of information pertains to the
implementation of Web service on computer networks. The
purpose of SOAP protocol is to encourage extensibility,
neutrality and independence. This pertains to continuous
development of extensions related to safety and WS-routing,
possibility of working on any kind of protocol (e.g. HTTP,
SMTP, TCP, UDP or JMS), and the possibility of using any
kind of programming model. Considering that it uses XML
(Extensible Markup Language) for forming messages, it
depends on protocols of transport layer, such as HTTP
(Hypertext Transfer Protocol) and SMTP (Simple Mail
Transfer Protocol) for exchange and transmission of
messages.

SOAP enables mutual communication through XML for
the processes that are being started on different computers
and different operating systems. Considering that HTTP
protocol has been installed on all the operating systems, the
clients can access Web services and receive responds from
them regardless the language or the platform. This chapter
will be about a short review of SOAP protocol history,
messages structure, way of work and its application.

SOAP was designed and mentioned for the first time as a
protocol for accessing objects in 1998. Its authors are Dave
Winer, Don Box and Bob Atkinson and Moshen Al-Ghosein
who worked for Microsoft at the time. Due to Microsoft’s
business policy of postponing the publishing, the

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 178

specification was officially published only at the end of
1999. Dave Winer published a part of XML-RPC
specification in 1998 by himself because of Microsoft’s
hesitation. The first version of SOAP did not use XML, but
primitive types of data that were being written into structure
and sent and received by specifically defined operations and
methods. The second development phase lasted from 1999
until May 8 2000 when the first version 1.1 was given to
W3C with IBM as a co-author.

This version was much more extensible which made the
use of explicitly Microsoft technologies unnecessary. The
fact that immediately after that IBM published a Java SOAP
implementation and donated it to the Apache XML Project
for development of the open code, has convinced even the
strongest skeptics that SOAP is something that deserves
attentions. Whence the Sun expressed their support to SOAP
protocol, it did not take a long time for other manufacturers
to join and start working on the implementation of Web
service. During the year 2000 W3C formed a working group
that started to design a basic XML protocol that was
supposed to become the core for XML-based distributed
computing. They started working on SOAP 1.1 version as a
base and the published the first minor version SOAP 1.2 on
June 9 2001. This made the XML way of writing data a
standard and SOAP attracted attention of all major
companies that continued its further development after
which the protocol became a recommendation for building
client applications.

Specification of SOAP protocol describes a structure that
can be narrowed to four basic parts:

• SOAP envelope or messages,
• SOAP encoding rules,
• SOAP RPC (Remote Procedure Call)

presentation,
• Ways of connecting and sending messages.

The envelope defines the framework in which the content
of the message is being expressed, as well as for whom it is
intended and whether it is optional or mandatory. Encoding
rules define the mechanisms that are being used for
exchanging data type instances. SOAP RPC presentation
defines the convention that may be used for presentation of
distant procedures and responses

SOAP message is an XML document that consists of a
mandatory SOAP envelope, optional SOAP header,
mandatory SOAP body and optional fault SOAP envelope is
the highest element of the XML document that represents
the message and that indicates the beginning and the end of
the message, in order for the recipient to know that they
have received the whole message. So, SOAP envelope
solves the problem of differentiating between receiving a
message and processing a message, and it actually
represents a mechanism of packing a message. The envelope

is a mandatory part of each message that consists of a header
and a body. The header is not a mandatory element, while
the body is, and each envelope may contain only one body
element. Different versions of SOAP protocols have
different envelopes and they cannot read the envelopes of
the other protocol version. The envelope is being defined
through the ENV prefix and the Envelope element.

The optional header element gives a flexible frame for
defining additional application requests. For example,
digital signatures for services that are password protected,
number or accounts for which certain content is intended,
public encoding keys, etc. can be defined in the header. It is
possible to use multiple header elements that are being
written as header blocks. SOAP header can have two
different attributes: actor attributes and MustUnerstand
attribute. Since the SOAP protocol defines the message path
as a set of service junction points of which each can process
and forward messages, the actor attributes determine who
exactly is the header recipient. The MustUnerstand attribute
determines whether the header element is optional or
mandatory. If the attribute is set to true, the recipient must
understand and process the header attribute, otherwise there
is an error.

The SOAP message body is a mandatory element that
contains XML data that some application will exchange
through SOAP messages. The body of the message needs to
be contained in the envelope and it needs to follow the
header if it has been defined for the message. The message
body contains mandatory information that is intended for the
end message recipient.

If there is an error while processing a message, the
response to the SOAP message is the SOAP element fault
that is being returned to the sender in the body of SOAP
message. The fault element sends back specific information
about the fault, including the predefined code, description
and address of SOAP processor that has generated the fault.
SOAP message can contain only one fault block.

SOAP protocol consists of a set of inbuilt rules for
encoding data types. It enables the SOAP message to mark
specific data types, such as string, boolean, integer, float,
double or array data types. Data types that are differentiated
by SOAP are:

• Scalar types that contain exactly one value, such as
the product name, price or description,

• Complex types that contain multiple values, such as
orders or a listing of stock inventories.

Scalar data types inherit all the inbuilt simple data types that
have been defined by XML specification.

Table 1: Scalar types of SOAP messages
Simple data types built into the XML Scheme

Simple types Data sample
string Some text
boolean true, false, 1, 0.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 179

Float -INF, -1E4, -0, 0, 12.78E-2, 12, INF,
NaN

double -INF, -1E4, -0, 0, 12.78E-2, 12, INF,
NaN

decimal -1.23, 0, 123.4, 1000.00
binary 100010
integer -126789, -1, 0, 1, 126789
nonPositiveInteger -126789, -1, 0.
negativeInteger -126789, -1
long -1, 12678967543233
int -1, 126789675
short -1, 12678
byte -1, 126
nonNegativeInteger 0, 1, 126789
unsignedLong 0, 12678967543233
unsignedInt 0, 1267896754
unsignedShort 0, 12678
unsignedByte 0, 126
positiveInteger 1, 126789.
date 2017-01-15
time 13:20:00.000, 13:20:00.000-05:00.

Processing of SOAP message includes separation of the

envelope and processing of information it transmits. SOAP
contains a general frame for processing this information, but
it leaves the details to the application that uses it. The very
idea of a SOAP message is a one-way sending of the
envelope from the sender to the recipient, while that
envelope may pass through a bigger number of different
processors that are between them. SOAP proxy is a web
service that might add value or functionality to the
transaction between those two. The set of those proxies
through which a message passes is called a message path,
while each proxy is called an actor. SOAP protocol does not
cover a definition of creating the message path, but it
defines mechanisms that determine which parts of the
message are intended for which actors. Those mechanisms
are called “targeting” and they are used in relation with
message headers. Header blocks may contain attributes that
are identifiers of certain actors, and those can be URLs on
which there is the wanted actor. After the message is sent,
all the proxies that do not correspond to the attribute in the
message need to ignore the header block until the message
has arrived to the targeted actor. For example, this is the
way to use a digital signature to establish secure and valid
communication.

There are different extensions, such as Microsoft SOAP
Routing protocol (WS-Routing), that are used for creating
the message path. This protocol defines the standard SOAP
header block that contains information for routing and
defines the exact chain of proxies through which the
message must cross.

SOAP protocol is also being used for communication
with RPC web services. RPC methods and their parameters
are being shown as structures in which the names and the
physical order of parameters are being arranged in a way to

correspond to the names and order of parameters of the
method that is being requested. A similar way is used to
form the answers to the method requests.

SOAP protocol that is being used as a standardized
protocol for packing that is set up on the network and
transport level, does not require one specific transport
protocol for message exchange, which makes it extremely
flexible to use. SOAP can be transmitted through HTTP,
SMTP, FTP, TCP, UDP, JMS, MQSeries or MSMQ
protocol.

Due to the Internet’s daily routine, the most used protocol
for exchange of SOAP messages is HTTP protocol. SOAP
specification even describes in detail how the model of
exchange of SOAP messages is being mirrored on HTTP.
The connection of HTTP and SOAP is also visible in SOAP
RPC conventions that consist of a request and of a response,
just like HTTP protocol is based on request-response model.

Example [3] of using SOAP protocol through HTTP-a:
REQUEST:

POST /StockQuote HTTP/1.1
Content-Type: text/xml
Content-Length: nnnn
SOAPAction: "urn:StockQuote#GetQuote"
<s:Envelope xmlns:s="http://www.w3.org/2001/06/soap-
envelope">
...
</s:Envelope>
RESPONSE:
HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: nnnn
<s:Envelope xmlns:s="http://www.w3.org/2001/06/soap-
envelope">
...
</s:Envelope>

REST is an abbreviation for Representational State
Transfer. That is an architectural style for designing network
applications. The idea of REST is to replace complex
mechanisms such as CORBA, RPC or SOAP with HTTP
when establishing a communication session between the
computer and the service. It can be said that the whole
World Wide Web that is based on HTTP is a kind of
architecture based on REST. Applications that use REST
architecture are called RESTful applications and they use
HTTP for data sending, data reading and data deleting (all
CRUD operations). REST is not a standard, it does not have
a W3C recommendation, it is only a simple way to use the
frames of application programming.

REST has been defined by Roy Thomas Fielding in
2000. He defined it in his dissertation “Architectural Styles
and the Design of Network-based Software Architectures”.
He has been developing REST in parallel with HTTP 1.1
protocol and he based it on the 1.0 version from 1996.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 180

Similar to SOAP protocol, REST is also independent
from the platform on which it is being developed and used,
it is independent from the program language, it is being used
through HTTP and it can be easily used through fire-walls.

The key components of REST architecture are resources
that are being identified through logic URLs
(Uniform Resource Locator). Status and functionalities are
being presented using resources. Resources are the key
element of the real RESTful design such as the methods and
services at RPC and SOAP web service. getProductName
and getProductPrice RPC request will not be used, but
the product data will be looked at as a resource that contains
all the necessary information or connections to the
information. Resources can be entities, collections, values or
anything else for what a designer might find useful to
possess their proper URL.

The resource network is important because it represents
the connection of all the resources through mutual links
because none of the resources should be too big or contain
too many details. Whenever it is possible, a resource should
contain links towards additional information, like it is on the
web.

The system is based on client-server principle, but the
server of one component can be a client of another
component.

There is no state of links, interaction is such that the
request is independent from the response (stateless). Each
new request must contain all the necessary information for a
successful execution of such request and it should not
depend on prior interactions with that same client.

Resources need to be saved into cache whenever
possible. The protocol must enable the server to specify the
resources that might be cached and for how long. Headers
with control of saving inside of HTTP are being used for
this, and clients must respect the server’s specifications for
saving each used resource.

Proxy servers can be used only as a part of architecture
for improving performances and scalability, and any HTTP
proxy can be used.

This chapter is going to show on examples how REST is
actually simple and “light” when talking about data flow.
When we say “light”, we mean the quantity of network
resources that are used during information exchange.

Example of SOAP request:
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap=http://www.w3.org/2001/12/soap-envelope
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">
<soap:body pb="http://www.acme.com/phonebook">
<pb:GetUserDetails>
<pb:UserID>12345</pb:UserID>
</pb:GetUserDetails>

</soap:Body>
</soap:Envelope>
The response to this request would be an XML document
that is contained inside of the envelope of SOAP response.
Example of REST request:
http://www.acme.com/phonebook/UserDetails/12345

This is just a URL that would be inside the request body,
which is being sent through a simple GET method, and
HTTP responds with clear data that are not built inside of
any kind of proxy. The data can usually be reached with a
HTTP GET method, they can be deleted using POST, PUT
or DELETE methods.

These examples show how REST uses nouns, while
SOAP uses verbs in order to reach the resources
(UserDetails / GetUserDetails).
The server’s response in REST is most commonly in an
XML file like in the example2:
<parts-list>
 <part id="3322">
 <name>ACME Boomerang</name>
 <desc>
 Used by Coyote in <i>Zoom at the Top</i>, 1962
 </desc>
 <price currency="usd" quantity="1">17.32</price>
 <uri>http://www.acme.com/parts/3322</uri>
 </part>
 <part id="783">
 <name>ACME Dehydrated Boulders</name>
 <desc>
 Used by Coyote in <i>Scrambled Aches</i>, 1957
 </desc>
 <price currency="usd" quantity="pack">19.95</price>
 <uri>http://www.acme.com/parts/783</uri>
 </part>
</parts-list>

During the past few years there has been a large increase
in the number of web services which has not diminished the
popularity of using SOAP protocol. But nevertheless, the
architects of Internet applications are finding reasons to quit
SOAP more and more often in favor of a better method for
creating web services, which is REST.

REST is not a new technology, it has been present for
quite a while as a concept, but it has been realized through
technology only recently. While SOAP represents a new
phase in Internet development with a set of new
specifications, REST shows how the existing principles and
protocols are sufficient for creating robust web services and
applications because it does not require the use of additional
development tools, it is necessary to know HTTP and XML.

The popularity of REST nowadays can be seen in a list
of users whose websites and services are based on it. The
most popular being Facebook, Twitter, LinkedIn Yahoo,
Flickr, some Amazon and e-Bay services, Atom, Google

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 181

Glass API and even Tesla model S for communication
between the cars and the application.

SOAP is being used by big companies for integration of
big number of applications and services, and for integration
with older systems, etc.

Considering SOAP users, the biggest one is Google
which uses SOAP for implementation in most of its
applications, PayPal, Amazon, eBay and other large users
such as banking and financial institutions.

This chapter contains a short overview of the most
important characteristics and requests of REST architecture
and SOAP protocol that become noticeable during use and it
is necessary to know them before their practical application.
They represent a simple overview according to which we
can stress out the most important advantages of each of
those technologies.

III. REST

RESTful web services are stateless, meaning the server
does not keep session data or any kind of data about previous
interactions.

For most servers RESTful web services provide a good
infrastructure for temporary storage, which might improve
the performances if the returned information does not change
very often and it is not dynamic.

Designers and users must understand the context and the
contents that is being exchanged because there is no
standardized set of rules for describing the REST service
interface.

REST is useful for devices with a limited user access
(mobile devices) for which the headers are smaller.

REST services can integrate themselves in a more simple
way into the existing internet websites, and they are exposed
to XML so that HTML sites can consume them more easily.
It is not necessary to do everything from the beginning - we
just have to upgrade the existing functionality.

REST implementation is much simpler and faster than the
one at SOAP

It uses less data and resources during data exchange It
works only on HTTP protocol.

A readable JSON data format can be used, as well as
normal text, HTML, etc.

It is much faster to learn how to use it compared to SOAP
RESTful web services inherit safety measures from the

transport protocol.

IV. SOAP

WSDL (Web Services Description Language) describes a
common set of rules for defining messages, links, operations

and service locations. It is similar to the contract that defines
the interface offered by the service.

SOAP demands a smaller amount of additional code than
REST design (such as transactions, safety, coordination,
addressing and trust). Most of applications are not simple and
they support complex operations that demand conversational
state and keeping of contextual information, which makes
SOAP better than REST because it does not require any
additional encoding.

SOAP web services such as JAX-WS are useful for
asynchronous processing.

SOAP supports a few protocols and technologies,
including WSDL, XSD and WS-addressing.

It is much more mature from REST, it supports more
development tools.

It is more difficult to use it on certain platforms, such as
JavaScript.

It has inbuilt error controls.
SOAP defines its safety measures.
Regardless the fact that SOAP protocol is being used

more widely, it is being implemented for a longer time, it
supports a larger number of auxiliary tools and it possesses
numerous positive characteristics, the designers’ habits
might change in favor of REST architecture due to its
simplicity, speed of learning, faster data transfer and more
and more advanced possibilities. In the last few years there
has been a sudden increase in using application
programming interfaces based on REST architecture which
can be seen in the biggest API directory on the Internet,
ProgrammableWeb.

Table 2: Distribution of API protocols and styles based on
directory of APIs listed at Programmable Web [6]

YEAR REST SOAP Other
2006 58% 29% 13%
2016 84% 10% 6%

Table 3: Distribution of API protocols on the web confirm the
REST trend

API REST SOAP
Amazon S3 X X
Amazon EC2 X
Facebook X
Google Cloud, Maps,
applications, Youtube

X

Twitter X
Paypal X X
Instagram X
Pinterest X
LinkedIn X
TripAdvisor X
Expedia Affiliate Nwtwork X X

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 182

V. CONCLUSION

After studying the structure and the design of SOAP
protocol and REST architecture, the conclusion is that
SOAP is quite more complicated to use and a lot more
knowledge and code is necessary in order to implement it
into web services. REST can also be quite complicated for
implementation on the server side, so that when choosing
between the two, it must be taken into consideration which
one is easier for the application or service development
team.

SOAP protocol has from its beginning introduced big
changes and progress in communication between different
services and protocols and it has greatly sped up and
facilitated the idea about the Internet of things.

The principles of REST architecture are being upgraded
on the idea of the Internet of things and they support the
open web philosophy. When we talk about usage, it is the
best to use SOAP in cases when clients need to access the
objects that are on servers and there should be an official
contract between the client and the server, while REST is
better when both the clients and the servers work in WEB
surroundings and the client does not need information on
objects.

In real world, REST is mostly used in social network
services, social networks themselves, services for network
data exchange and mobile services, while SOAP is mostly
used for financial services, payment services and
telecommunication services.

The best way to choose between REST and SOAP is to
learn about their advantages and disadvantages in specific
surroundings. The first thing that needs to be studies is the
purpose and the way of using an application or a service that
is being designed, and only after the full scope of the project
has been defined, an informed decision can be made.

VI. REFERENCES

[1] M. Masse; “Rest api design”; O’Riley Media Inc., 2012.
[2] L. Richardson and S. Ruby; “Resful web services”; O’Riley Media

Inc., 2007.
[3] D. Tidwell, J.Snell and P. Kulchenko “Programming Web Services

with SOAP”; O'Riley Media, Inc., 2010.
[4] J. Webber, S. Parastatidis, I. Robinskon; “Rest in practice:

Hypermedia and systems architecture”; O’Riley Media Inc., 2010
[5] E. Wilde and C. Pautasso; “REST: From Research to Practise”;

Springer, 2011.
[6] J. Wagner; (2014, Jun). Modern API Architectural Styles Offer

Developers Choices; ProgrammableWeb; Available:
https://www.programmableweb.com/news/modern-api-architectural-
styles-offer-developers-choices/2014/06/13; 29.04.2017.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 183

