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Abstract—Motion deblurring has long been a challenging yet 

fundamental problem in image processing. In this paper, we address 

the problem of blind motion deblurring by incorporating global priori 

information, kernel priori information and sparse representation in a 

unified framework. Then, we alternately solve the estimated kernel and 

the deblurred image. To obtain a more accurate blurring kernel, we 

propose an edge selection step to select useful edges for kernel 

estimation and introduce an intermediate image to improve the 

accuracy of kernel estimation. 

Experimental results show that the proposed method runs fast and 

achieves comparable results to those of the state-of-the-art algorithms. 

Sometimes, this proposed method outperforms these other algorithms 

in both synthetic and real-world image experiments. 

 

Keywords—motion deblurring; edge selection; sparse 

representation 

I. INTRODUCTION 

Motion blurs occur frequently in digital photography, 

usually caused by camera shake. Methods for motion deblurring 

have been extensively investigated as it has long been a 

fundamental and important problem in computer vision. 

According to whether the blurring kernel is known, research can 

be classified into blind and non-blind deconvolution. In most of 

the real-world cases, we have no knowledge of the exact 

blurring kernel. Therefore, in our study, we focus on blind 

deconvolution algorithms. As it is an ill-posed problem, the 

regularization technique is primarily used to deal with it.  

Many studies focus on the use of various priors to construct 

regularization cost function. Fergus et al. [1] proposed a 

Gaussian model to approximate the heavy-tailed gradient 

distributions in natural images and use it as regularization for 

recovering images. Shan et al. [2] introduced the global prior 

and local prior of natural images in recovery process, and 

adopted a two piece-wise continuous function to fit the 

heavy-tailed gradient distributions. Krishnan et al. [3] proposed 

a hyper-Laplacian distribution that usually outperformed the 

former two and was used extensively in subsequent works. The 

alternating minimization technique, originally proposed by 
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Geman et al. [4, 5], is extensively used to solve the above cost 

function optimization problem. Iterative estimation can avoid 

being stuck in local minima, but it has the problem of dense 

kernel and visual artifacts.  

To obtain a more accurate kernel, recently studies have found 

that salient edge selection is also an important factor that affects 

reliable kernel estimation [6]. Cho and Lee [7] adopt bilateral 

filtering with shock filtering to predict strong edges. Xu and Jia 

[8] proposed a metric to select useful edges. They found that 

salient edges do not always help kernel refinement, and bad 

selection may mistake kernel estimation. Joshi et al. [9] 

proposed an applicable method for predicting a sharp image 

from a single blurry image. These methods show superior 

performance during kernel estimation. 

Dictionary learning and sparse representation techniques are 

recent hot topics in blind image restoration. Li et al. [10] 

deblurred images via an adaptive dictionary learning strategy. 

Yin [10] et al. [11] found that there exists a coupled sparse 

representation between the blurred and sharp image patch pairs 

under their own dictionaries. Elad et al. [12] constructed a 

dictionary based on large numbers of natural images and the 

blurred image itself. They then solved the proposed sparsity 

regularization cost function using the KSVD algorithm, which 

performs excellently during denoising and signal recovery.  

However, in dictionary learning and sparse representation 

techniques, large images are divided into small patches to 

process, and thus, there inevitably exist boundary artifacts. To 

overcome this problem and acquire a more precise estimated 

kernel, we propose an edge selection step to select useful edges 

for kernel estimation. We then incorporate the kernel estimation 

process in an image restoration framework in order to 

effectively restrain the noise and boundary artifacts. 

Experimental results demonstrate the effectiveness and speed of 

the proposed method.  

II. OUR MODEL 

A. Blurring model 

By convention, we assume the formation model of a blurred 

image Y  as a sharp image blurred by a blurring kernel K along 

with random noise n : 

nXKY                                  (1) 

We observe the blurred image Y . Our goal is to recover the 

unknown sharp image X and the blurring matrix K by fully 

using the information of Y . This is a blind image restoration 
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problem that is typically underdetermined. To solve this 

problem, a regularization method containing prior information 

is primarily used to acquire the solution, and it can be expressed 

as 

     

)()(Y-XKmin arg}K̂,X̂{
2

2
KX  

   (2) 

where )(X  denotes a regularization item containing prior 

information of sharp natural images and ）（K represents a 

kernel regularization item. , are regularization parameters 

that control the weights of the regularization items.  denotes 

the convolution operation. In the following paragraphs, we will 

introduce the detail composition of the sharp image prior 

regularization item )(X and the kernel constraints prior 

regularization item )(K .  

B. Sharp image prior regularization item 

In our proposed method, the sharp image prior )(X consists 

of two parts, sparse representation prior and global gradient 

prior. 

Sparse representation is helpful in image processing and 

present state-of-the-art performance for image denoising. We 

consider it to take advantages of such a sparse representation 

model. Usually, in a sparse model, the image is divided into 

small image patches to quickly realize the sparse representation 

and reconstitution process. It is based on the assumption that all 

image patches can be adequately approximated by a sparse 

linear combination of a learned patch dictionary [11]. Our 

optimization form for the sparse representation prior is defined 

as  

1

2

2

min  
i i

i

iiDRX 

                      (3) 

where iR maps the thi non-overlapping patch to the 

corresponding position in the image, , are the weights and 

i  denotes the representation coefficients of non-overlapping 

patches. Here, the first item ensures the proximity of sparse 

reconstruction and the second term restrains the sparsity of the 

sparse coefficient. 

As mentioned above, we divide the image into small 

non-overlapping image patches to quickly realize sparse 

representation. This will lead to the problem of lacking 

smoothness constraints between non-overlapping patches and 

can easily cause severe artifacts along the boundaries [12, 13]. 

To address this problem, we introduce the hyper-Laplacian 

prior as the global gradient prior, and the optimization form of it 

is defined as 

   

3
2

min  
i

X
                          (4) 

where X represents the vertical and horizontal spatial 

gradients of the image and  is the parameter to control the 

weight. This global gradient prior assumes a hyper-Laplacian 

distribution of gradients in natural scenes [3]. Constraining the 

distribution in the blurred image can enforce smoothness 

between nearby pixels and thus can alleviate artifacts along the 

boundaries.  

According to the previously mentioned analysis, we obtain 

our sharp image prior regularization items as: 

3
2

1

2

2
)(  

ii ii ii XDXRX 

 

 (5) 

C. Kernel constraints prior regularization item 

We define the kernel constraints prior as: 
2

2
KK  ）（

                              (6) 

This term can efficiently preserve the sparsity. It will penalize 

large gradients and thus bias the kernels to take on values 

similar to their neighbors [9]. K is subject to the 

constraints 1,0  i ikk  as well. 

D. Target cost function 

Here, as )(X  and ）（K  are incorporated in our method 

for optimization, we finally obtain our target cost function as: 

2

2

3
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
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









 (7) 

Directly optimizing (7) is hard, since there are lots of 

unknown variables and they can regularly exhibit poor 

convergence. We optimize E  by iteratively estimating 

XK , and  . We employ a set of advanced optimization 

techniques to solve specific problems in the process. 

III. OPTIMIZATION 

A.  Edge Selection-Based Blind Kernel Estimation  

First, we fix X and  to optimizeK . Then, the cost function 

E can be simplified to: 
2

2

2

2{k}
min KYXK 

                      (8) 

As the estimation accuracy of the kernel has a strong 

influence on sharp image recovery, we preprocess the image and 

introduce an intermediate image to alternate estimating the 

kernel in a multi-scale framework. 

The existence of noise will greatly influence the recovery 

image. Thus, first, we use bilateral filtering to handle the noise. 

Bilateral filtering is a nonlinear filtering method that has the 

advantage of preserving high-frequency information while 

denoising and thus can preserve edge information for kernel 

estimation.  
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Then, we use shock filter to construct sharp edges to guide the 

global image restoration. Shock filter can effectively improve 

the image features and help to recover sharp edges from a 

blurred image. The Shock filtering process can be expressed by 

the following mathematical model 

dtXXsignXX tttt  )(1                 (9) 

where tX denotes the t th iteration of the image 

and tX and tX denotes the first-order derivative and 

the second derivative of tX  respectively. In our proposed 

method, we use first-order edge detection operator and Laplace 

operator for calculation. dt is the step size.  

Operated by Shock filter, the image will have obvious, rich 

edges. Research from [8] has shown that insignificant edges 

make kernel estimation vulnerable to noise, and some even 

inaccurately estimate kernels. Therefore, the present paper 

innovatively proposes an edge selection method to select 

qualified edges for kernel estimation. 

First, we switch to polar coordinates and divide the image 

into four areas according to the gradient direction angle 

as 

,

4

3
,
2
,
4

. In each area, we pick m edges of the 

largest gradient magnitude by following criterion 

)10,20max( 1 kNNm                     (10) 

where IN  and kN denote the number of total pixels in the 

current image area and kernel. We denote our selected map 

edges as 
mX  and use it as the basis for kernel estimation. 

Then, we transform the objective function (8) to 

2

2

2

2
min KYKX m       (11) 

We take the derivative with respect toK and set it equal to 

zero to solve the minimization problem. Based on Parseval’s 

theorem, we perform FFTs on all variables to transform the 

convolution operation in the time domain to multiplications in 

the frequency domain. Thus, we greatly reduce the amount of 

calculations, and have 

)
)()(

)()()()(
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22
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
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 
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FF

FFFF
F

  (12) 

where yx  ,  represents the horizontal and vertical gradient 

operator. (.)F and (.)1
F  denote the FFT and 

inverse FFT respectively. (.)F  is the complex conjugate 

operator. 

Considering that the blurring kernel caused by motion should 

have a single, connected structure that has the feature of sparsity, 

we refine the blurring kernel by eliminating the small, negative 

value of the estimated kernel, only keeping one mostly 

connected structure, and regularizing it to keep image energy 

constant.  

Large blurring kernels usually cause broad edges of the image. 

In this case, only using shock filter is not enough. We address 

this problem by using a multi-scale framework based on the fact 

that when we reduce the scale of image the width of the blurred 

edges become sharper as well; then, shock filter can play an 

effective role. 

Therefore, we introduce an intermediate image in order to 

alternatively estimate the kernel in a multi-scale framework. We 

use the selected sharp edges 
mX  to construct the objective 

function to acquire an intermediate image 

22
minargˆ m

X
in XXYXKX  

 （13） 

where the first term denotes the global reconstruction error, the 

second term is a spatial prior which does not blindly enforce 

small gradients near strong edges and thus allows for a sharp 

recovery. These two terms prove to be useful in solving our 

problem [14].  is the regularization weight, which is set as 
32 e . 

In the frequency domain, we process a few algebraic 

operations and get the closed-form solution: 

)
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FFFFFF

FFFFFF
F





  (14) 

We alternate between estimating the kernel and the 

intermediate image in a multi-scale framework to acquire a finer 

kernel estimation result. We use a coarse-to-fine pyramid of 

image resolution, in a similar manner as in [15]. We set the size 

ratio at 2 between each level where the number of levels can 

be adjusted by the size of K . We set kernel size at the coarsest 

level as 33  and perform 2q  alternating updates of 

inX̂ and K . The overall kernel estimation process is shown as 

Algorithm 1. 

Algorithm 1 Kernel estimation process 

1.Input: blurred imageY , regularization parameters  , ,  

iteration numbers q . 

2.Initialization: 0K , YX 0  

3. for 4:1i (For four levels of downsampling ) 

4. Acquisition of needed edges in current level
m

iX :  

  Preprocessing of iX by bilateral filtering, (9) and (10). 

5.for qj 1  do 

   Solve for iK by minimizing model (11) 

   Solve for in
iX̂ by minimizing model (13)  

   end for 

 Downsample in
iX̂  to form the new input 1iX  

 end for 

6. Output: Estimated kernel K . 
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B.  estimation 

In this part, we fix X and K to optimize . Then, the cost 

function E  can be simplified in the following form 

  1

2

2
min  

i ii ii DXR
i


         (15) 

which can further decompose into smaller problems for each 

patch 

1

2

2
min iii DX

i





               (16) 

where iX  denotes the 
thi  patch of the image and i is the 

representation coefficients of each non-overlapping patch. Then, 

the problem turn into a 1l norm optimization problem. 

Algorithms to solve this kind of problem have been extensively 

investigated. In our proposed method, we use the LARS method 

to find the solution. [16] 

C. X estimation 

We fix the value of  and k to estimate the recovery 

image X . Then, the solution of cost function E  can be 

simplified by solving the non-convex problem: 

3
22

2{X}
min  

ii ii XDXRYXK 
(17

) 

Using the half-quadratic penalty method [3], we introduce 

an auxiliary variable Z that allows us to move the derivative 

operator  out of the 32l  expression, thus enabling us to 

find the optimal X . The new cost function turns to 

3
22

2

2

2
-min  

ii ii ZZXDXRYXK 

(18) 

Here, as  during the optimization, the solution to 

(18) will converge to that of (17). In practice, it is not necessary 

to achieve convergence for each fixed  and one iteration of 

update will be sufficient [17]. We fix a  , then minimize (18) 

by alternating between optimizing X  and Z .  

① Given a fixed Z  and  , we conduct 2D Fast Fourier 

Transform (FFT) on (18) to diagonalize K and  . For 

simplicity , we set 
i iDU  . We then have 

ZUYKfIKK TTTT   )(
   (19) 

After collating (19) we have the optimal X : 
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   (20) 

Here, we define uzx ˆ,̂,̂ as the 2D form of UZX ,,  and 

dk,  as the corresponding 2D convolution kernel to ,K . 

Equation (20) only involves several multiplication processes 

and thus, can be calculated rapidly. 

 

 Given a fixed X and  , the cost function can then be 

optimized by minimizing each component: 
3/23/2

)()(minˆ  
j

j

j

j
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ZZXZ
j


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  (21) 

 We take the derivative of Z  and collate the equation, so we 

have: 

0
27

)ˆ()ˆ(3)ˆ(3
3

3
32234 




ZXZXZXZ

 (22) 

Using the analytic method provided in [3], we can quickly get 

a root of (22) which is the solution of Z .  

D. Summary of algorithm 

To summarize our proposed method, we present the 

pseudocode of the overall optimization framework as 

Algorithm2. We minimize the overall target cost function (7) by 

alternating solving the target variables. Fig.1 gives a visual 

example of the estimation process of our proposed method.  

 

 
(a)                             (b)                                (c) 

 
(d)                               (e)                              (f) 

Fig.1 Estimation process: (a) Blurred image (b) Extracted edges of 

bilateral filtering image (c) Shock filtering image (d)Extracted edges 

of shock filtering image (e) Selected edges by our proposed method   (f) 

deblurred image 

IV. EXPERIMENTAL RESULTS 

In the experiments, as color images can be easily processed 

by a simple concatenation of values of each RGB channel, we 

Algorithm 2 Overall optimization framework of our  

proposed method 

1.Input:blurred image Y , regularization parameters  ,,, ,  

Iteration number 3t . 

2.Initialization: 0K , 0X , 0  

3.for ti 1  do 

   Solve for K  according to Algorithm 1; 

   Solve for   by minimizing model (15); 

   Solve for X  by minimizing model (17); 

  end for 

4.Output: Deblurred image X , estimated kernel K . 
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work on gray-scale images that can reduce the computational 

complexity while testing the efficiency of the proposed method. 

All experiments are conducted on the same PC with an Intel(R) 

Pentium(R) CPU and 4GB memory. 

In practice, we set the parameters in (7) as 

10,5.2,5.2,200   and use 

1212   patches with 8 pixels overlapped to conduct the 

sparse representation. The dictionary provided by [13] is trained 

from the Berkeley Segmentation database with a size 

of 577144  . 

We conduct experiments on both synthetic motion blur 

images and real-world blurred images to verify the effectiveness 

of our proposed method. This also allows us to compare its 

deblurring ability with publicly available, state-of-art deblurring 

algorithms, including algorithms proposed by Krishnan et al. 

[15], Xu et al. [18], Pan et al. [19] and Bioucas-Dias et al. [20]. 

To be fair, we set the parameters of these algorithms according 

to their corresponding papers to ensure best performance. 

A.  Experiments on synthetic motion blur image 

In this section, we adopt synthesized blurred images as test 

images. As the base of a synthetic motion blurred image is 

known, we adopt a quantitative comparison index to evaluate 

performance. PSNR is widely used as an evaluation index, but 

many experimental results show that it is inconsistent with the 

visual quality of human eyes [21]. Therefore, we choose 

structural similarity (SSIM) as the evaluation index, under 

which a higher value represents a better restoration result. The 

SSIM index is defined as 

))((

)2)(2(
),(

2

22

1

22

21

CC

CC
yxSSIM

yxyx

XYyx










   (23) 

where xx  , and xy are the mean, the variance of x and the 

covariance of x andy , respectively. 1C and 2C  are constants 

given by 
255.2 and 

265.7 , respectively. Here, x andy are 

patches extracted from the same spatial location from the 

recovery image and the ground truth image.  

For our first experimental set, the test image is blurred by the 

four different blurring kernels shown in Fig.2 to obtain the 

degraded images. Kernel1 is set to be a motion blurred kernel 

(direction
135 with motion length 21). Kernel 2 and Kernel 3 

are two custom, complex blurring kernels that can efficiently 

test the stability of algorithms. Kernel4 is a Gaussian blurred 

kernel with standard derivation 2 pixels.  

 

    
Kernel 1            Kernel 2            Kernel 3            Kernel 4 

Fig.2 Blurring kernels 

 

We use three classical images --“Lena”, “Cameraman” and 

‘’Peppers‘’ as the original test images. The average SSIM value 

comparison of the deblurred images acquired by our proposed 

method and the other three comparison methods under these 

four blurring kernels are shown in Table 1. According to these 

results, our proposed method performs significantly better than 

the other methods for synthetic motion blur images with an 

average SSIM value more than 0.8.  

Table1 Deblurring result comparison under different kernels 

 (additive no noise) 

 

In order to intuitively compare the estimated kernels, we give 

a visual comparison example of the estimated kernel generated 

by our method and other available methods in Fig.3. The 

estimated kernel of our proposed method is clear and accurate 

compared to the ground truth in Fig.2 and has clearer structures 

and less impurity than the comparative methods. 

 

 
(a)Estimation results by Krishnan et al. [15] 

 
(b)Estimation results by Pan et al. [19] 

 
(c)Estimation results of our proposed 

Fig.3 Kernel estimation results 

 

To compare the algorithm speed, we record the average 

running time of our algorithm and the other three comparative 

methods in Table 2, from which we see that our proposed 

method is more efficient and faster.  

Table 2 Time consumption comparison 

 

To further evaluate the anti-noise performance of the 

proposed method, we conduct our experiments on test images 

that are blurred and add random Gaussian noise. We increase 

the noise gain and observe the SSIM value of the deblurred 

SSIM Krishnan  

et al.[15] 

Xu  

et al.[18] 

Pan  

et al.[19] 

Ours 

Kernel1 0.74688 0.79091 0.79702 0.8215 

Kernel2 0.72478 0.65568 0.67082 0.81467 

Kernel3 0.64349 0.71887 0.75554 0.82013 

Kernel4 0.83828 0.82043 0.81484 0.83142 

Algorithm Krishnan  

et al.[15] 

Xu  

et al.[18] 

Pan  

et al.[19] 

Ours 

Average 

time (s) 

70.270 110.721 500.342 28.517 
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images from different methods.  

The changing curves of the SSIM value with noise gain are 

shown in Fig.4. We plot it until the SSIM values of the 

deblurred images are lower than the original blurred images. As 

can be observed, Xu’s method is declining rapidly with 

increasing noise gain, which shows a relatively poor anti-noise 

performance while our proposed method shows a stable 

anti-noise performance  and better deblurring ability with the 

highest SSIM value. 

0 0.5 1 1.5 2 2.5 3 3.5
0.4

0.5

0.6

0.7

0.8

0.9

Noise Gain

S
S

IM

 

 

blurred image with no noise

blurred image with noise

Ours

Xu

Krishnan

Pan

 
Fig.4 Anti-noise performance illustration. We plot the changing curves 

of SSIM value with noise gain. 

B. Experiments on real-world blurred images 

In this section, we conduct experiments on real-world blurred 

images with different sizes and blurring levels presented in 

other deblurring works. To quantitatively compare and evaluate 

the deblurring ability, we employ NIQE, a blind image quality 

analyzer proposed in [22], to measure the performance of 

different methods. Analyses in [21] demonstrate the 

effectiveness of NIQE in evaluating real-world deblurred 

images. 

In Fig.5, we show an example from [8] that contains 

relatively dense edges and noisy points. From the final 

deconvolved images from different methods we can see that 

Bioucas-Dias’s and Krishnan’s method shows good anti-noise 

performance as the three noisy points at the bottom right reduce 

less image quality. However, our proposed method shows a 

higher quality of recovering edges and structures, and we can 

observe obviously clearer letters than the results of other 

deblurring methods. The NIQE evaluation results in Table3 

show the priority of our proposed method as well.  

 

 
(a)Blurred image            (b) Bioucas-Dias et al.[20] 

 
(c)Krishnan et al. [15]        (d) Xu et al. [18] 

 
(e) Pan et al. [19]                       (f)Ours 

 

Fig.5 Deblurred results of image “Book” using different methods 

 

Table 3 NIQE evaluation results of test images by different methods 

 

In Fig.6, another example with clear boundaries and small 

blurring kernel from [18] is shown. From visual perspective, the 

results of [20],[15] and [18] show “a layer of mist”. Our 

proposed method and [19] show a visually plausible results, 

while our proposed method gives sharper “window edges” of 

the image. The NIQE evaluation results shown in Table 3 are in 

accordance with this analysis, which demonstrates the 

effectiveness of our proposed method. 

 

 
(a)Blurred image             (b) Bioucas-Dias et al.[20] 

 Bioucas  

Dias[20] 

Krishnan 

et al.[15] 

Xu et  

al.[18] 

Pan et  

al.[19] 

Ours 

Book 4.7818 5.2969 4.8355 5.255 5.4816 

House 4.4576 4.0764 3.9665 4.8206 7.0263 

Building 3.6268 3.9476 4.3329 5.9769 5.8945 
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(c)Krishnan et al. [15]          (d) Xu et al.[18]   

 
(e) Pan et al .[19]                       (f)Ours 

Fig.6 Deblurred results of image “house” using differrent methods 

 

In Fig.7, we choose a challenging image example that was 

used in [8] which has dense edges and details with a big blurring 

kernel, in order to show the deblurring ability of different 

methods. The results of [20] and [15] show obvious blurring and 

ringing effect, while the results of [18] have some small ringing 

effects. The Results of [19] and our proposed method show 

relatively clear boundaries and clearer letters in the image. The 

NIQE evaluation results shown in Table6 are in accordance 

with the above analyses, since our proposed method has a higher 

NIQE value than [20], [15] and [18] and a comparably value of 

[19]. However, the method utilized in [19] is time consuming, 

which usually need several minutes to process. Thus, our 

proposed method is more effective and convenient.   

We should add that the proposed approach has been tried on 

many other real-world motion blurred images with the 

parameter settings suggested in this paper, most of which are 

deblurred with visually plausible perception. 

 

 
(a)Blurred image            (b) Bioucas-Dias et al.[20] 

 
(c)Krishnan et al .[15]             (d) Xu et al. [18] 

 
(e) Pan et al. [19]                      (f)Ours 

Fig.7 Deblurred results of image “Building” using differrent methods 

V. CONCLUSION 

In this paper, we propose a new motion deblurring method by 

combining global prior, sparse representation and kernel 

constraint in a unified framework, which is then transferred to 

an optimization problem. We alternately solve the variables to 

obtain the estimated kernel and deblurred image. To get an 

accurate kernel, we propose an edge selection method for 

selecting useful edges and introduce an intermediate image to 

acquire precise results. 

Experimental results show that the proposed method runs fast 

and achieves comparable performance to state-of-the-art 

algorithms, sometimes even outperforms them in both synthetic 

and real-world image experiments. 
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