
Design of Linear Functional Observers

with H∞ Performance

D. Krokavec and A. Filasová

Abstract—The paper solves the problem of parameter de-
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I. INTRODUCTION

To implement a linear state feedback control law it is

suitable to estimate only a linear function of the system

state vector. Such observers are called function (functional)

observers and realize linear control laws whose rank is the

number of system inputs [17]. Functional observers for linear

tim-invariant systems have been studied by many authors

(see, e.g., [4], [14], [29] and the references therein), however,

the most fundamental problem of finding the observer min-

imal order still remains unsolved [24]. This set of observers

can be regarded as forming a part of a linear feedback control

scheme used to generate the system state-dependent control

law value estimation.

The observers subjected to a given linear state vector

function allow implementation with a lover order of the

observer dynamics [1], [25], can be constructed for linear

time-varying system [20], [21] as well as used to disturbance

attenuation for systems with unknown input disturbances

[22], [23], [28]. This has narrowed the scope to which they

can effectively be applied in practical cases. The associated

theory is related to the fundamental linear system concepts

of controllability, observability, and stability while the design

procedures for observing a linear function of the state of a

multiple input, multi output (MIMO) system are concerned

with the minimal realization theory [10].

There exist different structures employed in the studies of

linear functional observers [8]. Using the matrix pseudoin-

verse approach, a framework providing existence conditions

for the r-order functional observer has been reported in [6].
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Providing the set of design formulas [6], a derived structure

is used in [7] to exploit a freedom in the output signal gain

tuning in the functional observer structures. Since potential

application in fault tolerant control (FTC) structures does

not require an estimate of the entire system state, a new

perspective of functional observers is convenient.

The paper is concerned with the problem of determining

the functional observer for a given control law. The problem

formulation, preliminary results and the separation principle

in design of functional observers appear in Section II and

Section III presents the pseudoinverse technique in design

of given class of functional observers where the estimation

error in the state function is treated as an additional distur-

bance input. Once the relations of the functional observer

parameters are determined, a constructive procedure is given

in Section IV for determining the observer dynamics, formu-

lating the design conditions needed to ensure the existence

of a functional observer by using linear matrix inequality

(LMI) techniques. The necessary modifications, reflecting the

forced mode control law structure, are additionally outlined

in Section V. In response, Section VI shows the performance

of the proposed approach using an application example and

Sec. VII gives some concluding remarks.

Throughout the paper, the following notations are used:

xT , XT denotes the transpose of the vector x and the matrix

X , respectively, Y ⊖1 designates Moore-Penrose pseudoin-

verse of the non-square matrix Y , for a square matrix X < 0
means that X is symmetric negative definite matrix, the

symbol In indicates the n-th order unit matrix, IR denotes

the set of real numbers and IRn, IRn×r refers to the set of

all n-dimensional real vectors and n× r real matrices.

II. SYSTEM DESCRIPTION

In the paper is considered the class of linear dynamic

systems which state-space description is

q̇(t) = Aq(t) +Bu(t) +Ed(t) , (1)

y(t) = Cq(t) , (2)

z(t) = Lq(t) , (3)

where q(t) ∈ IRn, u(t) ∈ IRr, y(t) ∈ IRm stand for the

state, control input and measurable output, z(t) ∈ IRh is the

vector to be estimated, d(t) ∈ IRp is unknown disturbance,

A ∈ IRn×n, B ∈ IRn×r, C ∈ IRm×n, L ∈ IRh×n, E ∈
IRn×p are known real matrices.
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Throughout the paper is considered the following standard

assumptions that the pair (A,B) is controllable and the

pair (A,C) is observable. Moreover, the following basic

propositions are introduced, which will play an important

role in the proof of main theorem presented below.

Proposition 1: [11] (Eigenvalue matrix decomposition)

Let Y ∈ IRm×n is a real square matrix with n linearly

independent eigenvectors ni, i = 1, 2, . . . , n. Then Y can

be factorized as

Y = NZN−1, (4)

where N ∈ IR is the square matrix whose i-th column is

the eigenvector ni of Y and Z is the diagonal matrix whose

diagonal elements are the corresponding eigenvalues.

Proposition 2: [2] (Matrix pseudoinverse) Let Θ is a

matrix and X , Y , Λ are known non-square matrices of

appropriate dimensions such that there yields the equality

XΘY = Λ . (5)

Then all solution to Θ means

Θ = X⊖1
ΛY ⊖1 +Θ

◦ −X⊖1XΘ
◦Y Y ⊖1, (6)

where

X⊖1 = XT (XXT )−1, Y ⊖1 = (Y TY )−1Y T , (7)

is Moore-Penrose pseudoinverse of X , Y , respectively, and

Θ
◦ is an arbitrary matrix of appropriate dimension.

Proposition 3: [5] (Lyapunov inequality) Autonomous

system (1), (2) with a bounded disturbance is asymptotically

stable if there exist a symmetric positive definite matrix

X ∈ IRn×n such that

X = XT > 0 , (8)

XA+ATX < 0 . (9)

Proposition 4: [9] (quadratic performance) If the matrix

A of system (1), (2) is stable and the disturbance d(t) is

bounded then

γ−1

∞

∞
∫

0

(yT (t)y(t)− γ∞dT (t)d(t))dt > 0 , (10)

where γ∞ ∈ IR is the H∞ norm of the disturbance transfer

function matrix.

Proposition 5: [3], [26] (Bounded real lemma (BRL))

Autonomous system (1), (2) with a bounded disturbance

is asymptotically stable if there exist a symmetric positive

definite matrix X ∈ IRn×n and a positive scalar γ∞ ∈ IR

such that

X = XT > 0 , γ∞ > 0 , (11)




XA+ATX ∗ ∗

ETX −γ∞Ip ∗

C 0 −γ∞Im



 < 0 . (12)

Hereafter, ∗ denotes the symmetric item in a symmetric

matrix.

III. FUNCTIONAL OBSERVER

In order to estimate z(t) it is proposed a functional

observer of the form [7]

ṗ(t) = Pp(t) +Qu(t) + Jy(t) , (13)

ze(t) = Rp(t) +Oy(t) , (14)

where the functional observer initial state p(0) is arbitrary,

ze(t) ∈ IRh is an estimate of z(t), p(t) ∈ IRh is the

state vector of the functional observer and the matrices

P ∈ IRh×h, Q ∈ IRh×r, J ∈ IRh×m , O ∈ IRh×m,

R ∈ IRh×h are the observer matrix parameters to bee

designed.

In general, the main objective is to design the functional

observer parameters such that the following errors in estima-

tion

ez(t) = z(t)− ze(t) , (15)

e(t) = Sq(t)− p(t) , (16)

converge asymptotically towards the zero equilibrium vectors

when t → ∞.

Note that if the pair (A,C) is unobservable, it is impos-

sible to estimate all system states. However, state function

z(t) = Lq(t) can be estimated.

Lemma 1: The system state estimation error e(t) can be

described by the equation

ė(t) = Pe(t) + SEd(t) (17)

if it is satisfied

SA− PS − JC = 0 , (18)

SB −Q = 0 , (19)

and, additionally,

L = RS +OC . (20)

Proof: If the structure of the error vector (16) it is prescribed,

then e(t) propagates as

ė(t) = Sq̇(t)− ṗ(t) =

= S(Aq(t) +Bu(t) +Ed(t))−

−(Pp(t) +Qu(t) + Jy(t)) =

= (SA− JC)q(t) + (SB −Q)u(t)−

−Pp(t) + SEd(t) .

(21)

Since (16) gives

p(t) = Sq(t)− e(t) , (22)

substituting (22) in (21) the expression to (21) may be re

written in terms of the FO matrices as

ė(t) = Pe(t) + SEd(t)+

+(SA− PS − JC)q(t) + (SB −Q)u(t) ,
(23)

which implies an autonomous dynamics (17) for the distur-

bance free system, if (18), (19) are satisfied. This concludes

the proof.
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Remark 1: Substituting (22) in (14) entails consequently

also that

ze(t) = −Re(t) + (RS +OC)q(t) , (24)

which, using (20), gives

ze(t) = −Re(t) +Lq(t) . (25)

Then, immediately, the evolution of the estimation error

ez(t) is described by the equation

ez(t) = Lq(t) +Re(t)−Lq(t) = Re(t) , (26)

which means that if e(t) converges to the equilibrium point,

also ez(t) converges to its equilibrium.

Lemma 2: (separation principle) The equivalent state-

space description of the system (1)-(3) with the functional

observer (13), (14) is of the form
[

q̇(t)
ė(t)

]

=

[

A+BL −BR

0 P

] [

q(t)
e(t)

]

+

[

E

SE

]

d(t) , (27)

ze(t) =
[

L −R
]

[

q(t)
e(t)

]

. (28)

Evidently, (27), (28) establish a separation principle in

design of an observer-based feedback stabilization scheme

and the functional observer dynamics, implying that the

observer matrix P can be designed autonomously.

Proof: Prescribing that

u(t) = ze(t) = Lq(t)−Re(t) (29)

and inserting (29) in (1), then it yields

q̇(t) = (A+BL)q(t)−BRe(t) +Ed(t) . (30)

Combining (1), (29) with (17) and (25) implies the structure

(27), (28). This concludes the proof.

Lemma 3: The system matrix U ∈ IRh×h is conditioned

by the relation

U = U1 −ZU2 , (31)

where

U1 =
(

LA−LANLΣ
⊖1

Ξ
)

L⊖1 , (32)

U2 = (I2m −ΣΣ
⊖1)ΞL⊖1 , (33)

NL = In −L⊖1L , (34)

Ξ =

[

CA

C

]

, Σ = ΞNL , (35)

U = RPR−1, (36)

while

L⊖1 = LT (LLT )−1 (37)

is the right Moore-Penrose pseudoinverse of the non-square

matrix L,

Σ
⊖1 = Σ

T (ΣΣ
T )−1 (38)

is the generalized Moore-Penrose pseudoinverse of the ma-

trix Σ and Z ∈ IRh×2m is an arbitrary matrix.

Proof: Starting from the relation (20) and despatching S as

follows

S = R−1L−R−1OC , (39)

it may be deduced that (18) is described by the following

compact form

SA− PR−1(L−OC)− JC = 0 (40)

and, subsequently, it follows directly that

PR−1L = SA− (J − PR−1O)C . (41)

Nominating the notation

R−1H = J − PR−1O , (42)

(41) can be represented as

PR−1L = SA−R−1HC . (43)

Multiplying the right side of (42) by the transpose of the

gain matrix LT leads to

PR−1LLT = (SA−R−1HC)LT , (44)

which implies the particular solution of the matrix product

PR−1 of the form

PR−1 = (SA−R−1HC)L⊖1, (45)

with the right Moore-Penrose pseudoinverse L⊖1 defined in

(20).

Moreover, multiplying the right side of (39) by the system

matrix A gives

SA = R−1LA−R−1OCA (46)

and it yields

SA−R−1HC =

= R−1(LA−OCA−HC) =

= R−1(LA−
[

O H
]

[

CA

C

]

,

(47)

as well as, using (35),

SA−R−1HC = R−1
(

LA−
[

O H
]

Ξ
)

. (48)

Then, substituting (48) in (45) and post-multiplying the

left side by the matrix R, a solution takes the form

RPR−1 =
(

LA−
[

O H
]

Ξ
)

L⊖1. (49)

Multiplying the right side of (43) by L means, with respect

to (43) and (44) that

PR−1L = SA−R−1HC = (SA−R−1HC)L⊖1L, (50)

which can be interpreted as

(SA−R−1HC)(In−L⊖1L)= (SA−R−1HC)NL= 0,

(51)

where NL is an orthogonal projector of L.

It is evident that with (48) it has to be

(R−1LA−R−1OCA−R−1HC)NL = 0 , (52)
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which implies using the same notation as in (49) that

R−1
(

LA−
[

O H
]

Ξ
)

)NL = 0 , (53)

LANL =
[

O H
]

ΞNL =
[

O H
]

Σ , (54)

respectively.

Considering in general that n ≥ 2h, then (54) can be

rewritten as

[

O H
]

ΣΣ
T = LANLΣ

T (55)

that is, similar to (49), the particular solution of [ O H ]
takes the following form

[

O H
]

= LANLΣ
⊖1, (56)

where the generalized Moore-Penrose pseudoinverse of the

matrix Σ is given in (37).

Multiplying the right side (56) by the composed matrix Σ

gives

[

O H
]

Σ = LANLΣ
⊖1

Σ =
[

O H
]

ΣΣ
⊖1

Σ , (57)

which can be interpreted as

[

O H
]

(I2m −ΣΣ
⊖1)Σ = 0 (58)

and, using an arbitrary matrix Z, in the sense of Proposi-

tion 2, the general solution of [ O H ] can be considered

as

[

O H
]

= LANLΣ
⊖1 +Z(I2m −ΣΣ

⊖1) . (59)

Since (49) constitutes the relation

U = RPR−1 =
(

LA−
[

O H
]

Ξ
)

L⊖1, (60)

substituting (60) then naturally (59) implies (31)-(33). This

concludes the proof.

Given Lemma 3 provides the basic guideline for functional

observer design using matrix pseudoinverse approach. It is

not suitable for testing the functional observer existence

since, depending on the matrix Z, all the matrices in the

above equations are unknown. Moreover, it has to be satisfied

the following necessary and sufficient condition for the

existence of the functional observer (13), (14).

Proposition 6: [6] The linear functional observer (13),

(14) associated with the system closed-loop system (27), (28)

exists if

rank









LA

CA

C

L









= rank





CA

C

L



 . (61)

Because this condition reflects the properties of the sys-

tem, they can be checked for existence of a functional

observer.

IV. FUNCTIONAL OBSERVER DESIGN

The following corollary is proposed for the functional

observer design to select a matrix R.

Corollary 1: If a matrix U ∈ IRh×h is a real square

matrix with h linearly independent real eigenvectors ri,

i = 1, 2, . . . , h, then, using (4), U can be factorized as

U = RPR−1, (62)

where R ∈ IRh×h is the square matrix whose i-th column is

the eigenvector ri of U and P is the diagonal matrix whose

diagonal elements are the corresponding eigenvalues.

Let a matrix U ∈ IRh×h is a real square matrix with

h linearly independent eigenvectors ri, i = 1, 2, . . . , h from

which two are complex conjugated (that is they are associated

wit a pair of complex conjugated eigenvalues). Considering,

for example, (62) as follows

R−1UR = P , (63)

where

P =















s1 · · · 0 0 0
...

. . .
...

...
...

0 · · · sh−2 0 0
0 · · · 0 sα + jsω 0
0 · · · 0 0 sα − jsω















. (64)

R =
[

r1 · · · rh−2 rαh + jrωh rαh − jrωh

]

, (65)

then it can write

URT = RTT−1PT , (66)

T = diag
[

Ih−2 0.5T q

]

, T q =

[

1 j

1 −j

]

, (67)

T−1 = diag
[

Ih−2 T p

]

, T p =

[

1 1
−j j

]

. (68)

0.5T pT q = Ih . (69)

Since it can be easily verified that

P s = T−1PT =















s1 · · · 0 0 0
...

. . .
...

...
...

0 · · · sh−2 0 0
0 · · · 0 sα −sω
0 · · · 0 sω sα















, (70)

Rs = RT =
[

r1 · · · rh−2 rαh −rωh

]

, (71)

the relation (66) takes the form

URs = RsP s , (72)

where Rs, P s are real matrices and the relation

U = RsP sR
−1

s (73)

gives the possibility to use in FO design Rs, P s.

The approach can also be applied in the case of occurrence

of further pairs of complex conjugated eigenvalues in U [16].
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Exploiting (62) or (73), the following theorems provide

conditions for convergence of the linear system state func-

tion.

Theorem 1: The functional observer (13), (14) is asymp-

totically stable if there exist a positive definite symmetric

matrix X ∈ IRh×h, and a matrix Y ∈ IRh×n such that

X = XT > 0 , (74)

XU1 +UT
1
X − Y U2 −UT

2
Y < 0 . (75)

If the above inequalities are satisfied, the auxiliary matrix

variables can be computed as follows

Z = X−1Y , (76)

U = U1 −ZU2 , (77)
[

O H
]

= LANLΣ
⊖1 +Z(I2m −ΣΣ

⊖1) . (78)

where the matrices U1, U2, NL and Σ are given as in

(32)–(35).

Consequently, using (62) or (73) to construct the regular

matrices P , R for the obtained Hurwitz matrix U , then the

observer parameters are solved as

S = R−1(L−OC) , (79)

Q = SB , (80)

J = R−1H + PR−1O . (81)

Proof: Adapting (8), (9), with respect to the matrix di-

mensions and the actually given notations, then for the

autonomous part of (17) it can write using a positive definite

matrix X ∈ IRh×h that

XU +UTX < 0 . (82)

Therefore, substituting (77) the inequality (82) takes the

form

X(U1 −ZU2) + (U1 −ZU2)
TX < 0 (83)

and using the notation

Y = XZ, (84)

then (83) implies (75) and (84) gives (77).

Constructing the composed matrix (78) and separating the

observer parameter O, then the relation (79) can be set using

(20) and, subsequently, the condition (19) specifies (80).

Consequently, separating the auxiliary matrix variable H

from (78), then the relation (42) implies (81). This concludes

the proof.

Note, the problem is reduced to find a Hurwitz matrix

U such that the observer is stable. Evidently, for an ar-

bitrary regular matrix R, the condition (62) implies that

the eigenvalues of U and P are identical. In this sense, to

tune the functional observer responses, an arbitrary positive

(negative) definite square matrix R of appropriate dimension

can be used in design, while an acceptable trivial choice is

the identity matrix.

Theorem 2: The functional observer (13), (14) is asymp-

totically stable with a quadratic constraints γ∞ if there exist

a positive definite symmetric matrix X ∈ IRh×h, a matrix

Y ∈ IRh×n and a positive scalar γ∞ ∈ IR such that

X = XT > 0 , γ∞ > 0 , (85)




XU1+UT
1
X−Y U2−UT

2
Y ∗ ∗

X −γ∞Ih ∗

Ih 0 −γ∞Ih



 < 0 . (86)

If the inequalities are satisfied, Z can be computed as

Z = X−1Y (87)

and exploiting the solution of (87), the FO parameters can

be computed by using (77)–(81).

Proof: To adapt BRL structure (12) for FO parameter design,

it is necessary at first to reformulate the quadratic constraint

(10). Using (17) and defining

e(t) = R−1eo(t) , (88)

it can write using (62) that

ėo(t) =

=RPR−1eo(t)+RSEd(t) = Ueo(t)+Eodo(t) ,
(89)

where

Eo = Ih , (90)

do(t) = RSEd(t) (91)

and to prescribe

yo(t) = eo(t) = Coeo(t) , (92)

where

Co = Ih . (93)

Thus, replacing in (12) the matrix A by U , the matrix

E by Eo and the matrix C by Co, as well as adequate

modifying the dimensions of the matrix inequality blocks,

then it is obtained




XU +UTX X Ih

X −γ∞Ih 0

Ih 0 −γ∞Ih



 < 0 . (94)

Finally, substituting (77) and using (84) then (94) implies

(86). This concludes the proof.

Note, using the design conditions (85), (86), the obtained

functional observer is stable and satisfies the condition

γ−1

∞

∞
∫

0

(eTo (t)eo(t)− γ∞dT
o (t)do(t))dt > 0 , (95)

where γ∞ ∈ IR is the H∞ norm of the generalized distur-

bance transfer function matrix God(s). Since

Gd(s) = R−1(sIh−U)−1RSE = (sIh−P )−1SE, (96)

it is evident that by selecting the matrix R can not change

dynamics of the disturbance action on the estimator.
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V. FORCED MODE CONTROL

In practice, the case with r = m (square plants) is often

encountered, where it is associated with each output signal

a reference signal. Such regime is usually called the forced

regime.

Definition 1: The forced regime for (1)-(3) is given by the

control policy

u(t) = Lq(t) +Ww(t) , (97)

where r = m, w(t) ∈ IRm is desired output signal vector,

and W ∈ IRm×m is the signal gain matrix.

Theorem 3: If the system (1)-(3) is stabilizable by the

control policy (97) and [27]

rank

[

A B

C 0

]

= n+m, (98)

then the matrix W takes the form

W = −(C(A−BOc)
−1U−1HC)−1B)−1, (99)

where

Oc = Ir +U−1(L−OC)B . (100)

Proof: In a steady-state, the disturbance-free system equa-

tions (1)-(3) and the functional observer equations (13), (14)

imply

0 = Aqo +Buo , (101)

0 = Ppo +Quo + JCqo , (102)

where qo, uo, po are the steady-state values vectors of q(t),
u(t), p(t), respectively.

Since (16) and (29) in a steady-state give

uo = Lqo −Reo = (L−RS)qo −Rpo , (103)

where eo is the steady-state values vector of e(t), and (102)

implies

po = −P−1(Quo + JCqo) , (104)

then, substituting (104) into (103) to eliminate the steady-

state value of the functional observer state vector,

uo = (L−RS)qo −RP−1(Quo + JCqo) (105)

and, consequently, using (20)

(Ir +RP−1Q)uo = (OC −RP−1JC)qo . (106)

To eliminate from a solution the derived functional ob-

server matrix parameters P , Q, R, it can write by using

(79), (80) and (60)

RP−1Q = RP−1SB = RP−1R−1RSB =

= RP−1R−1(L−OC)B = U−1(L−OC)B ,
(107)

where, evidently,

U = RPR−1, U−1 = RP−R−1. (108)

Analogously, to eliminate the derived parameter J , then

considering (81) it yields

OC −RP−1JC =

= OC −RP−1(R−1H + PR−1O)C =

= −RP−1(R−1HC = −U−1HC .

(109)

Therefore, inserting (107) and (109) into (106) it can

obtain

uo =

= −(Ir +U−1(L−OC)B)−1U−1HCqo =

= −O−1

c U−1HCqo ,

(110)

where the matrix Oc is defined in (100).

Substituting (110) into (101) it can write, with respect to

the control law (97),

(A−BO−1

c U−1HC)qo +BWwo = 0 , (111)

where wo is the steady-state values vector of w(t), and

evidently

qo = −(A−BO−1

c U−1HC)−1BWwo . (112)

Since (2) implies

yo = Cqo , (113)

where yo is the steady-state values vector of y(t), substitut-

ing (112) then (113) implies

yo = −C(A−BO−1

c U−1HC)−1BWwo . (114)

Therefore, considering yo = wo, then (114) implies (99).

This concludes the proof.

Remark 2: Evidently, for given L the matrix W depends

only on the primary defined auxiliary matrix variables,

specified by the solutions of (76), (77) and (78).

Proposition 7: [15] If the system (1), (2) is stabilizable

by the control policy (97), full system state vector q(t) is

available for control and the condition (98) is satisfied, then

the matrix W in (97), designed by using the static decoupling

principle, takes the form

W = −(C(A+BL)−1B)−1. (115)

The W matrix is nothing else than the inverse of the

closed-loop static gain matrix. Note, the static gain realized

by the W matrix is ideal in control only if the plant

parameters, on which the value of W depends, are known

and do not vary with time.

The forced regime is basically designed for constant

references and is very closely related to shift of origin. If the

command value w(t) is changed ”slowly enough,” the above

scheme can do a reasonable job of tracking, i.e., making y(t)
follow w(t) [12], [18].
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VI. ILLUSTRATIVE EXAMPLE

To illustrate the effectiveness of the algorithms, the linear

time-invariant system is considered [13], supporting the

model (1), (2) by the matrix parameters

A =









1.380 −0.208 6.715 −5.676
−0.581 −4.290 0.000 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104









,

B =









0.000 0.000
5.679 0.000
1.136 −3.146
1.136 0.000









, E =









1.046
2.600
2.186
0.739









,

C =

[

4 0 1 0
0 0 0 1

]

,

L =

[

0.1014 0.2357 −0.0147 −0.1030
1.1721 0.2466 −0.1472 0.4907

]

.

where an unknown input d(t) is assumed to be Gaussian

noise with with variance σ2

d = 10−4 and zero mean value. It

can be seen that the system is controllable and observable.

Thus, the secondary matrix parameters entering the design

conditions are computed as follows

L⊖1 =









0.1879 0.6764
3.2429 −0.1003

−0.0529 −0.0827
−2.0948 0.4478









,

NL =









0.1881 −0.2111 0.1023 −0.3125
−0.2111 0.2604 0.0329 0.3833
0.1023 0.0329 0.9870 0.0352

−0.3125 0.3833 0.0352 0.5645









,

Ξ =









6.5870 3.4410 20.2060 −16.8110
0.0480 4.2730 1.3430 −2.1040
4.0000 0.0000 1.0000 0.0000
0.0000 0.0000 0.0000 1.0000









,

Σ =









7.8345 −6.2745 20.1404 −9.5187
−0.0981 0.3401 1.3970 0.4825
0.8548 −0.8116 1.3964 −1.2150

−0.3125 0.3833 0.0352 0.5645









,

Σ
⊖1 =









0.0106 −0.1542 0.0760 −0.0788
−0.0069 0.2332 −0.1140 0.1188
0.0379 0.2954 −0.1396 0.1490

−0.0106 0.3398 −0.1661 0.1731









,

U1 =

[

−1.7486 −0.5145
−0.2561 −1.9341

]

,

U2 =









−0.4859 −0.1860
4.8517 0.4405
2.3383 2.2100

−7.3073 1.2446









.

Solving (85), (86) using SeDuMi package for Matlab [19],

the design problem is feasible with the resulting LMI matrix

variables

Y =

[

0.0210 0.0168 −0.0833 0.0724
0.0156 −0.0889 −0.3862 −0.0064

]

,

X =

[

1.8452 −0.0075
−0.0075 1.8026

]

> 0 ,

while the H∞ norm upper bound is γ∞ = 3.8604.

Thus, (87) gives

Z =

[

0.0114 0.0089 −0.0460 0.0392
−0.0087 −0.0493 −0.2144 −0.0034

]

,

and the implying auxiliary matrix parameters are computed

as follows

U =

[

−1.3919 −0.4634
0.4642 −1.4327

]

,

[ O H ] =

[

0.0338 −0.2377 0.1618 −0.1571
0.4433 −0.1238 0.3451 −0.0998

]

.

O =

[

0.0338 −0.2377
0.4433 −0.1238

]

, H =

[

0.1618 −0.1571
0.3451 −0.0998

]

,

respectively. Since (64), (65) takes the form

P u =

[

−1.4123 + 0.4633 i

−1.4123− 0.4633 i

]

,

Ru =

[

0.0311− 0.7061 i 0.0311 + 0.7061 ii

0.7074 0.7074

]

,

respectively, the parameters of (73) are

Rs =

[

0.0311 −0.7061
0.7074 0.0000

]

,

P s =

[

−1.4123 −0.4633
0.4633 −1.4123

]

and setting in the design condition P = P s and R = Rs

then, consequently, it yields

S =

[

−0.8498 0.3486 −0.8348 0.8686
0.0106 −0.3184 0.0319 −0.1525

]

,

Q =

[

2.0184 2.6263
−1.9454 −0.1005

]

,

J =

[

−0.3879 −0.0464
0.1113 −0.3294

]

.

To support the advantage arguments of the H∞ approach,

the set of linear matrix inequalities (74), (75) is also solved

using SeDuMi package. As result the following LMI matrix

variables are received:

Y =

[

0.0053 −0.0426 −0.0350 0.0503
0.0227 −0.0805 −0.2443 −0.0750

]

,

X =

[

0.6648 −0.0105
−0.0105 0.6202

]

> 0 .
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Fig. 1. Responses of system and functional observer
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b) Closed-loop system input estimate.

Fig. 2. Responses of functional observer

Applying (87), the observer regularizing matrix Z is

computed as

Z =

[

0.0085 −0.0661 −0.0589 0.0737
0.0367 −0.1309 −0.3948 −0.1197

]

,

and the imbedded auxiliary matrix parameters to be

U =

[

−0.7476 −0.4454
0.4454 −0.8480

]

,

[ O H ] =

[

0.0291 −0.1974 0.1907 −0.2089
0.4262 −0.0773 0.5436 −0.0017

]

.

O =

[

0.0291 −0.1974
0.4262 −0.0773

]

, H =

[

0.1907 −0.2089
0.5436 −0.0017

]

.

The following matrices P u, Ru, satisfying the require-

ments (64), (65), are found

P u =

[

−0.7978 + 0.4425 i

−0.7978− 0.4425 i

]

,

Ru =

[

0.7071 0.7071
0.0797 + 0.7026 i 0.0797− 0.7026 ii

]

,

so that the parameters Rs, P s which satisfies (73) are

Rs =

[

0.7071 0.0000
0.0797 0.7026

]

,

P s =

[

−0.7978 −0.4425
0.4425 −0.7978

]

.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 199



Finally, setting P = P s, R = Rs and exploiting the

above given intermediate data, the functional observer matrix

parameters have to be

S =

[

−0.0213 0.3333 −0.0619 0.1334
−0.7555 0.3132 −0.8091 0.7932

]

,

Q =

[

1.9742 0.1948
1.7607 2.5453

]

,

J =

[

−0.0295 −0.0381
0.2812 −0.0299

]

.

All simulations are done in the forced mode, conditioned

by availability of the full system state vector q(t) to apply

the control law (97), where the associated signal gain matrix

W is computed by using (115) as

W =

[

0.0024 0.1055
−0.0957 0.0401

]

,

the desired steady state vector of the output variables is

wT
o = [ 2 1 ] and the starting system and observer initial

vectors values are q(0) = 0, p(0) = 0.

When the system inputs and outputs are obtained as

shown in Fig. 1c) and Fig. 1d), and the applied functional

observer parameters are those resulted from the conditions

defined by Theorem 2, the functional observer state and the

reconstruction of the system inputs are as shown in Fig. 1a)

and Fig. 1b), respectively. In this case, it is clear that the

functional observer exhibits very good disturbance decou-

pling properties and successfully estimates the evolution of

the control law.

Considering the same inputs and outputs as shown in

Fig. 1c) and Fig. 1d), but using the functional observer

parameters accomplished by solving the inequalities defined

in Theorem 1, the trajectories of the functional observer

state are drawn in the Fig. 2a) and the system inputs

estimates are shown in Fig. 2b). Even in this case, the

estimation exactitude is sufficiently accurate, but the func-

tional observer dynamic properties, determined by this set

of matrix parameters, are worse. It is consistent with the

results implying from the set of eigenvalues of the functional

observer matrix P , when the H∞ approach determines

ρ(P ) = {−1.4123 ± 0.4633 i} while the Lyapunov method

leads to values ρ(P ) = {−0.7978± 0.4425 i}.

In terms of suppressing the impact of unknown disturbance

on the state function estimate error both approaches are

comparable since, if (96) is used for evaluation, the H∞

approach implies ‖S‖F = 1.5266 and the Lyapunov method

gives ‖S‖F = 1.4120. Here ‖∗‖F means the Frobenius norm

of a non-square matrix.

It can be concluded from the above simulation results

that also for forced modes the asymptotic convergence of

functional state estimation errors can be achieved using both

two methods in accordance with the above theoretical analy-

sis, but the proposed H∞ approach improves the rapidity of

estimation evidently.

VII. CONCLUDING REMARKS

The design problem for one class of the functional ob-

server structures is investigated in the paper. The newly

formulated design conditions, allowing enough flexibility to

guarantee asymptotic stability and dynamics for observer

structures, are proven in the sense of the bounded real

lemma and Lyapunov method. The design conditions are

accounted in terms of LMIs, and use the standard numerical

optimization operations to manipulate the matrix inequalities.

Formulation in dependency on the forced mode and solution

of the design problem by applying H∞ norm techniques

support solutions founded by applying H∞ optimization

within an LMI formulation.

Assuming the existence of the suitable matrices, it is

demonstrate that the reconstruction of the input vector of

the system is adequate. The proposed methods do not use

adjustment technique to set some prescribed matrix variables

and to calculate others in an iterative way.

Further research works include aspects of the system

parameter fault detection and isolation using the functional

observers strategy, unknown input functional observer design

to suppress disturbance action and computational algorithms

to address robustness and performance specifications.
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