
A comparison of
Multi-Step and Multi-stage Methods

Yonghyeon Jeon
Department of Mathematics,

Kyungpook National University,
Daegu, 41566, Republic of Korea

Email: dydgus1020@knu.ac.kr

Sunyoung Bu
Department of Liberal arts,

Hongik University,
Sejong, 30016, Republic of Korea

Email: syboo@hongik.ac.kr

Soyoon Bak
Department of Mathematics,

Kyungpook National University,
Daegu, 41566, Republic of Korea

Email: jiya525@knu.ac.kr

Abstract—We study a multi-stage method compared with a
multi-step method for solving a stiff initial value problem. Due
to expensive computational costs of the multi-stage methods for
solving a massive linear system induced from the linearization
of a highly stiff system, stiff problems are usually solved by
the multi-step method, rather than the multi-stage method. In
this work, we investigate properties of both the multi-step and
the multi-stage methods and discuss the difference between
the two methods through numerical tests in several examples.
Furthermore, the advantages of multi-stage methods can be
heuristically proved even for stiff systems by the comparison
of two methods with several numerical tests.

I. INTRODUCTION

It is well known that every time dependant problem can
be solved either a multi-stage method or multi-step method.
In general, there is no significant difference of the structure
between them when multi-stage method is applied to initiate
the multi-step method [14]. The comparison of the methods
is quite interested in the practical computations and efficiency
of methods for each problem. Multi-stage methods such as
Runge-Kutta type method do not require additional memory
for function values at previous steps, since it does not use
any previously computed values. Compared with multi-stage
methods, multi-step methods require additional memory in the
sense that they use previous computed function values, so
that they have insufficient function values for an initial data.
Another big difference comes from the size of the system to
compute each time step. The size of system to solve for the
multi-stage method is d×s for each time step, while multi-step
methods need to solve only a system of size d, where d and s
represent the dimension and number of stages of the system,
respectively. This difference of size gives a critical issue of
the choice of the methods for the problems we concern.

In particular, the question for more efficient method is
quite susceptible to the problems which are stiff and non-
linear. For non-linear stiff problems, multi-step methods are
traditionally recommended to apply, since function evaluations
are computationally expensive, which is required to evaluate
only once at each time step, but several times for multi-stage
methods [1], [5]. A lot of research has been to develop a
numerical solver for big size of system such as eigenvalue
decomposition and LU decomposition, etc [4], [5], [10], [13],

with the development of computer, so that multi-stage methods
are comparable with multi-step methods for non-linear stiff
problems. In addition, multi-stage methods have no restriction
to express an initial data contrast to the other. Nowadays there
is not such a clear a-priori distinction between multi-stage
and multi-step methods. In this study, we compare the two
methods, multi-step and multi-stage methods, by investigating
properties of both method and examine advantages of the each
method suitable for solving stiff systems.

II. BACKGROUND

We describe a formula of multi-step and multi-stage method.
As before, let φ′(t) = f(t, φ(t)) and h > 0 and define the
nodes by tn = t0 + nh, n ≥ 0. The general form of a multi-
step methods is given by

φn+1 =

p∑
j=0

ajφn−j + h

p∑
j=−1

bjf(tn−j , φn−j) n ≥ p (1)

The coefficients a0, · · · , ap, b−1, b0, · · · , bp are constants, and
p ≥ 0. If either ap 6= 0 or bp 6= 0, the method is called a p+1
step method. The general form of a multi-stage method(RK)
is given by

φn+1 = φn + h
s∑

i=1

biki, (2)

where

ki = f

t+ cih, φn + h
s∑

j=1

aijki

 . (3)

To comparison two methods for stiff problems, we take one
of implicit Rung-Kutta method(IRK) of order 3 and backward
difference formula(BDF) of order 3 as the multi-stage and the
multi-step method, respectively. There is a formula of BDF3.

yn+3−
18

11
yn+2+

9

11
yn+1−

2

11
yn =

6

11
hf(tn+3, yn+3) (4)

And there is a butcher tableau for IRK3 instead of form (2)
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TABLE I
THE ORDER CHECK FOR RK3 AND BDF3 WITH ν = −1

RK3 BDF3

h Err(h) rate Err(h) rate

2−1 9.8926e-5 - 0.0219 -

2−2 1.6149e-5 2.6149 0.0029 2.9189

2−3 2.2800e-6 2.8243 3.6735e-4 2.9808

2−4 3.0244e-7 2.9143 4.6110e-5 2.9940

2−5 3.8928e-8 2.9577 5.7679e-6 2.9990
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Additionally, considering stability, RK3 is L-stable and BDF3
is A(α)-stable.

III. ADVANTAGE OF MULTI-STAGE METHOD

For comparison of numerical results, we introduce the
following notations:

Err(h) = max
1≤i≤n

||y(ti)− yi||∞, (5)

rate =
log(Err(h1)/Err(h2))

log(h1/h2)
, (6)

where ‖·‖∞ is the maximum norm. We test Prothero-Robinson
Equation [1], which is a well known problem for testing for
ODE solvers,

φ′(t) = ν(φ(t)−g(t))+g′(t), t ∈ (0, 10]; φ(0) = 0, (7)

where the eigenvalue ν is a parameter to present stiffness of
(7) and g(t) = sin(t). We examine both non-stiff and stiff
cases. The parameter ν is setted to −1 and −106 for non-
stiff and stiff, respectively. The exact solution of this problem
is φ(t) = sin(t). Note that the exact solution does not have
stiffness, but the magnitude of the eigenvalue ν causes the
stiffness of the problem. The first aim of numerical test is
to check a convergence order. There are two tables. One is
a result of non-stiff case as shown in Table.I. The other is a
result of stiff case, Table.II. In Table.I and Table.II, we display
Err(h) and rate for the step size h = 2−n, n = 1, 2, 3, 4, 5.
It can be seen that two methods have numerically convergence
order 3.

The second aim is to observe the accuracy. For the test, we
use a fixed step size h = 0.5. Also, the accuracy test is proceed
for non-stiff and stiff cases. For comparison of the accuracy,
we measure the absolute error at each integration step. As
seen in the Fig.1 and Fig.2, the accuracy of multi-stage
method(RK3) is much better than multi-step method(BDF3).
In non-stiff case, absolute error of BDF3 has a magnitude
1.0e−2 on average. But absolute error of RK3 has a magnitude

TABLE II
THE ORDER CHECK FOR RK3 AND BDF3 WITH ν = −106

RK3 BDF3

h Err(h) rate Err(h) rate

2−1 9.7977e-10 - 3.0343e-8 -

2−2 1.2183e-10 2.9957 3.8784e-9 2.9679

2−3 1.5254e-11 2.9976 4.8741e-10 2.9922

2−4 1.9069e-12 2.9999 6.1006e-11 2.9981

2−5 2.3836e-13 3.0000 7.6286e-12 2.9995
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Fig. 1. Absolute error with stiffness λ = −106 and with having the same
time step size

1.0e− 4 on average. In stiff case, absolute error of BDF3 has
a magnitude 1.0e− 7 on average. On the other hand absolute
error of RK3 has a magnitude 1.0e− 9 on average.

Finally, we test more complex Prothero-Robinson Equation
given by[
φ′1(t)
φ′2(t)

]
=

[
−λ1

(
φ1(t)− sin(t)

)
+ cos(t)

−λ2
(
φ2(t)− cos(t)

)
− sin(t)

]
t ∈ [0, 10]

(8)
where λ1 = 1.0e + 6, λ2 = 1, exact solution is
[φ1(t), φ2(t)]

T = [sin(t), cos(t)]T .
We try comparison two methods on different condition. The
step size h̃ for multi-stage method is changed to h̃ = h/3. The
reason why the condition taken is shown in Fig.2. One can
say that one step in multi-step method and one stage in multi-
stage method have similar meaning. For the comparison, we
measure the absolute error at each integration step. From the
combined result of Fig.3 and Fig.4, we can know that multi-
stage method is superior to multi-step method. Furthermore,
we can see that multi-stage method is better from the result
of relation between absolute error and costs(the number of
function evaluations)

IV. CONCLUSION

Throughout several preliminary tests, we find a multi-stage
method is much better than multi-step method in terms of
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Fig. 2. Absolute error with stiffness λ = −106 for (7). The step size of RK3
is 3 times larger than that of BDF3
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Fig. 3. Absolute error of 1st component with stiffness λ = −106 for (8).
The step size of RK3 is 3 times larger than that of BDF3
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Fig. 4. Absolute error of 2nd component with stiffness λ = −106 for (8).
The step size of RK3 is 3 times larger than that of BDF3
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Fig. 5. Absolute error versus the number of function evaluation with stiffness
λ = −106 for 8. The step size of RK3 is 3 times larger than that of BDF3

the error behavior. In the further research, we would like to
analyze these phenomena in terms of a concrete mathematical
tool.
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