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Abstract—In this paper, we develop a backward
semi-Lagrangian method for solving the coupled Burgers’
equation. The main difficulty in the backward semi-Lagrangian
method for this problem is treating the nonlinearity in the
diffusion-reaction type equation, which has a reaction coefficient
that is given in terms of coupled partial derivatives. To handle
this difficulty, we proposed a new strategy using an extrapolation
technique to split the nonlinearity into two diffusion-reaction
boundary value problems, which are then solved in turn. In
addition, we demonstrated the numerical accuracy and efficiency
of the present method by comparing the numerical results
with analytical solutions, or other existing numerical solutions
that use alternate methods. In addition, we numerically proved
that the proposed method exhibits second-order temporal
convergence and fourth-order spatial convergence.

I. INTRODUCTION

The model problem is the coupled viscous Burgers’
equation
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with initial and boundary conditions

u1(0, x) = u0
1(x), u2(0, x) = u0

2(x), x ∈ [xL, xR],

u1(t, xL) = g1(t), u1(t, xR) = g2(t), t ∈ [0, T ],

u2(t, xL) = g3(t), u2(t, xR) = g4(t), t ∈ [0, T ],

(2)

which is a simple model of the sedimentation or evolution
of the scaled volume concentrations of two types of particles
in fluid suspensions or colloids under the effect of gravity
(see [1]). Here, δκ (κ = 1, 2) are positive constants and ακ,τ

(τ = 1, 2) are constant depending on the Stokes velocity.
The backward semi-Lagrangian method (BSLM),

introduced by Robert [6] in the beginning of the 1980s,
has been used extensively for numerical simulations in
fluid dynamics. The BSLM has good stability, and solves
the problems implicitly along the characteristic curves of
fluid particles in the opposite-direction, with large time
steps. Recently, the BSLM has become increasingly popular
in applied mathematics and scientific problems of CFD,
and has been applied to the numerical solution of the

advection-diffusion equation [8], [9], Burgers’ equations
[7], the incompressible Navier-Stokes equation [4], [8],
the gyro-kinetic problem [2], and the shallow-water model
[5] among others. However, to the best of our knowledge,
no BSLM for the coupled nonlinear Burgers equation has
been developed so far. Hence, motivated by the success of
the BSLM with the above advection processes, the goal
of this paper is to further develop the BSLM to solve the
model problem. For this purpose, let us introduce the curves
πκ(s, x; t) (κ = 1, 2) which satisfy the initial value problems
(IVP)

dπκ(s, x; t)

dt
= f(t, πκ(s, x; t)), t < s; πκ(s, x; s) = x,

f(t, π(t)) := ακ,1u1(t, π(t)) + ακ,2u2(t, π(t)),
(3)

where uκ are the solutions of (1), and x denotes the
arbitrary spatial variable. Then, from (1), the total derivatives
of uκ(t, πκ(s, x; t)) along each curve πκ(s, x; t) satisfy
the following system of coupled nonlinear diffusion type
equations:
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(4)

Notice that the original problem (1) is changed by a coupled
problem that simultaneously solves both the IVP (3) and the
nonlinear diffusion type equations (4) at each integration step,
which is a process of the BSLM. However, it must be noted
that the diffusion-reaction problem (4) becomes a nonlinear
system that has a reaction coefficient consisting of coupled
partial derivatives. This coupled nonlinear structure does
not feature in the BSLM for a standard advection-diffusion
equation and is the main difficulty to overcome in the BSLM
for the model problem (1).

The primary goal of this paper is to develop an efficient
numerical method for solving the BSLM system in such a
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way that our solution retains the advantage of conventional
temporal second-order BSLMs.

II. LINEARIZATION METHOD FOR (4)

In this section, we develop a linearization method to split
the coupled nonlinear diffusion system (4) into two linear
diffusion-reaction equations. To do this, let us introduce
the notation um(x) := u(tm, x) for the function u. After
evaluating (4) at the time t = tm+1 by setting s = tm+1

and then applying the second-order backward differentiation
formula (BDF2) to approximate the total derivatives, the
system (4) becomes a steady state system of coupled diffusion
equations with an asymptotic term that is O(h2).

3
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(5)

where

rm+1
κ (x) =

4um
κ (πκ(tm+1, x; tm))− um−1

κ (πκ(tm+1, x; tm−1))

2h
.

(6)
Notice that the diffusion-reaction system (5) still has a
nonlinear term as the reaction coefficients couple partial
derivatives with one another. To deal with this difficulty while
maintaining a coupling property between u1 and u2,we apply
an extrapolation scheme for the function um+1

2 at time tm+1

in the first equation of (5) as follows:

um+1
2 (x) = ũm+1

2 (x)+O(h2), ũm+1
2 (x) := 2um

2 (x)−um−1
2 (x).

(7)
And then, we solve the linear diffusion-reaction equation for
um+1
1 described by

3
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um+1
1 (xL) = g1(tm+1), um+1

1 (xR) = g2(tm+1).
(8)

Then, by using the solution um+1
1 , we sequentially solve the

linear diffusion-reaction equation for um+1
2 described by

3
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um+1
2 (xL) = g3(tm+1), um+1

2 (xR) = g4(tm+1).
(9)

Consequently, (4) is split into the two linear diffusion-reaction
boundary value problems (BVPs) given by (8) and (9). We
highlight that for a discretization of (8) and (9), the function
rm+1
κ defined by (8) must be evaluated at the departure points

of the curve satisfying the IVPs (3), and whose velocities are
given by a linear combination of the unknown solutions of (8)

and (9) in each time integration. Furthermore, from BVPs (8)
and (9), we can find approximate values for the concentrations
um+1
κ at the grid points only. However, since the departure

points πκ(tm+1, x; tm−l) (l = 0, 1), do not coincide with
grid points, we will use the Hermite cubic interpolation H
introduced in [10] to make a fully discretized system for both
problems (8) and (9).

III. NUMERICAL METHODS

In this section, we present on the implementation used
to find the approximate solutions vm+1

κ,j for the solutions
um+1
κ,j := um+1

κ (xj) of the diffusion-reaction problems (8)
and (9), respectively. To do this, we use the fourth-order finite
difference scheme, and the ECM (for more detailed, see [4])
with the previous approximations vkκ,j (k ≤ m, 1 ≤ j ≤ N̄ )
which are assumed to have already been calculated. For
convenience, let us introduce a vector

vk
κ :=

[
vkκ,0, v

k
κ,1, . . . , v

k
κ,N

]T
, κ = 1, 2.

We begin with an approximation scheme for the IVPs (3)
based on the ECM. To apply the ECM, at each interior grid
point xj , we take an Euler’s polygon yκ,j(t) defined by

yκ,j(t) := min{max{ŷκ,j(t), x0}, xN},
ŷκ,j(t) := xj + (t− tm+1)

(
ακ,1v

m
1,j + ακ,2v

m
2,j

)
,

(10)

where we used a min-max technique so that the Euler’s
polygon yκ,j(t) only includes points inside the computational
domain. Then, we can find the approximation of the departure
points πκ,j(tm−l) := πκ(tm+1, xj ; tm−l), l = 0, 1 as follows:

πκ,j(tm−1) ≈ yκ,j(tm−1) + 2h
y′κ,j(tm)− f(tm, yκ,j(tm))

1 + hfx(tm, yκ,j(tm))
.

(11)
Since the values yκ,j(tm) given by (10) do not typically align
with the grid points, approximate values for the functions f
and fx are required in (11). To find suitable approximations,
we use the fourth-order finite difference and the Hermite
cubic interpolation (see [10]). More precisely, we approximate
f(tm, yκ,j(tm)) and fx(tm, yκ,j(tm)) in (11) by

f(tm, yκ,j(tm)) ≈ f̂m
κ,j , fx(tm, yκ,j(tm)) ≈ f̌m

κ,j ,

f̂m
κ,j := ακ,1Hvm

1 (yκ,j(tm)) + ακ,2Hvm
2 (yκ,j(tm)),

f̌m
κ,j := ακ,1H

(
D1v

m
1

)
(yκ,j(tm))

+ ακ,2,H
(
D1v

m
2

)
(yκ,j(tm)),

(12)

respectively, and numerically approximate πκ,j(tm−1) by

πκ,j(tm−1) ≈ yκ,j(tm−1)+2h
(
1+hf̌m

κ,j

)−1(
y′κ,j(tm)−f̂m

κ,j

)
.

(13)
Recall that an approximation of πκ,j(tm) is also required to
approximate the values rm+1

κ (κ = 1, 2) defined by (6). To
find such an approximation, we use the Taylor expansion and
πκ,j(tm−1) as given by (13), the Hermite interpolation H,
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together with (13), the approximation of πκ,j(tm) is given as
follows:

πκ,j(tm) ≈ 1

4

(
xj + 3πm−1

κ,j + 2h

2∑
l=1

ακ,lHvm−1
l (πm−1

κ,j )
)
.

(14)
We are now ready to introduce a fully discretized system

for (8) and (9). Using the approximations of πκ,j(tm−l) (l =
0, 1) defined by (13) and (14) with the interpolation H, we
first approximate rm+1

κ defined in (6) at the grid point xj as
follows:

rm+1
κ,j := rm+1

κ (xj) ≈
1

2h

(
4Hvm

κ (πm
κ,j)−Hvm−1

κ (πm−1
κ,j )

)
.

(15)

Now, we introduce the vector labeled w̃, constructed from
the vector w by taking only the interior element, given by

w̃ :=
[
w1, w2, . . . , wN̄

]T
.

After evaluating (8) and (9) at the interior grid point xj and
then applying the finite difference weight matrices D̃k, (k =
1, 2) to the result, we can obtain the linear system( 3

2h
I + α1,2diag(C)− δ1D̃2

)
ũm+1
1

= r̃m+1
1 + bm+1

1 +O
(
h2 +△x4

)
,

(16)

where uk
κ (k = m,m± 1) are the vectors defined by

uk
κ :=

[
uk
κ,0, u

k
κ,1, . . . , u

k
κ,N ,

]T
and

(
w
)
j

denotes the j-th component of the vector w.

Additionally, I is the identity matrix of size N̄ ,

C := D̃1

(
2ũm

2 −ũm−1
2

)
, r̃m+1

1 :=
[
rm+1
1,1 , rm+1

1,2 , . . . , rm+1
1,N̄

]T
and bm+1

1 is a boundary vector defined as:

bm+1
1 :=

δ1
12∆x2

[
10gm+1

1 ,−gm+1
1 , 0, . . . , 0,−gm+1

2 , 10gm+1
2

]T
− α1,2

12∆x

[
−3χ1g

m+1
1 , χ1g

m+1
1 , 0, . . . , 0, χ2g

m+1
2 ,

− 3χ2g
m+1
2

]T
,

where χ1 := 2gm3 − gm−1
3 and χ2 := 2gm4 − gm−1

4 . Finally,
after truncating the asymptotic term which is O(h2 + △x4)
of (16), and replacing ũm

κ and r̃m+1
1 by ṽm

κ and d̃m+1
1 ,

respectively, we get the fully discretized system of ṽm+1
1 that

approximates ũm+1
1 , and solves the system( 3

2h
I + α1,2diag

(
C̃
)
− δ1D̃2

)
ṽm+1
1 = d̃m+1

1 + bm+1
1 , (17)

where

C̃ := D̃1

(
2ṽm

2 −ṽm−1
2

)
, d̃m+1

1 :=
[
dm+1
1,1 ,dm+1

1,2 , . . . , dm+1
1,N̄

]T
.

Using the approximate solution ṽm+1
1 and the above same

discretization procedure for (8), one can get an approximation
ṽm+1
2 for ũm+1

2 by solving the following system( 3

2h
I+α2,2diag

(
D̃1ṽ

m+1
1

)
−δ2D̃2

)
ṽm+1
2 = d̃m+1

2 +bm+1
2 ,

(18)
where

d̃m+1
2 :=

[
dm+1
2,1 ,dm+1

2,2 , . . . ,dm+1
2,N̄

]T
,

bm+1
2 :=

δ2
12∆x2

[
10gm+1

3 ,−gm+1
3 , 0, . . . , 0,−gm+1

4 , 10gm+1
4

]T
− α2,2

12∆x

[
−3gm+1

1 gm+1
3 , gm+1

1 gm+1
3 , 0, . . . , 0,

gm+1
2 gm+1

4 ,−3gm+1
3 gm+1

4

]T
.

IV. NUMERICAL EXPERIMENTS

In this section, in order to gain insight into the performance
of the proposed method and to compare their accuracy with
those of other existing schemes, one example is tested. The
accuracy of the numerical solutions is measured using the
maximum norm error E∞(t) and the relative L2 norm error
E2(t) defined by

E∞(tm) = max
j

|um
j − vmj |,

E2(tm) =
(∑

j

|um
j − vmj |2

)1/2/(∑
j

|um
j |2

)1/2

,
(19)

where uk is the exact solution at time t = tm (m = 1, ...,M)
on the grid point xj and vmj is its approximation for each
0 ≤ j ≤ N.

Example We consider the coupled Burgers’ equations (1) over
a domain [−20, 20], with α1,1 = α2,1 = −2, α1,2 = α2,2 =
2.5 and δ1 = δ2 = 1. The boundary and initial conditions are
taken from the analytic solution given by [3]

u1(t, x) = u2(t, x) = a0

(
1− tanh

(3
2
a0(x− 3a0t)

))
,

where a0 is an arbitrary constant. For a different parameter
a0, the solution represents a different anti-kink wave.

TABLE I
NUMERICAL TEMPORAL CONVERGENCE RATES OF EXAMPLE WITH

(a0, N) = (0.1, 1000) AT TIME t = 1.0.

h
u1 u2

E∞(t) Rate E2(t) Rate E∞(t) Rate E2(t) Rate

1/10 1.06E-7 - 3.09E-7 - 2.95E-8 - 8.23E-8 -
1/20 2.86E-8 1.89 8.35E-8 1.89 7.92E-9 1.90 2.22E-8 1.89
1/40 7.41E-9 1.95 2.16E-8 1.95 2.05E-9 1.95 5.76E-9 1.95
1/80 1.88E-9 1.98 5.51E-9 1.97 5.22E-10 1.97 1.47E-9 1.97
1/160 4.74E-10 1.99 1.39E-9 1.97 1.33E-10 1.97 3.74E-10 1.97

To demonstrate the temporal and spatial convergence orders,
and to show the superiority of our proposed method, a number
of sets for numerical experiments using this example were
conducted. In the first set of experiments, we numerically
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TABLE II
NUMERICAL SPATIAL CONVERGENCE RATES OF EXAMPLE WITH

(a0, h) = (0.1, 0.001) AT TIME t = 1.0.

N
u1 u2

E∞(t) Rate E2(t) Rate E∞(t) Rate E2(t) Rate

40 1.11E-6 - 2.98E-6 - 1.11E-6 - 2.98E-6 -
80 7.12E-8 3.96 1.92E-7 3.96 7.12E-8 3.96 1.92E-7 3.96
160 4.48E-9 3.99 1.21E-8 3.99 4.49E-9 3.99 1.21E-8 3.99
320 2.73E-10 4.03 7.48E-10 4.02 2.84E-10 3.98 7.67E-10 3.98
640 1.75E-11 3.97 4.73E-11 3.98 2.08E-11 3.77 5.42E-11 3.82

TABLE III
COMPARISON OF THE ERRORS OF EXAMPLE WITH RESULTS FROM LAI ET

AL. [3] FOR u1 .

a0 = 0.1

Lai [3] Present
t h = 0.001, N = 320 h = 0.1, N = 160

E∞(t) E2(t) CPU E∞(t) E2(t) CPU
1.0 5.5555E-7 1.4884E-6 0.0720 1.0480E-7 3.0404E-7 0.0242
2.0 1.0359E-6 2.7891E-6 0.1297 2.0827E-7 6.1703E-7 0.0407
3.0 1.4588E-6 3.9361E-6 0.1897 2.9491E-7 8.8782E-7 0.0555
4.0 1.8346E-6 4.9545E-6 0.2451 3.6827E-7 1.1220E-6 0.0675
5.0 2.1723E-6 5.8640E-6 0.3070 4.3088E-7 1.3244E-6 0.0867
10.0 3.4584E-6 9.2232E-6 0.6021 6.3692E-7 1.9802E-6 0.1559

a0 = 0.5

Lai [3] Present
t h = 0.001, N = 320 h = 0.04, N = 160

E∞(t) E2(t) CPU E∞(t) E2(t) CPU
1.0 6.7508E-4 1.6361E-4 0.0719 4.3197E-4 1.1858E-4 0.0435
2.0 8.1707E-4 1.9746E-4 0.1301 4.4659E-4 1.2263E-4 0.0716
3.0 8.6378E-4 2.0557E-4 0.1884 4.4615E-4 1.2385E-4 0.1001
4.0 8.8157E-4 2.0542E-4 0.2480 4.4181E-4 1.2340E-4 0.1193
5.0 8.9059E-4 2.0231E-4 0.3066 4.3749E-4 1.2146E-4 0.1526
10.0 8.9808E-4 1.8109E-4 0.6024 4.2159E-4 1.0524E-4 0.2757

estimated the temporal convergence rate of the proposed
method for u1 and u2 at time t = 1.0 by ranging the temporal
step size h from 1/10 to 1/160, with a fixed spatial grid
resolution of N = 1000. The computed results are listed in
Table I, where it is clear that the proposed numerical method
gives the expected second-order temporal convergence rate.
Additionally, in order to examine the spatial convergence rate
of the proposed method, the simulation was run until the time
t = 1.0, and the errors were calculated for a fixed temporal
step size of h = 0.001 by varying the spatial grid ∆x from 1

40
to 1

640 . Our results are displayed in Table II, where they show
that the spatial convergence rate of the proposed numerical
method is approximately of the fourth-order. Finally, we
simulated Example with a0 = 0.1 and 0.5. The errors and
the computational time cost (CPU) were measured for u1 and
the results are captured in Table III. We also compared our
results to those of Lai et al. [3] for u1 at a0 = 0.1, 0.5,
for a variety of time durations, 0.1, 0.5, 1.0, 2.0 and 10.0. The
results of Tables III shows that our method yields a more
accurate numerical solution in less cputime, and with larger
temporal and spatial step sizes than the method of Lai et al. [3].

The numerical results guarantee that by allowing use of the
maximum time step size, our BSLM is better suited for long
time simulations than a comparative method, which is one of
the salient features of BSLM.

V. CONCLUSION

We have proposed a backward semi-Lagrangian method for
solving coupled viscous Burgers’ equations. For the present
scheme, we used the second-order backward differentiation
formula for the total time derivative, fourth-order finite
differences for partial derivatives, the error correction method
for the highly nonlinear IVP and Hermite cubic interpolation
for function evaluations at the non-grid points. In order to
resolve the nonlinear problem in the coupled diffusion-reaction
equations, we provided an extrapolation technique to split
the nonlinearity into two diffusion-reaction boundary value
problems, which are sequentially solved. We demonstrated the
numerical accuracy and efficiency of the present method by
comparing the numerical results with analytical solutions, or
other existing numerical solutions that use alternate methods.
In addition, we numerically proved that the proposed method
exhibits second-order temporal convergence and fourth-order
spatial convergence.
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