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Abstract—In this paper, we consider two dimensional acoustic
wave equations in an unbounded domain and introduce a
modified model of the classical perfectly matched layer (PML).
In the classical PML model, an unexpected and exponential
increase in energy is observed in the long-time simulation after
the solution reaches a quiescent state. To address such an
instability, we provide a regularization technique to a lower
order regularity term employed in the auxiliary variable in
the classical PML model. The well-posedness of the regularized
system is analyzed with the standard Galerkin method based on
the energy analysis, and the numerical stability of staggered finite
difference method for its discretization is provided by using von
Neumann stability analysis. To support the theoretical results,
under various thickness and damping values, we demonstrate a
long-time stability of acoustic waves in the computational domain.

I. INTRODUCTION

It is quite important to effectively truncate an unbounded
domain in wave propagation simulations in free space, where
the perfectly matched layer (PML) methods that surround
the domain of interest with thin artificial absorbing layers
are popularly used in easy and effective ways. After the
method was introduced by J. P. Bérenger [16], which involves
splitting a field into two nonphysical electromagnetic fields,
several studies were conducted regarding the PML method
and its modified reformulations in many different wave-type
equations. These include Maxwell’s equations [9], [26], elas-
todynamics [7], [10], linearized Euler equations [12], [14],
[22], [23], Helmholtz equations [28], and other types of wave
equations [1], [6], [28]. Most PML models by the splitting
technique, named a split PML method, yield a hyperbolic
system of first order partial differential equations [8], [12],
[13], [16], [29]. It is known that the split PML models
demonstrate excellent overall performances from the viewpoint
of applications. However, it was pointed out in [3], [5], [14]
that Bérenger’s split, as well as other split models, transform
Maxwell’s equations from being strongly hyperbolic into
weakly hyperbolic. These transforms imply a transition from
strong to weak well-posedness in the Cauchy problem and
may lead to ill-posedness under low-order damping functions
or thin layers [15]. The authors of [4], [12] mention that the use
of artificial dissipation is necessary to stabilize the numerical
scheme of such formulations for long-time simulations.

The resulting concerns about the well-posedness and stabil-
ity of the split PML models have prompted the development
of other PMLs. Some examples of such developments, without
splitting the fields, include un-split PML models using con-
volution integrals [24], [25] and auxiliary variables [2], [3],
[20]. In contrast to the split PML models, it is known that
the un-split PML wave equations are more effective at time
discretization [20] and does not make the use of additional
memory for the nonphysical field variables. However, it has
been found that the un-split PML models are susceptible to
developing gradual instabilities in long-time simulations [4],
[28]. These issues are the motivation for the mathematical
study of the well-posedness and stability for the un-split PML
models. Contrary to the many existing claims, the PML model
may generate instability when the solution is quiescent or
nearly quiescent in the PML layers, which is demonstrated
numerically in Section II. This instability causes the wave
energy to exponentially increase in the computational domain,
which depends on the damping and layer thickness in the
experiments.

The main contribution of this study is not only to introduce
a regularized system of the second order PML acoustic wave
equation that exhibits well-posedness without losing the non-
reflection property of PMLs, but also to demonstrate its
numerical stability. To construct the system, we adopt a regu-
larization technique in the term∇·~q that has a lower regularity,
to regularize the PML model for the Maxwell equation, where
~q is the auxiliary variable (see (II.3)). The standard Galerkin
approximation and energy estimation of the solution are used
to show the well-posedness of the regularized system. For its
numerical scheme, we use a family of finite difference schemes
using half-step staggered grids in space and time with central
finite differences that maintain the second order approximation
in both space and time, respectively. A concrete von Neumann
stability analysis for the numerical scheme indicates that the
scheme is stable under the Courant-Friedrichs-Lewy (CFL)
condition. The novel features of this study include the good
performance of the solution that presents a long-time stability
compared to the classical PML model, which is numerically
illustrated by presenting the energy behavior for the solutions
in Section IV.
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II. MOTIVATION OF STUDY

The target problem we consider is a general second order
acoustic wave equation with a variable sound speed c(x) > 0
described by

utt(x, t)− c2(x)∆u(x, t) = 0, ∀(x, t) ∈ R2× (0, T ] (II.1)

with initial conditions u(·, 0) = u0 and ut(·, 0) = 0, where
supp(u0) is a subset of a domain Ω0 included in the compu-
tational domain Ωcomp := [−a, a] × [−b, b] in R2 for some
a, b > 0. Here, T > 0 and the sound speed c(x) is assumed
to be bounded by

0 < c∗ ≤ c(x) ≤ c∗ <∞. (II.2)

Suppose that a domain Ω = [−a−Lx, a+Lx]× [−b−Ly, b+
Ly] consists of Ωcomp surrounded by PMLs, where Lx, Ly >
0. Using a complex coordinate stretch, Grote and Sim [11]
introduced the following two dimensional acoustic PML wave
model: find (u, ~q) satisfying, for (x, t) ∈ Ω× (0, T ],{

1
c2utt + αut + βu−∇ · ~q −∆u = 0,

~qt +A~q +B∇u = 0
(II.3)

with initial and boundary conditions u(·, 0) := u0,
ut(·, 0) := u1 = 0, ~q(·, 0) := ~q0 = ~0, u(x, ·)|∂Ω = 0,
where ~q denotes the auxiliary variable and the
coefficients are given by α :=

σx+σy

c2 , β :=
σxσy

c2 ,

A =

(
σx 0
0 σy

)
, and B =

(
σx − σy 0

0 σy − σx

)
. Here,

the damping terms σx := σx(x) and σy := σy(y) are assumed
to be nonnegative functions that vanish in the computational
domain Ωcomp in the sense of the analytical continuation of
the PML [17]. It is noted that the Cauchy problem for the
model problem (II.3) is strongly stable in [11]. We also note
that the model problem turns into an initial boundary problem
by the artificial carving of the computational domain, which
generates the boundary. From this artificial building of the
boundary, therefore, the wave propagation should be affected
by its condition. To demonstrate these effects, we use the
energy method, introduced in [18], and numerically examine
the well-posedness and stability of the model (II.3) by
observing the behavior of the acoustic wave energy defined
by

E(t) =
1

2

∫
Ωcomp

(
1

c2
ut(t)

2 +∇u(t) · ∇u(t)

)
dx. (II.4)

For this purpose, we use the computational domain
Ωcomp = [−1, 1] × [−1, 1] surrounded by a PML layer with
thickness Lx = Ly = L. In the absorbing layer, we consider
the constant case (β = 0) in the following damping function
of the form;

σxk
(xk) =


0, |xk| < 1,

σ0

(
|xk − 1|

L

)β
, 1 ≤ |xk| ≤ 1 + L,

(II.5)

where xk = x, y (k = 1, 2), β = 0, 1, 2, σ0 is a given constant,
and L denotes the thickness of the layers. The smooth initial
value u0 for our numerical tests is adopted as

u0(x, y) =

{
e−0.6((x−x0)2+(y−y0)2) if (x, y) ∈ Ωcomp,

0 otherwise,
(II.6)

and a constant sound speed c(x, y) = 1 is assumed. With
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Fig. 1: E(t) when a fixed L = 0.125 and various dampings
these conditions, we first discretize equations (II.3) with the
staggered finite difference scheme in time and space under a
uniform spatial grid size h = 4x = 4y = 0.025. In addition,
we choose a time step size 4t of h/3, which satisfies the
CFL condition (III.5) to guarantee the stability of the staggered
finite difference scheme for equation (II.3). The first order
backward and second order central finite differences in time
and space, respectively, are used to discretize the energy E(tn)
of (II.4) at each time step tn.
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Fig. 2: E(t) when σ0 = 50, β = 0 and various thicknesses L

We investigate the behavior of the energy for a long-
time simulation at time tn = 10000 according to the thick-
ness of the layers and magnitude of the damping. The nu-
merical results are displayed in Fig. 1 and 2: the energy
for a fixed thickness L = 0.125 with various dampings
σ0 = 30, 40, 50, 50, 60, 70 (Fig. 1) and the energy for a
fixed damping σ0 = 50 with various thicknesses L =
0.125, 0.15, 0.175, 0.225 (Fig. 2). The results indicate that the
numerical stability of the PML model is quite susceptible
to both the thickness of the layers and magnitude of the
damping, as noted in [27]. Furthermore, in the long-time
simulation, one can observe that the wave energy unexpectedly
and exponentially increase in the computational domain. These
phenomena indirectly show that the stability argument of the
energy developed by [18] is not clearly answered. Further-
more, the experiments indicate that the stability analysis [11]
for the Cauchy problem for the model (II.3) is not sufficient.

The unexpected phenomena detailed above is likely to
occur due to the non-physical auxiliary variable ~q, or a lower
regularity term ∇ · ~q in the layers of the un-split PML model
(II.3). This experiment makes it necessity to further develop
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the PML model, which is a motivation to the study.

III. REGULARIZED SYSTEM

Based on the motivation discussed in Section II, the aim of
this section is to introduce a regularized system overcoming
the instability that occurs in the classical PML model (II.3)
for the acoustic wave equation (II.1).

Let H1(Ω) = {ϕ : ϕ, ∂xϕ, ∂yϕ ∈ L2(Ω)} and H−1(Ω)
denote the Sobolev space and dual space of H1

0 (Ω), respec-
tively. First, note that ∇ · ~q ∈ H−1(Ω), which does not have
a sufficient regularity so that the weak solution (u, ~q) of (II.3)
is included in H1

0 (Ω) × L2(Ω), where L2(Ω) := [L2(Ω)]2.
To handle this problem of lower regularity, we define a linear
bounded regularization operator δε satisfying δε → 1 as ε→
∞ and ‖δε(ϕ)‖L2(Ω) ≤ Cδε‖ϕ‖H−1(Ω) for some Cδε > 0.
Following [19], [22], we introduce a regularized system of
the classical PML model (II.3) by using δε in the term ∇ · ~q,
which is given by, for (x, t) ∈ Ω× (0, T ]

1

c2
utt + αut + βu− δε∇ · ~q −∆u = 0,

~qt +A~q +B∇u = 0
(III.1)

with initial and boundary conditions u(·, 0) := u0, ut(·, 0) :=
u1 = 0, ~q(·, 0) := ~q0 = ~0, u(x, ·)|∂Ω = 0. The remainder
details the analysis of the well-posedness of the solution to
the regularized system (III.1) based on the energy estimation
under the assumption of the dampings σx, σy ∈ L∞(Ω).

A. Well-posedness of weak solution

We assume that the damping functions satisfy σx, σy ∈
L∞(Ω) and c(x) = 1 in the layers of the PML model
(II.3). Under these assumptions, we define the weak so-
lution of (III.1) in the sense that u ∈ L2(0, T ;H1

0 (Ω)),
~q ∈ L2(0, T ;L2(Ω)) with ut ∈ L2(0, T ;L2(Ω)), utt ∈
L2(0, T ;H−1(Ω)), ~qt ∈ L2(0, T ;L2(Ω)), which satisfies{〈

1
c2utt, w

〉
+ (αut + βu− δε∇ · ~q, w) + (∇u,∇w) = 0,

(~qt, ~v) + (A~q,~v) + (B∇u,~v) = 0

(III.2)

for each w ∈ H1
0 (Ω), ~v ∈ L2(Ω), and almost everywhere

0 ≤ t ≤ T and the initial data satisfy (u(0), w) = (u0, w),
〈ut(0), w〉 = (u1, w), (~q(0), ~v) = (~q0, ~v) for each w ∈
H1

0 (Ω), ~v ∈ L2(Ω). Here, 〈·, ·〉 denotes the duality pairing
between H−1(Ω) and H1

0 (Ω), and (·, ·) is the inner product
in L2(Ω). In addition, the time derivatives are understood in a
distributional sense. To investigate the weak solution of (III.1)
that satisfies (III.2) with the initial condition, we can show
the well-posedness of the regularized system (III.1) using the
standard Galerkin approximation and estimate the energy of
the solution. Let Uk be the subspace generated by the c−2-
weighted orthogonal basis of H1

0 (Ω) in the sense that(
c−2wj , wk

)
+ (∇wj ,∇wk) = 0 if j 6= k.

Let us also denote Qk, which is the space generated by the
smooth functions {~v1, ~v2, · · · , ~vk} such that {~vk : k ∈ N}

is an orthonormal basis of L2(Ω). We construct approximate
solutions

(
uk, ~q k

)
, k = 1, 2, 3, · · · , in the form

uk(t) =
k∑
j=1

gkj (t)wj , ~q k(t) =
k∑
j=1

hkj (t)~vj , (III.3)

whose coefficients gkj (t), hkj (t), j = 1, 2, · · · , k, are chosen
so that gkj (0) = (u0, wj) , (gkj )t(0) = (u1, wj) , hkj (0) =
(~q0, ~vj) and{(

1
c2u

k
tt + αukt + βuk − δε∇ · ~q k, wj

)
+
(
∇uk,∇wj

)
= 0,(

~q kt , ~vj
)

+
(
A~q k, ~vj

)
+
(
B∇uk, ~vj

)
= 0

(III.4)
are satisfied for all wj ∈ Uk, ~vj ∈ Qk, j = 1, · · · , k. For each
integer k = 1, 2, · · · , the standard theory of ordinary differ-
ential equations guarantees the existence of the approximation(
uk(t), ~q k(t)

)
satisfying (III.3) and (III.4). The following

theorem gives a uniform bound of energy of the approximate
solutions (III.3), which allows us to send k →∞.

Theorem 3.1: There exists a constant CT > 0 that depends
only on σx, σy , Ω, and T such that for k ≥ 1

max
0≤t≤T

Ek(t) +
∥∥uktt∥∥L2(0,T ;H−1(Ω))

+
∥∥~q kt ∥∥L2(0,T ;L2(Ω))

≤ CT
(
‖u0‖2H1

0 (Ω) + ‖u1‖2L2(Ω) + ‖~q0‖2L2(Ω)

)
,

where the energy Ek(t) is defined by

Ek(t) = ‖1

c
ukt (t)‖2L2(Ω) + ‖∇uk(t)‖2L2(Ω) + ‖~q k(t)‖2L2(Ω).

Passing to the limit from the bounds, we obtain the following
theorem.

Theorem 3.2: (Existence and Uniqueness) Assume that the
initial conditions (u0, u1, ~q0) ∈ H1

0 (Ω) × L2(Ω) × L2(Ω).
Then, the system (III.4) has a unique weak solution provided
by σx, σy ∈ L∞(Ω). (see [19] for detail proof of uniqueness).

B. Numerical Scheme

For the staggered finite difference method, we use a family
of finite difference schemes [21] with half-step staggered grids
in space and time. All spatial derivatives are discretized with
the centered finite differences over two or three cells, which
guarantees a second order approximation in space. For the time
discretization, we also use the centered finite differences for
the first and second order time derivatives on a uniform mesh,
which is also of the second order approximation in time. Based
on the standard von Neumann stability analysis technique, we
analyze the stability of the numerical scheme and obtain its
CFL condition. To obtain the stability condition of the stag-
gered finite difference scheme defined above, we restrict our
concern to the constant damping case with σx = σy = σ0 ≥ 0
for simplicity in our analysis. The stability condition for the
scheme in the computational domain is as follows.

Remark 3.3: The CFL condition of the staggered scheme in
the computational area (i.e., σx = σy = 0) is

c
4t
h
≤ 1√

2
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for 4x = 4y = h from the standard von Neumann stability
analysis technique.
Generally the stability condition for the staggered finite dif-
ference scheme can be obtained as follows.

Theorem 3.4: Assume that σx = σy = σ0 > 0 and the sound
speed c are constants. Then, the discrete scheme is stable if
the CFL condition

c4t ≤ h√
2

1

(1 + σ0
2h2

8c2 )1/2
(III.5)

is satisfied for 4x = 4y = h. (see [19] for detail proof)

IV. NUMERICAL RESULT

The aim of this section is to provide numerical evidence
of the well posedness of the regularized system and discuss
the numerical stability in the long-time simulation for the
staggered finite difference method. To do this, we demonstrate
the behavior of the acoustic wave energy E(t) defined in (II.4)
in the computational domain. For the numerical simulation,
we use the same initial condition defined by (II.6) and, in the
absorbing layer, the damping function of the form in (II.5). For
the sound speed c(x, y), we consider the constant form as well
as variable sound speeds. For a comparison with the numerical
results for the classical PML system (II.2), we first simulate the
regularized system under the same conditions for the damping
σ0 with β = 0 and thickness L of the layers shown in Section
II. The numerical results of formulae (II.2) and (III.1) are
displayed in Fig. 3 and 4. As shown in the figures, it can be
observed that the wave energy E(t) for the regularized system
exhibits an outstanding stability performance in the long-time
simulation independent of both the magnitude of the damping
σ0 and thickness L. For further investigation, using variable
sound speeds, the nonconstant damping values of (II.4) with
β = 1, 2, and the different magnitudes σ0 = 30, 50, 80, we
examine the long time behaviors of E(t) for formulae (II.2)
and (III.1), and display the numerical results in Fig. 5. It can
be observed that an unexpected and exponential growth of E(t)
of the classical PML model occurs in the long time simulation,
similar to the case of β = 0 shown in Section II. In contrast
to the classical one, however, the wave energy E(t) of the
regularized system are consistently stable in the long-time
simulation regardless of the damping, thickness, and sound
speed.

In summary, the regularized system demonstrates a good
numerical stability performance in terms of the measure E(t)
for a long-time simulation under the various damping, layer
thickness, and sound speed values. This provides proof of
the well-posedness of the developed system and numerical
stability for the finite difference method. These numerical
results show the extent to which the solution of the classical
PML model is affected by the regularization δε∇ · ~q for the
divergence of the auxiliary variable ~q, which has a lower
regularity in H−1(Ω). Contrary to the theoretical claim of
[18], however, the classical PML model presents an instability
of E(t), for certain damping and thickness values, which may
come from the lower regularity of ∇ · ~q.
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CONCLUSIONS

We have introduced a new and efficient formulation related
to the acoustic wave equation based on the regularization of the
un-split PML wave equation. By regularizing the lower order
regularity term in the original equation and the standard von
Neumann stability analysis, we have achieved well-posedness
as well as numerical stability, even in the long-time simulation,
of the solution in the new formulation. We have demonstrated
the extent to which the regularization is important in the long
time stability by several numerical tests. We summarize the
main novelty and results of this study as follows: (1) We
have proved the analytical well-posedness of our formula-
tion without any restriction of damping terms; (2) several
numerical tests suggest that the formulation exhibhits a long-
time stability regardless of damping terms, layer thickness,
and sound speeds; (3) we have demonstrated that the lower
order regularity term in the up-split PML formulation highly
affects the long-time stability; this is a strong motivation for
the regularization.
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