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Abstract—We provide a novel approach for binary image
reconstruction using few projections. The inherently insufficient
amount of projection data is augmented by statistical image
priors describing the approximate texture of the image to recon-
struct. The priors are extracted from sample images, in advance
of the reconstruction. Experimental results on software phantom
images show that this approach can be a useful alternative of
former reconstruction methods as, under certain circumstances,
it provides better image quality.
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I. INTRODUCTION

The basic aim of image reconstruction is to create 2D
images from their sets of line integrals (in the discrete case,
line sums) taken along parallel lines in different directions.
A collection of line sums taken from the same direction is
called a projection of the image. When only few projections
are available the reconstruction is usually underdetermined,
thus many significantly different solutions of the same task
can exist. One way to overcome this problem is to incorporate
prior information into the reconstruction process and to reduce
the search space of feasible solutions. A special case is
when the object to reconstruct consists of a single material
yielding that the image representing the object is binary.
This is in main focus in Binary Tomography (BT) which has
important applications in crystallography, materials science,
and industrial non-destructive testing, just to mention a few
[1], [2].

There is a wide literature of image reconstruction algorithms
in BT using different kinds of geometrical or shape priors,
depending on the application. In this paper we investigate a
novel prior, a Local Binary Pattern (LBP) texture descriptor to
improve the quality of the reconstruction. LBP feature vectors
are used to represent image textures, extracted from images
of different classes. During the reconstruction we use these
features to force the reconstructed image to have a texture
similar to the observed ones. Such a method can be useful
when there are sample images which are structurally similar
to the one to reconstruct, a common scenario in industrial
tomography applications. The paper presents our preliminary
experiences.

The paper is structured as follows. Section II is a short
overview of the existing image reconstruction methods. In

Section III we present our algorithm. In Section IV we
report on experimental results. Finally, Section V is for the
conclusions.

II. RECONSTRUCTION ALGORITHMS

A. Analytical Methods

Analytical reconstruction methods (see, e.g., in [3]) are
based on the observation that the 1D Fourier transform of
a projection function corresponds to a line of the 2D Fourier
transform of the original image. Therefore, taking sufficiently
many projections can determine the 2D Fourier transform of
the image to reconstruct, and thus the image itself. Analytical
methods are fast and accurate, and therefore they are widely
used in medical CT-scanners. However, they need several
hundreds of projections to achieve reasonable image quality,
thus they are almost always useless when only few projections
are available.

B. Algebraic Reconstruction Methods

Algebraic reconstruction techniques can provide good re-
constructions even when the number of projections is limited.
They formulate the reconstruction problem as a linear system
of equations and use iterative methods to solve this system.
Due to physical limitations showing up in practice (scanner
constraints, noisy projections, etc.) usually just an approximate
solution is found. The difference of these methods lies in the
diversity of the approximation method.

The basic iterative process is the ART (Algebraic Re-
construction Technique), which interprets the equations as
hyperplanes and uses Kaczmarz’s algorithm to approach the
“intersection” of these planes [4].

DART (Discrete Algebraic Reconstruction Technique) is
based on the above technique taking advantage of the proper-
ties of the discrete images: the range of image function is finite
and contains just a small number of elements [5]. Thresholding
the result of an arbitrary continuous reconstruction method
gives usually an approximately good result even for the
discrete task, except that it is inaccurate at the boundary
of the object in the image. Therefore, after performing and
thresholding ART, DART refines the boundary step-by-step
in each iteration according to the current and the measured
projection data. DART is robust against the errors generated
during the estimation of the gray values and it also can
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treat noisy projections. It is one of the most effectively used
algorithm in the field of Binary Tomography.

C. Binary Reconstruction by Optimization

Binary Tomography is a special case of discrete tomography
where the image pixels to reconstruct can only take two values:
0 or 1. Using this prior information the binary reconstruction
can be traced back to the equation known from algebraic
reconstruction Ax = b, where the A matrix describes the
relationship between the beams and pixels (aij gives the length
of the line segment of the i-th projection ray in the j-th
pixel), vector b contains the measured projection values, and
x ∈ {0, 1}mn represents the unknown image of size m×n, in
a row-by-row vector form. To facilitate the difficulties arising
from the size and underdeterminedness of the system, from
binary variables, and measurement errors, this task is often
reformulated to the problem of minimizing

C(x) = ||Ax− b||2 + γ · Φ(x) , (1)

where ||Ax − b||2 ensures that the projections of the recon-
structed image are close to the measured ones (data fitting
term), and Φ(x) : {0, 1}mn → R measures how well the
reconstructed image fits the prior information accessible (e.g.,
homogeneity, convexity, circularity, etc.). Finally γ ≥ 0 is a
scaling constant. To solve this binary optimization problem
one can choose an arbitrary suitable global optimizer.

III. RECONSTRUCTION WITH LBP PRIORS

Using Local Binary Patterns (LBP) is a good way to find
image patterns or repetitions [6]. LBP is a type of visual
descriptor for classification in computer vision. Primarily, it
is used to describe the texture by representing the relationship
between each pixel and its 8-neighbors with a binary code.
Each of the 8-neighbors can have smaller or non-smaller
value than the center pixel. Thus, there are 256 such binary
codes, and as a result of a basic LBP process we gain
a 256-dimensional feature vector describing the normalized
distribution of the binary codes in the image. LBP can be used
by arbitrary image classification machine learning algorithm.
We apply it to optimize the reconstruction.

Assuming that the image to reconstruct can belong to one of
k given classes we first choose representatives of those classes
and calculate their LBP vectors. Then, in the reconstruction
we take two priors into account. First, the image should be
smooth, and second, it must have a texture similar to the
previously observed ones. Having two different priors, the
formula of (1) becomes

C(x) = ||Ax− b||2 + γ1 · Φ1(x) + γ2 · Φ2(x) , (2)

where Φ1(x) measures the smoothness of the current solution
by taking the sum of the convolution of each image pixel by a
Gaussian-like kernel and Φ2(x) gives the minimal Euclidean
distance of the LBP vector of the current image compared to
all representative LBP vectors. Again, γ1 and γ2 are scaling
weights.

IV. EXPERIMENTAL RESULTS

A. Implementation Details

To optimize cost function (2) we used simulated annealing
(SA) [7]. The parameters of (2) and the SA algorithm were
set manually. We found that the best parameter values for (2)
were γ1 ∈ [0.03, 0.06] and γ2 = 0.5 having a convolution
mask
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The SA started each time from a random image and in
each iteration some of the image pixels were randomly chosen
and inverted (the number of such pixels depended on the
actual value of the cost function). The stopping criteria of the
algorithm was to reach 800.000 iterations or to perform 50.000
iterations without improving the optimal result. As a compari-
son, we also reconstructed the images by the DART algorithm.
To calculate the LBP vectors we used the source-code of [8].
All the algorithms were implemented in MATLAB.

B. Results

To test the efficiency of our method we conducted experi-
ments on software phantom images arising from 6 classes with
different textures. Figure 1 shows representatives. Images in
Class 1 are formed by shapes with four possible orientations
resembling regular patterns. These images were introduced as
basic phantoms, due to their strict structure. Class 4 contained
similar images but with bigger empty areas between them,
to study if the size of the objects affects the reconstruction
quality. Classes 2, 5, and 6 consisted of images showing
regular or less regular patterns of circular holes having equal
or different sizes. Such images are typical in industrial non-
destructive testing where the aim is to detect air bubbles in
homogenous objects (e.g. cheese, chocolate, but also metal
alloy products). Furthermore, by interchanging the foreground
and background, the holes become small “particles” thus
providing structures similar to observe in electronmicroscopic
tomography of crystalline structures. Finally, images in Class
3 (or more precisely, their inverted versions) show thin walls
between similar objects. These images can remind us to cross-
sections of trabecular bones or metal- or plastic foams. Each
class contained 150 images of size 64× 64 for extracting the
reference LBP values, and additional 10 images for testing.
To determine the quality of the reconstruction we used RME
(Relative Mean Error) error rate:

RME =

∑
i |foi − fri |∑

i f
o
i

· 100% , (3)

were foi and fri stand for the i-th pixel of the original and
reconstructed image, respectively. Obviously, the lower is the
value the better the result is. Note, that it also can happen
that RME is greater than 100%. The reconstructions were
performed from 2, 3, 4, and 8 projections assuming parallel
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Fig. 1. Test phantom images. Representative images of Class 1-6 from left
to right and top to bottom, respectively.

beam geometry with one pixel distance between the projection
lines. Due to the stochastic nature of SA each reconstruction
task was repeated 5 times and the average values of the results
were taken.

For space considerations we only report here RME values
for two classes of images. The remaining image classes yield
more or less similar results. Table I (Table II) collects the
results for Class 1 (resp. Class 6). The better values are
highlighted. From the entries of these tables (and of the further
tables not presented here) we can deduce the following. The
proposed method behaves similarly for Classes 1-5. Namely,
in case of 2 or 3 projections SA may achieve better results than
DART. Using 4 or 8 projections, SA does not perform better,
but usually the differences are not significant. Exceptions
are Classes 2 and 4, for which the differences in case of 8
projections are bigger. Interestingly, the results of Class 6 with
2, 3, and 4 projections are similar for both SA and DART, but
with 8 projections SA often provides better results or even
perfect reconstructions (0% RME).

Figure 2 shows one example of how the RME value changes
for the same test image (a member of Class 1, in this case)
if the number of projections is increased. It clearly reveals
that the trend is similar for the two algorithms. This graph is
also a good example for an RME value greater than 100%.
Furthermore, it can be seen that in this case SA gave better
results for 2 and 8 projections. When using 20 projections,
both algorithms resulted in perfect reconstructions.

Regarding the running times, we observed that SA usually
terminated after 100.000-200.000 iterations in about 3-6 min-
utes. Unfortunately, there are also image classes (e.g., Class
5) for which SA may need up to 20 minutes to finish the
reconstruction. This is much slower than DART which usually
runs in less than a minute. However, the code has not been
optimized yet, thus we expect significant improvements, from
that point of view.

Fig. 2. Example of how the RME value changes by increasing the number
of projections (dots are connected for better visibility).

V. CONCLUSIONS

In this paper we presented a method which tries to re-
construct an element of a specified class of binary images
using the gathered prior data about the texture of the image.
As a texture descriptor we used the basic LBP feature.
Performing experimental analysis of software phantom images
we found that the concept is promising (especially in case of
few projections). We presented here our preliminary results.
Unfortunately, the fine-tuning of the parameters is not perfect
yet. One of our future plans is to find better settings for these
parameters. Although the running time of the algorithm is also
not satisfying yet, it could be significantly decreased with
code optimization. One advantage of our method is that it
could be evolved by using other versions of LBP, or further
texture descriptors. Also, SA can be replaced with other global
optimizers. Finally, the method seems to be easy to extend to
multivalued discrete or general greyscale image reconstruction,
too. In summary, our idea proved to be successful and we see
a lot of options to improve its practical applicability.
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TABLE I
RME VALUES IN PERCENT FOR THE 10 TEST IMAGES IN CLASS 1

2 3 4 8
SA DART SA DART SA DART SA DART

1 71.18 66.23 47.84 33.50 11.13 3.18 2.95 0.05
2 64.61 65.59 62.50 65.03 15.40 0.56 1.61 0.12
3 42.97 43.82 39.95 23.32 10.38 0.26 3.13 0.05
4 68.60 72.97 44.21 36.46 12.41 2.41 3.58 0.50
5 66.75 66.55 30.93 22.22 8.26 1.85 4.64 1.08
6 81.84 106.50 58.85 37.69 19.97 0.80 0.26 0.08
7 85.02 74.84 48.71 49.32 13.80 4.63 0.38 0.07
8 59.91 71.00 45.81 29.83 18.94 0.95 3.12 0.12
9 69.28 40.50 55.50 33.31 21.39 1.13 1.90 0.74

10 77.28 71.84 44.07 26.24 11.69 9.58 1.15 0.20

TABLE II
RME VALUES IN PERCENT FOR THE 10 TEST IMAGES IN CLASS 6

2 3 4 8
SA DART SA DART SA DART SA DART

1 24.41 22.50 14.39 1.59 14.14 0.41 0.00 0.03
2 30.88 27.02 24.88 16.92 18.83 18.35 0.00 0.06
3 27.93 24.74 19.98 17.27 20.74 20.81 0.00 0.09
4 28.00 36.70 14.30 10.81 15.77 2.02 0.02 0.03
5 24.88 17.73 14.05 7.23 13.70 3.67 2.29 1.08
6 29.07 30.91 15.42 10.71 17.72 13.40 0.02 0.21
7 27.52 35.45 20.64 2.18 15.74 0.92 0.00 0.12
8 34.14 38.94 24.96 22.37 16.69 10.62 0.55 0.12
9 27.51 34.06 18.32 9.52 19.43 4.13 0.00 0.00

10 33.11 37.20 23.07 2.68 25.03 20.54 0.00 0.31
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