
 

 

  
Abstract— Ordinary place transition Petri nets are useful for 

modeling discrete systems at a low level. It can be shown that the 
behavior of these structures does not entirely depend on the static 
model but also on the resource distribution in the net. In this work the 
problem of representing Petri nets is presented. Some algebraic 
notations for modeling at the i) structural and ii) operational level are 
presented. Some simple examples are used to illustrate the usefulness 
of these notations and expose hidden concurrency issues in Petri nets. 
The results are discussed. The ideas presented here are just an outline 
of what can be done in this area. 
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I. INTRODUCTION 

etri nets are elegant, well defined semi-formalisms used for 
modelling of discrete event systems [1]-[7]. They can 

naturally model sequential, concurrent and parallel behavior. 
These nets are based on important system properties: i) events, 
ii) conditions and iii) structure.  Petri nets have a dual identity 
[7]. They can be represented i) graphically and ii) using 
mathematical terms like matrices and equations. The graphical 
depiction is normally more useful for visual modelling and 
communication, whilst the mathematical representation is 
useful for compactness, formal checking, verification and 
testing [1]-[4].  

Comprehensive Petri net software simulators exist [2]. 
These are known for the token game simulation process. For 
ordinary place transition nets, the time dimension is not 
considered, however, this does not imply that it is unimportant.  

The elementary and logical characteristics of Petri nets 
make them a versatile tool for representing and analysing 
behavior of certain system classes [2]-[4]. In literature, Petri 
nets are normally combined with other formalisms or notations 
for extended modelling power.  

Due to their simplicity ordinary Petri nets can be modified 
to represent diagrammatically the salient characteristics of 
low-level behavior. Several formalisms like communicating 
sequential processes (CSPs), communicating system calculus 
(CCS), process algebras and  various others share many 
common properties with ordinary Petri nets [3],[13], [11], 
[14]. These formal notations can be combined with ordinary 
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Petri nets for more expressive analysis of different scenarios.    
Petri nets might look similar to other graphical and formal 

notations. However, several properties of Petri nets single 
them out [1],[2],[10]. Originally Petri nets were intended to 
model concurrency and discrete system behavior. Some 
confusion exists as to whether Petri nets should be classified as 
formal or semi-formal constructs. 

II.  SOME BACKGROUND AND MOTIVATION 

Several classes and extensions to ordinary place transition 
Petri nets exist. In principle the graphical representation of 
these structures will look similar because visually Petri nets 
are bi-partite digraphs always composed of i) places, ii) 
transitions, iii) input and iv) output arcs.  Basically the places 
and transitions are the nodes and the connecting arcs are the 
edges.  Unconnected edges and nodes are prevented through 
the formal definition and rules of Petri nets. Additionally other 
rules are added for places that can contain token values. Places 
are used for activation and firing of transitions. The visual 
representation of the net is what distinguishes them from other 
algebraic notations.  

As new computer technologies are being created, it is 
important to have mathematically sound and precise models 
for representing systems. Hence there is a lot of focus on 
diverse modelling techniques and representation [7]-[10].  
System correctness does not only depend on the architectural 
or static structure of a representation but also on the 
executional behavior of the system. Changes that occur in the 
dynamic behavior part are often difficult to predict even in 
ordinary Petri nets. There is a certain amount of 
unpredictability and non-determinism in Petri nets. 
Representing these issues is essential for the requirements 
elicitation process. Understanding the processing involved will 
eliminate the possibility of flaws that can emerge in later 
stages. 

In previous work [12] it has been shown that even simple 
trivial place transition nets can hide some serious concurrency 
issues. When constructing concurrent systems, the correctness 
and validity of the model will save time and effort. Too much 
complexity in a system is undesirable thus making validation 
difficult to carry out. 

 Place transition Petri nets can behave non-deterministically. 
The output and behavior of the net depends on the token 
configuration which cannot always be known apriori.  

All the major classes of Petri nets can be divided into two 

Algebraic Representation for Ordinary Place 
Transition Petri Nets 

A. Spiteri Staines 

P

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017 

ISSN: 1998-4464 300



 

 

parts. i) the static part and ii) behavior or dynamic part. The 
static part is all about structural representation. This is related 
to how the net will appear graphically but this is independent 
from the actual behavior.  

An ordinary place transition petri net can be constructed 
accurately but actually none of the transitions might fire for 
various reasons. The behavior of the Petri net does not depend 
only on the structure but also on other factors like the token 
distribution (resources), the input and output arc values. To 
validate the net, behavior and firing of the net has to be 
completely checked to see if there are unreachable states, 
possibly infinite loops or undesirable behavior. Normally this 
is done by constructing the reachability graph or tree. 

III.  PROBLEM DEFINITION 

For representation, the use of algebraic notations for 

depicting the net would help to get better understanding and 
also check the executional properties [12]. It is important to 
find new ways to represent Petri nets because the visual 
structure of a net cannot describe all its properties and does 
not indicate if the net is error free or if there are other hidden 
configuration issues. 

The following problems are related to proper concurrency 
and parallelism modeling in ordinary place transition Petri 
nets:  i) The physical structure of an ordinary Petri net can 
support different processing behavior at different times 
depending on the configuration of the tokens or resources in 
the net, ii) Non-deterministic behavior can imply that a 
transition even though it is activated will never fire at all, iii) 
Once a transition fires it cannot be stopped. It is unstoppable, 
iv) The transition firing has to complete itself both in the input 
and output part, v) A transition can be blocked for several 
reasons. E.g. if there is no output space available the transition 
will never fire, vi) A Petri net can be composed of several 
subnets each with different behavior. Because of these issues 
concurrency and parallelism representation become a problem 
[12]. 

Mainstream literature seem to focus on the different classes 
of Petri nets and solutions to given problems. The fact that 
Petri nets often need the support of other tools or notations for 

proper representation is often underestimated. The model 
needs to be verified and run to establish if it is correct or not 
and then the necessary modifications and corrections can be 
carried out.  

A mathematical or algebraic approach for representing Petri 

 

 
 

Fig. 1 Static vs Dynamic Composition 
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Fig. 2 Algebraic Notations for Static Representation 

 
 

 
Fig. 3 Some of the Algebraic Notations for Dynamic Representation 
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nets is useful for system decomposition and composition. 
These would be useful for understanding concurrency and 
parallel behavior both at the structural and behavioral level. 
The equations or notations themselves could be put into a net 
or another system and neatly fit together.  

IV. PROPOSED SOLUTION 

 This work proposes the use of algebraic notations for the 
static and notations for dynamic representation as in fig.1. 

It is difficult to represent all the details of a system using 
modelling notations. However, an ordinary Petri net is a 
reduced form of a system so representing a Petri net will be 
simpler. The idea of combining visual notations with formal 
representation is not new. This has already been done using Z 
and the Vienna Development Method (VDM) [3]. The 
systematic representation of Petri nets even though simple 
looking requires suitable representation that should be concise, 
precise and consistent. The possibility to develop the syntax or 
algebraic notation further should exist.  Existing formal 
languages are unsuitable because their principal goal was not 
geared towards this end. Some other forms of representation 
lack precision and conciseness. 

A. Structural Representation 

The Petri net structures are given as a set of operations. The 
input operation is given as X(v) where v is an input data value 
or a input store and X is an input arc. The output operation is 
given as X<v> where v is an output data value or an output 
store. Both X(v) and X<v> can contain token values. i.e. 
tokens in v ≥ 0. Tokens are bound to input and output places 
respectively. Parallel operations can be represented using the | 
(parallel bar).  Thus Q|P represents that P and Q are separate 
concurrent or parallel processes.  The processes for the Petri 
net are composed of the transitions.  Other additional operators 
are   (and), (or), ; (sequence), . (binding) and   (transition).  

This notation is indicated in fig. 2. X(v).P implies that place 
or resource v is on input X that is bound to P. P.X<y> implies 
that process P outputs to a place or resource y via X. I.e. P is 
bound to X<y>. X(v).P→P.A<y> indicates that the input to 
transition P is X(v).P and the output is P.A<y>. 
X(v).P1→P1.A<y> |Z(c).P2→P2.B<d> indicates that there are 
two process  P1 and P2 that can possibly execute in parallel or 
concurrently. The two processes P1 and P2 are completely 
isolated from each other in terms of communication.  

B. Dynamic Representation  

The dynamic representation of the Petri net deals with the 
programming or execution. Very simple symbols are used and 
the net is decomposed into several processes.  The following 

symbols are used:   (assignment). As an example X ←1 
implies value of 1 is assigned to x. The : (colon) is used for 
comparison of two values or data types. X:0 compares the 
value of X to 0.  Additionally mathematical and logical 
operators similar to < (less), <= (less than or equal), > 
(greater), => (equal or greater),   (and), (or) and several others 
can be defined as required. Initializing the net, transition 

execution or processing is placed in an appropriate box for 
partitioning. This notation is briefly represented in fig.  3. 
Other elements and expressions could be combined with the 
notation to increase its expressivity.  

V. CASE STUDIES AND DISCUSSION 

Some trivial examples are used to illustrate the proposals of 
this paper. The algebraic notations that have been created are 
useful for diverse scenarios and can be used to represent even 
more complex structures than those that are presented here. 

A. Conflict/Choice Representation 

In this example there is a classical place transition Petri net 
where there are two transitions that require input from a 
common place. I.e. there is a shared place. The performance of 
the net depends on the resources in the shared place and in the 
other input places if there are any. This is indicated in fig.4.  In 
this case the algebraic representation for the static structure of 
the net is given as follows: 

 
 
 

 
 

 
 

 

 
 
 
 

Fig. 4 Petri Net with Conflict or Choice 

 
 
 
 

Fig. 5 Choice/Conflict Net with Resources 
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((D(a).P1)˄ (F(b).P1) →P1.H<c>|((G(b).P2)˄ (F(a).P2)) 

→P2.I<c> 
This equation has been created using the notations presented 

in fig. 2 and discussed in section iv). Basically the equation is 
stating that P1 and P2 are two separate processes. They do not 
communicate with each other and are independent of one 
another. Fig. 5 can be considered for more clarification. In this 
example both P1 and P2 are enabled simultaneously. This 
gives several possibilities. Some possibilities are: i) P1 can 
process or fire twice and so can ii) P2 or P1 and P2 can fire in 
parallel.  Changing the resources in the input places will again 

change the number of possibilities.  The equation previously 
presented just describes the static structure of the net.  

The dynamic representation of the net given in fig.6 
explains the possible behavior of the net. This diagram 
explains setting up the parameters of the net with initial values. 
The values given to the input/ output arcs do not change. The 
values given to places can change as explained by the 
parameters. 

The places a,b,c are shared. This implies that they are global 
places and that these can be updated by either process P1 or 
process P2 independently. Any change to these shared places 

 
 

Fig. 7 Sequential Net with Possible Concurrency 

 

 
 

Fig. 8 Decomposed Net as per Equation 

 

      a,b ← 1

           c← 0

D,E,F,G← 0 

       H,I← 1

 (a:D)˄(b:F),(a>=D)˄(b>=F) a← a-D

b←b-F

c←c+H

  

 

 (b:G)˄(a:E),(b>=G)˄(a>=E)

b← b-G

a←a-E

c←c+I

  

 

SHARED a,b,c

 Initialize 

P1 check 

P2 check 

 
 

Fig. 6 Dynamic Representation for the Petri Net in fig. 4 and 5 
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i.e. the values of tokens in the places, can affect another 
process.  

The equation (a:D)˄(b:F),(a>=D)˄ (b>=F) implies that for 
P1 input places a,b are checked and that they both must have 
values greater than input arc D and input arc F respectively. If 
this is the case the next step can be executed. This is similar 
for process P2. 

 

B. Possibly Concurrent Processes 

 
A comprehensive example of possible concurrency is given 

using fig. 7. At first it might seem that this layout is sequential, 
however the distribution of resources will affect the 
functioning of the net. Process P1 and P2 can be 
simultaneously activated and operate concurrently. Normally 
this would not be the case if resources are placed into a,b only. 

The equation that represents the static part can be given as: 
((X(a))˄ (Y(b))).P1→P1.((Z<c>)˄ (S<d>))|((J(c))˄ (K(d))).P2 
→P2.((L<e>)˄ (H<f>)). This equation shows that P1 and P2 
are clearly separate processes. The | sign can be replaced by; if 
the processes were to definitely execute in sequential order. 
Thus the equation would be written as 
((X(a))˄ (Y(b))).P1→P1.((Z<c>)˄ (S<d>));((J(c))˄ (K(d))).P2 
→P2.((L<e>)˄ (H<f>)). However the use of the | sign indicates 
that the system is left open for concurrency or parallel 
behavior. The | could also indicate that undefined behavior is 

possible. The equation indicates that the structure can be 
represented graphically in a different decomposed form. This 
is given in fig. 8.  

The dynamic part of this net is given in fig. 9 and is self-
explanatory. 

VI.  RESULTS 

Algebraic and similar notations have been widely used in 
computing. These notations form the very foundation of 
mathematical and formal approaches in this area.  For Petri net 
representation algebraic expressions can represent important 
factors that often go unnoticed as has been indicated in the 
previous examples.  

 In the models, it is clearly seen that the static representation 
is insufficient to capture all the details of the net. In reality 
when Petri nets are executed using the token game the 
behavior is not necessarily clarified. Therefore a marking 
graph or tree could provide more details. The modelling 
approach presented can be used to validate or assess the 
validity of the Petri net. Essentially the behavior of the net can 
be classified into two types: i) sequential or ii) concurrent 
processing. 

Other interesting results and findings can be presented. i)  
concurrency in ordinary place transition Petri nets does not 
really depend entirely on the structure of the net but rather on 

 
 

     a,b ← 1

 c,d,e,f← 0 

X,Y,Z,S← 1

J,K,L,H← 1

 (a:X)˄(b:Y),(a>=X)˄(b>=Y) a← a-X

b←b-Y

c←c+Z

d←d+S

  

 

 (c:J)˄(d:K),(c>=J)˄(d>=K)

c← c-J

d←d-K

e←e+L

f←f+H

  

 

a,b,e,f

SHARED c,d

P1 check 

P2 check 

 Initialize 

 
Fig. 9 Dynamic Representation for the Petri Net in fig. 7 
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the token or resource distribution inside the net ii) Petri net 
structures have non-deterministic behavior and are suitable for 
representing real world behavior or complex systems iii) even 
the most simple structures can offer surprising hidden complex 
behavior. This is evidenced in the model presented in fig. 4 
and 7 iv) the static representation cannot predict the behavior 
of the net structure.  

Additionally if the dynamic representation for fig.4 and fig. 
7. as depicted in fig. 6 and 9 are considered they look quite 
similar. This is significant because there are two completely 
different Petri net structures which can give similar processing 
or behavior. This interesting finding indicates that from a 
fundamental point of view the behavior of the net does not 
really depend on the structure of the net but on the resource 
distribution.  

The results clearly indicate that for system modeling the 
Petri net structures used should be validated and supported 
through the use of other structures or notations. This will yield 
better robust system design principles for requirements 
engineering.  

Different authors have tried to formalize Petri net 
representation combining them with other formal methods 
which makes sense as in [3].  

Even though at the specification level different forms of 
representation using many notations are offered, it is 
impossible to capture all the details in every scenario. 
Restriction of the design offers a greater amount of control and 
predictable outcomes.  

This work identifies other possible areas of analysis that 
have not been checked here. These are the correct: i) 
initializing and ii) termination of Petri net execution. Even 
though they are simple in principle, they can involve different 
criteria complicating them.  

The abstract Petri net structures can contain hidden 
concurrency issues. The concurrency problem does not only 
depend on the structure but on the layout of the net. 
Concurrency can become quite complex to manage in these 
structures. 

If more complex classes of Petri nets like higher order nets 
are considered then more problems can arise specifically 
because of the language an enhanced structures that are 
represented.  

The Petri net structures presented in this work are simple 
ones. If more complex models are used then the i) static and ii) 
dynamic representations will become rather complex and their 
creation will be time consuming. In this case there is the 
possibility to apply reduction principles in the net.  

VII.  CONCLUSION 

The legacy and tradition of ordinary place transition nets 
and their importance is once again presented in the context of 
representing them algebraically. These were selected because 
they are simple and yet still expressive and valid today. 
Construction of models can be carried out very easily. Even 
though other classes of Petri nets exist, it can be indicated that 

no one class is better than another and each class is significant 
for solving problems addressed at a particular domain.  

This work has briefly outlined possible algebraic notation 
for modeling ordinary place transition Petri nets. More work 
can be done to enhance and improve these notations, thus 
creating more robust modeling concepts. This work is 
extendable to other areas of Petri nets. 
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