

Abstract— Ordinary place transition Petri nets are useful for

modeling discrete systems at a low level. It can be shown that the
behavior of these structures does not entirely depend on the static
model but also on the resource distribution in the net. In this work the
problem of representing Petri nets is presented. Some algebraic
notations for modeling at the i) structural and ii) operational level are
presented. Some simple examples are used to illustrate the usefulness
of these notations and expose hidden concurrency issues in Petri nets.
The results are discussed. The ideas presented here are just an outline
of what can be done in this area.

Keywords—Algebraic Representation, Concurrency, Petri Nets,
System Modeling.

I. INTRODUCTION

etri nets are elegant, well defined semi-formalisms used for
modelling of discrete event systems [1]-[7]. They can

naturally model sequential, concurrent and parallel behavior.
These nets are based on important system properties: i) events,
ii) conditions and iii) structure. Petri nets have a dual identity
[7]. They can be represented i) graphically and ii) using
mathematical terms like matrices and equations. The graphical
depiction is normally more useful for visual modelling and
communication, whilst the mathematical representation is
useful for compactness, formal checking, verification and
testing [1]-[4].

Comprehensive Petri net software simulators exist [2].
These are known for the token game simulation process. For
ordinary place transition nets, the time dimension is not
considered, however, this does not imply that it is unimportant.

The elementary and logical characteristics of Petri nets
make them a versatile tool for representing and analysing
behavior of certain system classes [2]-[4]. In literature, Petri
nets are normally combined with other formalisms or notations
for extended modelling power.

Due to their simplicity ordinary Petri nets can be modified
to represent diagrammatically the salient characteristics of
low-level behavior. Several formalisms like communicating
sequential processes (CSPs), communicating system calculus
(CCS), process algebras and various others share many
common properties with ordinary Petri nets [3],[13], [11],
[14]. These formal notations can be combined with ordinary

A. Spiteri Staines is an associate academic at the Department of Computer

Information Systems, Faculty of ICT, University of Malta (e-mail:
toni_staines@yahoo.com).

Petri nets for more expressive analysis of different scenarios.
Petri nets might look similar to other graphical and formal

notations. However, several properties of Petri nets single
them out [1],[2],[10]. Originally Petri nets were intended to
model concurrency and discrete system behavior. Some
confusion exists as to whether Petri nets should be classified as
formal or semi-formal constructs.

II. SOME BACKGROUND AND MOTIVATION

Several classes and extensions to ordinary place transition
Petri nets exist. In principle the graphical representation of
these structures will look similar because visually Petri nets
are bi-partite digraphs always composed of i) places, ii)
transitions, iii) input and iv) output arcs. Basically the places
and transitions are the nodes and the connecting arcs are the
edges. Unconnected edges and nodes are prevented through
the formal definition and rules of Petri nets. Additionally other
rules are added for places that can contain token values. Places
are used for activation and firing of transitions. The visual
representation of the net is what distinguishes them from other
algebraic notations.

As new computer technologies are being created, it is
important to have mathematically sound and precise models
for representing systems. Hence there is a lot of focus on
diverse modelling techniques and representation [7]-[10].
System correctness does not only depend on the architectural
or static structure of a representation but also on the
executional behavior of the system. Changes that occur in the
dynamic behavior part are often difficult to predict even in
ordinary Petri nets. There is a certain amount of
unpredictability and non-determinism in Petri nets.
Representing these issues is essential for the requirements
elicitation process. Understanding the processing involved will
eliminate the possibility of flaws that can emerge in later
stages.

In previous work [12] it has been shown that even simple
trivial place transition nets can hide some serious concurrency
issues. When constructing concurrent systems, the correctness
and validity of the model will save time and effort. Too much
complexity in a system is undesirable thus making validation
difficult to carry out.

 Place transition Petri nets can behave non-deterministically.
The output and behavior of the net depends on the token
configuration which cannot always be known apriori.

All the major classes of Petri nets can be divided into two

Algebraic Representation for Ordinary Place
Transition Petri Nets

A. Spiteri Staines

P

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 300

parts. i) the static part and ii) behavior or dynamic part. The
static part is all about structural representation. This is related
to how the net will appear graphically but this is independent
from the actual behavior.

An ordinary place transition petri net can be constructed
accurately but actually none of the transitions might fire for
various reasons. The behavior of the Petri net does not depend
only on the structure but also on other factors like the token
distribution (resources), the input and output arc values. To
validate the net, behavior and firing of the net has to be
completely checked to see if there are unreachable states,
possibly infinite loops or undesirable behavior. Normally this
is done by constructing the reachability graph or tree.

III. PROBLEM DEFINITION

For representation, the use of algebraic notations for

depicting the net would help to get better understanding and
also check the executional properties [12]. It is important to
find new ways to represent Petri nets because the visual
structure of a net cannot describe all its properties and does
not indicate if the net is error free or if there are other hidden
configuration issues.

The following problems are related to proper concurrency
and parallelism modeling in ordinary place transition Petri
nets: i) The physical structure of an ordinary Petri net can
support different processing behavior at different times
depending on the configuration of the tokens or resources in
the net, ii) Non-deterministic behavior can imply that a
transition even though it is activated will never fire at all, iii)
Once a transition fires it cannot be stopped. It is unstoppable,
iv) The transition firing has to complete itself both in the input
and output part, v) A transition can be blocked for several
reasons. E.g. if there is no output space available the transition
will never fire, vi) A Petri net can be composed of several
subnets each with different behavior. Because of these issues
concurrency and parallelism representation become a problem
[12].

Mainstream literature seem to focus on the different classes
of Petri nets and solutions to given problems. The fact that
Petri nets often need the support of other tools or notations for

proper representation is often underestimated. The model
needs to be verified and run to establish if it is correct or not
and then the necessary modifications and corrections can be
carried out.

A mathematical or algebraic approach for representing Petri

Fig. 1 Static vs Dynamic Composition

P
X

v

X(v).P

P y
X

P.X<y>

P y
AX

v

X(v).P→P.A<y>

P1 y
AX

v

P2 d
BZ

c

X(v).P1→P1.A<y> |Z(c).P2→P2.B<d>

Fig. 2 Algebraic Notations for Static Representation

Fig. 3 Some of the Algebraic Notations for Dynamic Representation

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 301

nets is useful for system decomposition and composition.
These would be useful for understanding concurrency and
parallel behavior both at the structural and behavioral level.
The equations or notations themselves could be put into a net
or another system and neatly fit together.

IV. PROPOSED SOLUTION

 This work proposes the use of algebraic notations for the
static and notations for dynamic representation as in fig.1.

It is difficult to represent all the details of a system using
modelling notations. However, an ordinary Petri net is a
reduced form of a system so representing a Petri net will be
simpler. The idea of combining visual notations with formal
representation is not new. This has already been done using Z
and the Vienna Development Method (VDM) [3]. The
systematic representation of Petri nets even though simple
looking requires suitable representation that should be concise,
precise and consistent. The possibility to develop the syntax or
algebraic notation further should exist. Existing formal
languages are unsuitable because their principal goal was not
geared towards this end. Some other forms of representation
lack precision and conciseness.

A. Structural Representation

The Petri net structures are given as a set of operations. The
input operation is given as X(v) where v is an input data value
or a input store and X is an input arc. The output operation is
given as X<v> where v is an output data value or an output
store. Both X(v) and X<v> can contain token values. i.e.
tokens in v ≥ 0. Tokens are bound to input and output places
respectively. Parallel operations can be represented using the |
(parallel bar). Thus Q|P represents that P and Q are separate
concurrent or parallel processes. The processes for the Petri
net are composed of the transitions. Other additional operators
are (and), (or), ; (sequence), . (binding) and (transition).

This notation is indicated in fig. 2. X(v).P implies that place
or resource v is on input X that is bound to P. P.X<y> implies
that process P outputs to a place or resource y via X. I.e. P is
bound to X<y>. X(v).P→P.A<y> indicates that the input to
transition P is X(v).P and the output is P.A<y>.
X(v).P1→P1.A<y> |Z(c).P2→P2.B<d> indicates that there are
two process P1 and P2 that can possibly execute in parallel or
concurrently. The two processes P1 and P2 are completely
isolated from each other in terms of communication.

B. Dynamic Representation

The dynamic representation of the Petri net deals with the
programming or execution. Very simple symbols are used and
the net is decomposed into several processes. The following

symbols are used: (assignment). As an example X ←1
implies value of 1 is assigned to x. The : (colon) is used for
comparison of two values or data types. X:0 compares the
value of X to 0. Additionally mathematical and logical
operators similar to < (less), <= (less than or equal), >
(greater), => (equal or greater), (and), (or) and several others
can be defined as required. Initializing the net, transition

execution or processing is placed in an appropriate box for
partitioning. This notation is briefly represented in fig. 3.
Other elements and expressions could be combined with the
notation to increase its expressivity.

V. CASE STUDIES AND DISCUSSION

Some trivial examples are used to illustrate the proposals of
this paper. The algebraic notations that have been created are
useful for diverse scenarios and can be used to represent even
more complex structures than those that are presented here.

A. Conflict/Choice Representation

In this example there is a classical place transition Petri net
where there are two transitions that require input from a
common place. I.e. there is a shared place. The performance of
the net depends on the resources in the shared place and in the
other input places if there are any. This is indicated in fig.4. In
this case the algebraic representation for the static structure of
the net is given as follows:

Fig. 4 Petri Net with Conflict or Choice

Fig. 5 Choice/Conflict Net with Resources

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 302

((D(a).P1)˄ (F(b).P1) →P1.H<c>|((G(b).P2)˄ (F(a).P2))

→P2.I<c>
This equation has been created using the notations presented

in fig. 2 and discussed in section iv). Basically the equation is
stating that P1 and P2 are two separate processes. They do not
communicate with each other and are independent of one
another. Fig. 5 can be considered for more clarification. In this
example both P1 and P2 are enabled simultaneously. This
gives several possibilities. Some possibilities are: i) P1 can
process or fire twice and so can ii) P2 or P1 and P2 can fire in
parallel. Changing the resources in the input places will again

change the number of possibilities. The equation previously
presented just describes the static structure of the net.

The dynamic representation of the net given in fig.6
explains the possible behavior of the net. This diagram
explains setting up the parameters of the net with initial values.
The values given to the input/ output arcs do not change. The
values given to places can change as explained by the
parameters.

The places a,b,c are shared. This implies that they are global
places and that these can be updated by either process P1 or
process P2 independently. Any change to these shared places

Fig. 7 Sequential Net with Possible Concurrency

Fig. 8 Decomposed Net as per Equation

 a,b ← 1

 c← 0

D,E,F,G← 0

 H,I← 1

 (a:D)˄(b:F),(a>=D)˄(b>=F) a← a-D

b←b-F

c←c+H

 (b:G)˄(a:E),(b>=G)˄(a>=E)

b← b-G

a←a-E

c←c+I

SHARED a,b,c

 Initialize

P1 check

P2 check

Fig. 6 Dynamic Representation for the Petri Net in fig. 4 and 5

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 303

i.e. the values of tokens in the places, can affect another
process.

The equation (a:D)˄(b:F),(a>=D)˄ (b>=F) implies that for
P1 input places a,b are checked and that they both must have
values greater than input arc D and input arc F respectively. If
this is the case the next step can be executed. This is similar
for process P2.

B. Possibly Concurrent Processes

A comprehensive example of possible concurrency is given

using fig. 7. At first it might seem that this layout is sequential,
however the distribution of resources will affect the
functioning of the net. Process P1 and P2 can be
simultaneously activated and operate concurrently. Normally
this would not be the case if resources are placed into a,b only.

The equation that represents the static part can be given as:
((X(a))˄ (Y(b))).P1→P1.((Z<c>)˄ (S<d>))|((J(c))˄ (K(d))).P2
→P2.((L<e>)˄ (H<f>)). This equation shows that P1 and P2
are clearly separate processes. The | sign can be replaced by; if
the processes were to definitely execute in sequential order.
Thus the equation would be written as
((X(a))˄ (Y(b))).P1→P1.((Z<c>)˄ (S<d>));((J(c))˄ (K(d))).P2
→P2.((L<e>)˄ (H<f>)). However the use of the | sign indicates
that the system is left open for concurrency or parallel
behavior. The | could also indicate that undefined behavior is

possible. The equation indicates that the structure can be
represented graphically in a different decomposed form. This
is given in fig. 8.

The dynamic part of this net is given in fig. 9 and is self-
explanatory.

VI. RESULTS

Algebraic and similar notations have been widely used in
computing. These notations form the very foundation of
mathematical and formal approaches in this area. For Petri net
representation algebraic expressions can represent important
factors that often go unnoticed as has been indicated in the
previous examples.

 In the models, it is clearly seen that the static representation
is insufficient to capture all the details of the net. In reality
when Petri nets are executed using the token game the
behavior is not necessarily clarified. Therefore a marking
graph or tree could provide more details. The modelling
approach presented can be used to validate or assess the
validity of the Petri net. Essentially the behavior of the net can
be classified into two types: i) sequential or ii) concurrent
processing.

Other interesting results and findings can be presented. i)
concurrency in ordinary place transition Petri nets does not
really depend entirely on the structure of the net but rather on

 a,b ← 1

 c,d,e,f← 0

X,Y,Z,S← 1

J,K,L,H← 1

 (a:X)˄(b:Y),(a>=X)˄(b>=Y) a← a-X

b←b-Y

c←c+Z

d←d+S

 (c:J)˄(d:K),(c>=J)˄(d>=K)

c← c-J

d←d-K

e←e+L

f←f+H

a,b,e,f

SHARED c,d

P1 check

P2 check

 Initialize

Fig. 9 Dynamic Representation for the Petri Net in fig. 7

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 304

the token or resource distribution inside the net ii) Petri net
structures have non-deterministic behavior and are suitable for
representing real world behavior or complex systems iii) even
the most simple structures can offer surprising hidden complex
behavior. This is evidenced in the model presented in fig. 4
and 7 iv) the static representation cannot predict the behavior
of the net structure.

Additionally if the dynamic representation for fig.4 and fig.
7. as depicted in fig. 6 and 9 are considered they look quite
similar. This is significant because there are two completely
different Petri net structures which can give similar processing
or behavior. This interesting finding indicates that from a
fundamental point of view the behavior of the net does not
really depend on the structure of the net but on the resource
distribution.

The results clearly indicate that for system modeling the
Petri net structures used should be validated and supported
through the use of other structures or notations. This will yield
better robust system design principles for requirements
engineering.

Different authors have tried to formalize Petri net
representation combining them with other formal methods
which makes sense as in [3].

Even though at the specification level different forms of
representation using many notations are offered, it is
impossible to capture all the details in every scenario.
Restriction of the design offers a greater amount of control and
predictable outcomes.

This work identifies other possible areas of analysis that
have not been checked here. These are the correct: i)
initializing and ii) termination of Petri net execution. Even
though they are simple in principle, they can involve different
criteria complicating them.

The abstract Petri net structures can contain hidden
concurrency issues. The concurrency problem does not only
depend on the structure but on the layout of the net.
Concurrency can become quite complex to manage in these
structures.

If more complex classes of Petri nets like higher order nets
are considered then more problems can arise specifically
because of the language an enhanced structures that are
represented.

The Petri net structures presented in this work are simple
ones. If more complex models are used then the i) static and ii)
dynamic representations will become rather complex and their
creation will be time consuming. In this case there is the
possibility to apply reduction principles in the net.

VII. CONCLUSION

The legacy and tradition of ordinary place transition nets
and their importance is once again presented in the context of
representing them algebraically. These were selected because
they are simple and yet still expressive and valid today.
Construction of models can be carried out very easily. Even
though other classes of Petri nets exist, it can be indicated that

no one class is better than another and each class is significant
for solving problems addressed at a particular domain.

This work has briefly outlined possible algebraic notation
for modeling ordinary place transition Petri nets. More work
can be done to enhance and improve these notations, thus
creating more robust modeling concepts. This work is
extendable to other areas of Petri nets.

REFERENCES

[1] T. Murata, “Petri Nets: Properties, Analysis and Applications”, Proc. Of
the IEEE, Vol 74 issue 4, IEEE, 1989, pp.541-89

[2] M. Zhou, K. Ventkatesh, “Modelling Simulation, and Control of
Flexible Manufacturing Systems, A Petri Net Approach”, World
Scientific, 1999.

[3] K. van Hee, “Information Systems: A Formal Approach”, Cambridge
Univ. Press, 2009.

[4] A. Knopfel et al., “Fundamental Modeling Concepts”, Wiley; 2005.
[5] A. Abellard, P. Abellard Ch. 5 Systolic Petri Nets. In: Petri Nets

Applications, InTech; 2010.
[6] A. Spiteri Staines, “An Introduction to Bi-Directional Transition

Network Modeling”, International Journal of Computers, IARAS, Vol.
2, 2017.

[7] A. Spiteri Staines, “Matrix Representations for Ordinary Restricted
Place Transition Nets”, WSEAS Transactions on Computers, Vol 16,
2017.

[8] T. Spiteri Staines and F. Neri, “A Matrix Transition Oriented Net for
Modeling Distributed Complex Computer and Communication
Systems”, WSEAS Transactions on Systems, Vol. 13, 2014, pp. 12-22.

[9] A. Spiteri Staines, Modelling Simple Network Graphs Using the Matrix
Vector Transition Net, CSSCC 2016, INASE, Vienna, 2016.

[10] S.K. Chang, “Principles of Pictorial Information Systems Design”,
Pretence Hall, 1989.

[11] D. Lightfoot, “Formal Specification using Z”, Palgrave 2001, ISBN 0-
333-76327-0, Ch 6, pp. 37 – 97.

[12] T. Spiteri Staines, “Concurrency Issues in Ordinary Place Transition
Petri Nets”, CPA 2017.

[13] C.A.R. Hoare, “Communicating Sequential Processes”, Pretence Hall,
1985.

[14] R. Milner, “A Calculus of Communicating Systems” Springer Verlag,
1980. ISBN 0-387-10235-3.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 305

