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Abstract—We present a collection of recent results on the numer-
ical approximation of second order differential problems of the type
y′′ = f(y(t)) by means of family of multivalue numerical methods,
here denoted as generalized Nyström methods. These methods can
be thought as a general family of formulae for the numerical
approximation of second order problems, which properly include
classical formulae, such as linear multistep methods and Runge-
Kutta-Nyström methods, but also enable to find new methods which
provide better balances between accuracy and stability demandings.
This is made possible because generalized Nyström methods rely
on a larger number of degrees of freedom than classical methods,
which can be employed for the mentioned purposes. We provide the
formulation of the family of methods, showing that existing methods
can be regarded according to the new formalism, study the main
properties and give examples of highly stable genuine multivalue
methods whose order is higher than that of existing methods. In
particular, we aim to inherit the best stability properties known in the
literature, i.e. those coming from Gauss-Legendre points leading to P-
stable methods, by introducing generalized Nyström methods having
with the same stability polynomial of Gauss-Legendre methods but
higher order of convergence. We show that it is possible to obtain
P-stable methods with order 4 relying on one single internal stage (in
the classical case, the maximum attainable order is only 2, requiring
the same computational cost). A numerical experiment shows the
effectiveness of the approach on a periodic stiff problem, also in
comparison with existing methods.

Keywords—Multivalue numerical methods, general linear methods,
second order problems, P-stability

I. FORMALISM OF MULTIVALUE METHODS

Our investigation is here focused on the numerical approxi-
mation of initial value problems based on special second order
ordinary differential equations (ODEs)

y′′(t) = f(y(t)), t ∈ [t0, T ],

y(t0) = y0 ∈ Rd,

y′(t0) = y′0 ∈ Rd,

(1)

where the function f : Rd → Rd is smooth enough to ensure
the Hadamard well-posedness of the differential problem.
Though problem (1) admits the equivalent first order formula-
tion, the consequent augmentation of the dimensionality makes
the direct integration of the second order problem favourable.
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In [44], a general framework for the numerical approxima-
tion of (1) has been introduced (also compare [40], [43], [52],
[54]; see [3], [6], [22], [64] and references therein for the
first order case) in order to assess an unifying strategy for the
analysis of accuracy and stability requirements to be asked
for, such as consistency, zero-stability and convergence, when
developing acceptable numerical methods. Such a general
family is of multivalue type, i.e. the approximation of a set of r
solution related and r′ derivative related values is provided and
inherited from a step point to the following one, generalizing
an approach of Runge-Kutta type. To be more detailes, let
us recall the formulation of these methods which be called,
from now on, generalized Nyström methods (GNMs). To this
purpose, in correspondence of the fixed stepsize discretization

t0 ≤ t1 ≤ · · · ≤ TN = T,

of the interval [t0, T ], we define the following supervectors

y[n−1] =


y
[n−1]
1

y
[n−1]
2

...
y
[n−1]
r

 ∈ Rrd,

y′[n−1] =


y′

[n−1]
1

y′
[n−1]
2

...
y′

[n−1]
r′

 ∈ Rr′d,

Y [n] =


Y

[n]
1

Y
[n]
2

...
Y

[n]
s

 ∈ Rsd.

The vector y[n−1], denoted as input vector of the external
stages, approximates the r solution related values transferred
from the point tn−1 to tn of the discretization. Analogously,
the vector y′[n−1] contains the r′ derivative related values
computed in tn−1, while the values Y [n−1]

j , denoted as internal
stage values, provide an approximation to the solution in the
internal points tn−1 + cjh, j = 1, 2, . . . , s.

We next introduce the following coefficient matrices A ∈
Rs×s, P ∈ Rs×r′ , U ∈ Rs×r, C ∈ Rr′×s, R ∈ Rr′×r′ ,
W ∈ Rr′×r, B ∈ Rr×s, Q ∈ Rr×r′ , V ∈ Rr×r, collected in
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the following partitioned (s+ r′ + r)× (s+ r′ + r) matrix A P U
C R W
B Q V

 , (2)

which is the Butcher tableau of GNMs. Correspondingly,
GNMs are formulated as follows

Y [n] = h2(A⊗ I)F [n] + h(P⊗ I)y′[n−1]

+ (U⊗ I)y[n−1],

hy′[n] = h2(C⊗ I)F [n] + h(R⊗ I)y′[n−1]

+ (W ⊗ I)y[n−1],

y[n] = h2(B⊗ I)F [n] + h(Q⊗ I)y′[n−1]

+ (V ⊗ I)y[n−1],

(3)

where ⊗ denotes the usual Kronecker tensor prod-
uct, I is the identity matrix in Rd×d and F [n] =

[f(Y
[n]
1 ), f(Y

[n]
2 ), . . . , f(Y

[n]
s )]>.

In absence of dependence on y′[n−1], the matrices
P,Q,C,R,W do not contribute to the multivalue numerical
dynamics and, in such a case, the reduced tableau[

A U
B V

]
, (4)

completely characterizes GNMs, which will correspondingly
have the hybrid formulation

Y [n] = h2(A⊗ I)F [n] + (U⊗ I)y[n−1], (5)

y[n] = h2(B⊗ I)F [n] + (V ⊗ I)y[n−1].

A. Classical methods recasted as GNMs

The family of GNMs properly contains, as special cases,
many numerical methods for (1) already introduced in the
existing literature, as clarified by the following examples.

1) Linear multistep methods. Linear multistep methods for
second order ODEs [57], [59], defined by

yn =
k∑

j=1

αjyn−j + h2
k∑

j=0

βjf(yn−j), (6)

can be regarded as GNMs with r = 2k, s = 1, Y [n] = [yn],

y[n−1] =



yn−1
yn−2

...
yn−k

h2f(yn−1)

h2f(yn−2)
...

h2f(yn−k)


,

and in correspondence to the reduced tableau (4)



β0 α1 . . . αk−1 αk β1 . . . βk−1 βk
β0 α1 . . . αk−1 αk β1 . . . βk−1 βk
0 1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 0 . . . 0 0
1 0 . . . 0 0 0 . . . 0 0
0 0 . . . 1 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 1 . . . 1 0


,

with c = [1]. A famous example of linear multistep method
is the Numerov method (see, for instance, [57], [60])

yn = 2yn−1 − yn−2 +
h2

12

(
f(tn, yn)

+ 10f(tn−1, yn−1) + f(tn−2, yn−2)

)
,

(7)

which is an order four method corresponding to the GNM with
r = 4, s = 1, Y [n] = [yn],

y[n−1] =


yn−1
yn−2

h2f(yn−1)

h2f(yn−2)

 ,
and reduced tableau (4)

1
12 2 −1 5

6
1
12

1
12 2 −1 5

6
1
12

0 1 0 0 0
1 0 0 0 0
0 0 0 1 0

 .

2) Runge-Kutta-Nyström methods. Runge-Kutta methods of
Nyström type (see [57])

Yi = yn−1 + cihy
′
n−1 + h2

s∑
j=1

aijf (Yj) ,

hy′n = hy′n−1 + h2
s∑

j=1

b′jf (Yj) ,

yn = yn−1 + hy′n−1 + h2
s∑

j=1

bjf (Yj) ,

(8)

i = 1, ..., s, provide an extension to second order ODEs (1)
of Runge–Kutta methods (see, for instance, [5], [66]) which
involves the dependence on the approximation to the first
derivative. Such methods are GNMs (3) with r = 1 and
Butcher tableau (2)  A c e

b′> 1 0

b> 1 1

 ,
where e is the unit vector in Rs, and to the input vectors
y[n−1] = [yn−1], y′[n−1] = [y′n−1].

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017 

ISSN: 1998-4464 320



3) Coleman hybrid methods. We now consider the following
class of two-step hybrid methods

Yi = (1 + ci)yn−1 − ciyn−2 + h2
s∑

j=1

aijf (Yj) ,

yn = 2yn−1 − yn−2 + h2
s∑

j=1

bjf (Yj) ,

(9)

i = 1, ..., s, introduced by Coleman in [24], which are GNMs
corresponding to the reduced tableau (4) A e + c −c

b> 2 −1
0 1 0


and input vector y[n−1] = [yn−1 yn−2]>.

4) Two-step Runge-Kutta-Nyström methods. The following
class of two-step Runge-Kutta-Nyström methods [28]

Y
[n−1]
i = yn−2 + hciy

′
n−2 + h2

s∑
j=1

aijf(Y
[n−1]
j ),

Y
[n]
i = yn−1 + hciy

′
n−1 + h2

s∑
j=1

aijf(Y
[n]
j ),

hy′n = (1− θ)hy′n−1 + θhy′n−2

+ h2v′jf(Y
[n−1]
j ) + h2w′jf(Y

[n]
j ),

yn = (1− θ)yn−1 + θyn−2 + h
s∑

j=1

v′jy
′
n−2

+ h
s∑

j=1

w′jy
′
n−1 + h2

s∑
j=1

vjf(Y
[n−1]
j )

+ h2
s∑

j=1

wjf(Y
[n]
j ).

(10)

i = 1, . . . , s, depend on two consecutive approximations to
the solution and its first derivative in the grid points, but
also on two consecutive approximations to the stage values
(i.e. the ones related to the points tn−2 + cih and the ones
corresponding to the points tn−1 + cih, i = 1, 2, . . . , s).
Two-step Runge-Kutta-Nyström methods can be represented
as GNMs (3) with r = s + 2 and r′ = 2 through the tableau
(2) 

A c 0 e 0 0

w′
>

(1− θ) θ 0 0 v′
>

0 1 0 0 0 0

w> w′>e v′>e (1− θ) θ v>

0 0 0 1 0 0
I 0 0 0 0 0


,

in correspondence of the input vectors

y[n−1] =

 yn−1
yn−2

h2f(Y [n−1])

 , y′[n−1] =

[
y′n−1
y′n−2

]
.

II. ACCURACY ANALYSIS

GNMs theory developed in [44] allows to provide simple
effective tools for the convergence analysis of methods, which
relies on easy computations related to the their coefficients.
Such simple objects are strictly related to the basic definitions
of consistency, zero-stability and convergence introduced in
[44] which, define, as well known in the literature (refer,
for instance, to the monographs [6], [57], [64]), the minimal
acceptable demandings on accuracy and stability.

Definition 2.1: A GNM (3) is preconsistent if there exist
vectors q0, q1 and q′1 such that

Uq0 = e, Wq0 = 0, Vq0 = q0,

Pq′1 + Uq1 = c, Rq′1 + Wq1 = q′1,

Qq′1 + Vq1 = q0 + q1,

(11)

where c is the vector of nodes associated to (3).
Definition 2.2: A preconsistent GNM (3) is consistent if

there exist vectors q2 and q′2 such that

Ce+ Rq′2 + Wq2 = q′1 + q′2,

Be+ Qq′2 + Vq2 =
q0

2
+ q1 + q2.

(12)

Definition 2.3: A GNM (3) is zero-stable if there exist two
real constants C and D such that

‖Mm
0 ‖ ≤ mC +D, ∀m = 1, 2, . . . , (13)

being M0 the block matrix

M0 =

[
R W
Q V

]
.

A criterion equivalent to condition (13) is given in the
following theorem, contained in [44].

Theorem 2.1: The following statements are equivalent:
(i) M0 satisfies the bound (13);

(ii) the roots of the minimal polynomial of the matrix M0

lie on or within the unit circle and the multiplicity of
the zeros on the unit circle is at most two;

(iii) there exist a matrix B similar to M0 such that

sup
m
{‖Bm‖∞ , m ≥ 1} ≤ m+ 1.

As expected, consistency and zero-stability are necessary
and sufficient conditions for the convergence of the method
(for a formal notion of convergence specialized to GNMs (3),
compare [44]). This is proved in the following result.

Theorem 2.2: A GNM method (3) is convergent if and only
if it is consistent and zero-stable.

A. Recovering the convergence of classical methods

Using recalled definitions and results, we can easily recover
the convergence of the classical numerical methods considered
in the previous section. As one can appreciate from the
following analysis, each proof is very simple, highlighting the
power of the introduced theory of GNMs.
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• The Numerov method (7) is consistent with preconsis-
tency and consistency vectors

q0 =


1
1
0
0

 , q1 =


0
−1

0
0

 , q2 =


0

1/2
1
1

 .
The minimal polynomial associated to the zero-stability
matrix of the Numerov method (7) is

p(λ) = λ2(λ− 1)2,

which satisfies the requirement (ii) in Theorem 2.1, i.e.
the Numerov method is zero-stable, hence convergent;

• as regards Runge–Kutta–Nyström methods (8), precon-
sistency and consistency vectors assume the forms

q0 = [1], q1 = q2 = [0], q′1 = [1], q′2 = [0],

and the minimal polynomial of the zero-stability matrix
is

p(λ) = (λ− 1)2,

which satisfies the requirement (ii) in Theorem 2.1,
hence the method is convergent;

• Coleman hybrid methods (9) are consistent with precon-
sistency and consistency vectors

q0 = [1 1]>, q1 = [0 − 1]>, q2 = [0 1/2]>.

Moreover, the minimal polynomial associated to their
zero-stability is

p(λ) = (λ− 1)2,

then they provide a family of zero-stable methods;
• two-step Runge–Kutta–Nyström methods (10) are consis-

tent with preconsistency and consistency vectors

q0 = [1 1 0 . . . 0 0]> ∈ Rs+2,

q1 = [0 − 1 0 . . . 0 0]> ∈ Rs+2,

q2 = [0 1/2 1 . . . 1 1]> ∈ Rs+2,

q1
′ = [1 1]>, q2

′ = [0 − 1]>.

The minimal polynomial of their zero-stability matrix is

p(λ) = λ2(λ2 − (1− θ)λ− θ)

and, therefore, such methods are zero-stable if and only
if −1 < θ ≤ 1: this restriction on θ recovers the classical
result on the zero-stability of two-step Runge–Kutta–
Nyström methods (compare [29], [68]).

III. LINEAR STABILITY ANALYSIS

Let us now analyze the linear stability properties of GNMs
(3), i.e. we analyze the properties of such methods when
applied to scalar linear test equation

y′′ = −λ2y, (14)

introduced by Lambert and Watson in [67]. Applying GNMs
methods (3) to the test equation (14), we obtain

Y [n] = −λ2h2AY [n] + Uy[n−1], (15)

y[n] = −λ2h2BY [n] + Vy[n−1]. (16)

We set z = λh and Λ = (I+z2A)−1, assuming that z is small
enough to make the matrix I + z2A invertible. Then (15) is
equivalent to

Y [n] = ΛUy[n−1]

and, together with (16), we obtain

y[n] = M(z2)y[n−1],

where
M(z2) = V − z2BΛU ∈ Rr×r.

The matrix M(z2) is known as stability matrix and
its characteristic polynomial p(ω, z2) is the stability
polynomial of GNMs, having degree r with respect to ω and
coefficients given by rational functions with respect to z2.
Correspondingly, we can provide the notions of periodicity
interval and P-stability [71] for GNMs.

Definition 3.1: (0, H2
0 ) is a periodicity interval for a GNM

(3) if, ∀z2 ∈ (0, H2
0 ), the stability polynomial p(ω, z2) has

two complex conjugate roots of modulus 1, while all the others
have modulus less than 1.

Definition 3.2: A GNM is P-stable if its periodicity interval
is (0,+∞).

P-stability is a minimal stability requirement when approx-
imating numerically the solutions of periodic stiff problems as
greatly clarified, for instance, in [70] and references therein.
Periodic stiff problems have a periodic theoretical solution
given by the linear combination of components with dominant
short frequencies and components with large frequencies and
small amplitudes. Accurately computing such solutions im-
poses severe restriction on the stepsize in order to accurately
catch any oscillation. However, this limit can be efficiently
removed when P-stable methods are employed since, for such
methods, the choice of the stepsize is completely independent
from the values of the frequencies, but it only depends on the
desired accuracy [26], [68], [70]. This notion completely par-
allels that of A-stability for first order ODEs, which is highly
relevant for stiff problems, eliminating stepsize restrictions
due to stability reasons (see citebutch08,hawa and references
therein).

A. Runge-Kutta-Nyström stability

P-stability is an important requirement in the numerical
approximation of periodic stiff problems. However, it is not
so easy to gain a nice balance between P-stability and high
order of convergence. For instance, P-stable linear multistep
methods (6) can achieve maximum order 2, as proved in
[67]. Moreover, no P -stable one-step symmetric collocation
methods exist [25].
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As regards Runge-Kutta-Nyström methods (8), many A-
stable methods exist, but P-stability is hard to be achieved.
Indeed, collocation methods among the family (8), i.e. whose
coefficients are given by [57]

aij =

∫ ci

0

Lj(s)ds,

bi =

∫ 1

0

Li(s)ds,

b̄i =

∫ 1

0

(1− s)Li(s)ds,

have only bounded stability intervals and are not P -stable [68].

A better balance between order of convergence and P-
stability can be acquired by inheriting good stability properties
from Runge-Kutta methods for first order ODES, leading
to the so-called family of indirect collocation methods [27],
[71]. Such methods are generated by applying a collocation
Runge-Kutta method (the idea of numerical collocation is
well described in [6], [12]–[14], [30], [32]–[34], [37], [45],
[48], [49], [51], [57] and references therein) to the first order
representation of (1). The properties of indirect collocation
methods are totally inherited by those of the corresponding
reference collocation method [71]. Hence, the maximum at-
tainable order of convergence is 2s, where s is the number
of internal stages, and it is achieved by Gaussian collocation
points; Gaussian methods are also A-stable, while Radau IIA
methods have order 2s − 1 and are L-stable. P-stability is
achieved in correspondence of Gauss-Legendre collocation
points [71]: such methods of order 2s and stage order s have
been for many years, at the best of our knowledge, the family
of P-stable methods with the highest order of convergence.
However, the theory of GNMs has allowed to derive higher
order P-stable methods, as discussed in [52].

A crucial role in developing high order P-stable methods
for (1) has been played by imitating the P-stability properties
of Runge-Kutta-Nyström methods on Gauss Legendre points,
by enforcing the stability polynomial of a GNM to contain, as
a factor, the stability polynomial of a known P-stable method.
Such an idea has also been exploited in the setting of first
order ODEs, taking into account that Runge-Kutta methods
are excellent starting point to derive accurate and highly stable
methods: this is the basis of the idea of Runge-Kutta stability
(see [1], [2], [6], [9], [64], [72] and references therein), which
can be defined as follows. A multivalue method for first order
ODEs is Runge-Kutta stable if its stability polynomial p(ω, z)
takes the form

p(ω, z) = ωr−1(ω −R(z)),

where R(z) is the stability function of a reference Runge-
Kutta method. In order terms, the corresponding multivalue
method shares the same stability properties of the reference
Runge-Kutta method.

Following this idea (also compare [8], [18], [31], [64]),
we have introduced in [52] an analogous notion of stability
for GNMs methods (3), in order to inherit the same stability
properties of a reference Runge-Kutta-Nyström method.

Definition 3.3: A GNM method (3) is said to be Runge-
Kutta-Nyström stable (RKN stable) if its stability polynomial
assumes the form

p(ω, z2) = ωr−2 (q2(z)ω2 + q1(z)ω + q0(z)
)
,

where q2(z)ω2 + q1(z)ω+ q0(z) is the stability polynomial of
a certain reference Runge-Kutta-Nyström method.

Therefore, the corresponding stability properties only depend
on the polynomial

q2(z)ω2 + q1(z)ω + q0(z),

which is assumed to be the stability polynomial of a P-stable
method. Therefore RKN stable GNMs on Gauss-Legendre
points are P -stable. Next section shows examples of GNMs
sharing the P-stability of Gauss-Legendre methods.

IV. NORDSIECK GNMS

In the direction of deriving proper examples of highly stable
GNMs (3), we first need to specialize the family of methods,
in order to establish which are the quantities that are involved
in the multivalue dynamics. In other terms, we a-priori fix the
nature of the vector y[n] in (3). An effective choice is generally
given by approximating the so-called Nordsieck vector (see
[64] and references therein)

y(tn)
hy′(tn)

...
hpyp(tn)

 , (17)

where the component y[n]i approximates the scaled i-th deriva-
tive hiy(i−1)(tn), i = 0, 1, . . . , p, where p is the order of
convergence of the method. We observe that, since the input
vector and the Nordsieck one respectively have dimensions r
and p+ 1, we always assume r = p+ 1.

As a consequence, the preconsistency and consistency vec-
tors are given by

q0 =


1
0
0
...
0

 , q1 =


0
1
0
...
0

 , q2 =


0
0
1
...
0

 .
i.e. they are the first three vectors e1, e2, e3 of the canonical
basis of Rr. This is a nice property that strongly further
simplifies the analysis of convergence of Nordsieck GNMs,
as described in the following result [52].

Theorem 4.1: A GLN (3) whose input vector y[n] approx-
imates the Nordsieck vector (17) is convergent if and only
if
(i) Be+ Vq2 =

e1
2

+ e2 + e3;
(ii) its Butcher tableau has the form[

A e c Ũ

B e1 e1 + e2 Ṽ

]
,
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where Ũ ∈ Rs×(r−2) and Ṽ ∈ Rs×(r−2);
(iii) all the eigenvalues of V̄ have modulus strictly less than

1, being V̄ the matrix Ṽ deprived of its first two rows.

Theorem 4.1 suggests that the first two columns of the
matrices U and V play a role in the convergence of a
Nordsieck GNM. The remaining ones dictate the order of
convergence of the method, as stated in the following theorem.

Theorem 4.2: A GLN method (3) in Nordsieck form has
order and stage-order both equal to p if and only if

v(k+1) =
k∑

`=0

ek−`+1

`!
− Bck−2

(k − 2)!
,

u(k+1) =
ck

k!
− Ack−2

(k − 2)!
,

(18)

k = 2, . . . , p + 1, being v(k+1) and u(k+1) the (k + 1)-st
columns of the matrices U and V, respectively.

We observe that order conditions (18) also holds true when the
order p and stage-order q differs by one, i.e. when q = p− 1
(compare [44], [64]).

A. High order P-stable methods

In developing an example of P-stable GNM (3) of Nordsieck
type whose order of convergence is higher than that of an
existing method having the same computational cost, we
suppose that the dimension of the internal stage vector is s = 1
and assume as reference the following Runge-Kutta-Nyström
of indirect collocation on one single Gauss-Legendre point

Y = yn−1 +
h

2
y′n−1 +

h2

4
f (Y ) ,

hy′n = hy′n−1 +
h2

2
f (Y ) ,

yn = yn−1 + hy′n−1 + h2f (Y ) ,

(19)

whose stability polynomial is

q(ω, z2) = ω2 +
2
(
−4 + z2

)
4 + z2

ω + 1,

hence it is P-stable. As regards its accuracy, the order of
convergence is equal to 2 and the stage order is 1.

As a consequence, we need to look for a one-stage P-stable
GNM of order at least 3, to get a better balance between
stability and accuracy. To this purpose,
• we study convergence through Theorem 4.1;
• we impose order 3 through Theorem 4.1;
• we force the stability polynomial to assume the form

p(ω, z2) = ωr−2

(
ω2 +

2
(
−4 + z2

)
4 + z2

ω + 1

)
,

to automatically ensure P-stability.

Since r = p+ 1 and we wish order at least equal to 3, we
first assume r = 4. We correspondingly obtain a one-stage
P -stable method of order p = 3 and stage order q = 2, with
c = 2−

√
2

2 and

[
A U
B V

]
=



1
4 1 2−

√
2

2
1−
√
2

2
1−
√
2

6

3+2
√
2

6 1 1 −
√
2
3 −

√
2

12

5+3
√
2

6 0 1 1−3
√
2

6
2−
√
2

12

2+
√
2

2 0 0 −
√
2
2

1
2

1 0 0 −1
√
2
2


.

If r = 5, we gain a one-stage P -stable method of order
p = 4 and stage order q = 3, with A =

[
1
4

]
,

U =
[

1 c −1+2c2

4
1
12

(
3c
2 + c3

) c(−3+c3)
24

]
,

B =



42−64c+37c2−10c3+c4

24

67−76c+30c2−4c3
24

(−3+c)(−2+c)
2

5
2 − c

1


,

V =



1 1

0 1

0 0 v3 v4 v5

0 0

0 0


,

with

v3 =


−30+64c−37c2+10c3−c4

24
−43+76c−30c2+4c3

24
−4+5c−c2

2
c− 5

2
−1

 ,

v4 =


4−42c+64c2−37c3+10c4−c5

24
12−67c+76c2−30c3+4c4

24
2−6c+5c2−c3

2
1− 5c

2 + c2

−c

 ,

v5 =


2−42c2+64c3−37c4+10c5−c6

48
16−67c2+76c3−30c4+4c5

48
2−6c2+5c3−c4

4
4−5c2+2c3

4

1− c2

2


and c ≈ 0.3754243604533405 is the only root in (0, 1) of the
polynomial

a(x) = 6− 210x3 + 320x4 − 185x5 + 50x6 − 5x7,

having two pairs of complex conjugate roots and two real roots
outside the interval (0, 1).

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017 

ISSN: 1998-4464 324



k ‖err(20π)‖∞ p fe

3 5.86 · 10−1 480

4 3.99 · 10−2 3.87 959

5 2.53 · 10−3 3.98 1916

6 1.59 · 10−4 3.99 3838

7 9.94 · 10−6 4.00 7670

8 6.21 · 10−7 4.00 15340

TABLE I
NUMERICAL RESULTS FOR GLN4 ON KRAMARZ PROBLEM, WHERE

err(20π) IS THE GLOBAL ERROR IN THE ENDPOINT OF THE INTEGRATION,
p IS ESTIMATED ORDER OF CONVERGENCE, fe THE NUMBER OF

FUNCTION EVALUATIONS

V. NUMERICAL EVIDENCE

Above order 4 method (denoted as GNM4) is compared
with the reference Runge-Kutta-Nyström method (19), denoted
as RKN2. Since they are both one-stage methods, they require
the same computational cost. Such methods are applied on the
periodic stiff Kramarz problem [65]

y′′(t) =

[
µ− 2 2µ− 2
1− µ 1− 2µ

]
y(t), t ∈ [0, 20π]

with initial conditions

y(0) = [2,−1]>, y′(0) = [0, 0]>.

The eigenvalues of the Jacobian matrix[
µ− 2 2µ− 2
1− µ 1− 2µ

]
are −1 and −µ. Then, the solution of the problem depends
on the two frequencies 1 and

√
µ. The high frequency com-

ponent, corresponding to
√
µ when µ � 1, is eliminated

by the initial conditions: the exact solution is indeed y(t) =
[2 cos(t),− cos(t)]>. Notwithstanding this, its presence in the
general solution of the system dictates restrictions on the
choice of the stepsize, so that the system is stiff.

We show the numerical results with fixed stepsize

h =
π

2k
,

for various integer values of k. The results, reported in Tables I
and II, confirm the theoretical order of convergence and reveal
the superiority of the GNM4 method.

VI. CONCLUSIONS

The paper has reported a selection of novel results on the
numerical approximation of initial value problems based on
second order ODEs (1) by means of multivalue numerical
methods (3) which enables to analyze convergence in an
elegant and effective way and compute new methods achieving
a better balance between order and stability, as shown. Clearly,
this theory opens new paths in different direction, both for
other operators (such as partial differential equations [16],
[19]–[21], [35], [50], [55], conservative problems [7], [41],
[42], [46], [47], integral and fractional equations [4], [10],
[11], [15], [17], [23], [30]) and for the development of methods

k ‖err(20π)‖∞ p fe

3 4.47 · 10−1 477

4 1.24 · 10−1 1.98 957

5 2.82 · 10−2 1.99 1917

6 7.05 · 10−3 1.99 3837

7 1.76 · 10−3 2.00 7677

8 4.41 · 10−4 2.00 15357

TABLE II
NUMERICAL RESULTS FOR RKN2 ON KRAMARZ PROBLEM, WHERE

err(20π) IS THE GLOBAL ERROR IN THE ENDPOINT OF THE INTEGRATION,
p IS ESTIMATED ORDER OF CONVERGENCE, fe THE NUMBER OF

FUNCTION EVALUATIONS

depending on non-constant coefficients and, therefore, useful
for oscillatory problems (as in [36], [38], [53], [56], [62], [63],
[69]).
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[3] Braś, M., Cardone, A., Jackiewicz, Z., Welfert, B., Order reduction
phenomenon for methods, J. Comput. Appl. Math. 290 (2015), 44–64
.

[4] Burrage, K., Cardone, A., D’Ambrosio, R., Paternoster, B., Numerical
solution of time fractional diffusion systems, Appl. Numer. Math. 116
(2017), 82–94.

[5] Butcher, J.C., The Numerical Analysis of Ordinary Differential Equa-
tions. Runge-Kutta and General Linear Methods, John Wiley & Sons,
Chichester, New York, 1987.

[6] Butcher, J.C., Numerical Methods for Ordinary Differential Equations,
2nd Edition, John Wiley & Sons, Chichester, 2008.

[7] Butcher, J., D’Ambrosio, R., Partitioned general linear methods for
separable Hamiltonian problems, Appl. Numer. Math. 117 (2017), 69–
86.

[8] Butcher, J. C., Jackiewicz, Z. Construction of general linear methods with
Runge-Kutta stability properties, Numer. Algorithms 36 (2004), 53–72.

[9] Butcher, J. C., Wright, W.M. The construction of practical general linear
methods, BIT 43 (2003), 695–721.

[10] G. Capobianco, D. Conte , An efficient and fast parallel method for
Volterra integral equations of Abel type, J. Comput. Appl. Math., Vol
189/1-2 481-493 (2006).

[11] G. Capobianco, D. Conte, I. Del Prete, High performance numerical
methods for Volterra equations with weakly singular kernels. J. Comput.
Appl. Math. 228 (2009) 571-579.

[12] A. Cardone, D. Conte, B. Paternoster, A family of Multistep Collocation
Methods for Volterra Integro-Differential Equations, AIP Conf. Proc.
1168 (1), 358–361 (2009).

[13] Cardone, A., Conte, D., Paternoster, B., Two-step collocation methods
for fractional differential equations, Discrete Contin. Dyn. Syst. Series B,
to appear.

[14] Cardone, A., Conte, D., Multistep collocation methods for Volterra
integro-differential equations, Appl. Math. Comput. 221 (2013), 770–785.

[15] Cardone, A., D’Ambrosio, R., Paternoster, B., High order exponentially
fitted methods for Volterra integral equations with periodic solution, Appl.
Numer. Math 114 (2017), 18–29.

[16] Cardone, A., D’Ambrosio, R., Paternoster, B., Exponentially fitted
IMEX methods for advection-diffusion problems, J. Comp. Appl. Math.
316 (2017), 100–108.

[17] Cardone, A., Ixaru, L.Gr., Paternoster, B., Santomauro, G., Ef-Gaussian
direct quadrature methods for Volterra integral equations with periodic
solution, Math. Comput. Simul. 110 (2015), 125–143.

[18] Cardone, A., Jackiewicz, Z., Mittelmann, H., Optimization-Based Search
for Nordsieck Methods of High Order with Quadratic Stability Polyno-
mials, Math. Model. Anal. 17, 3 (2012), 293–308.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017 

ISSN: 1998-4464 325



[19] Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H., Extrapolation-based
implicit-explicit general linear methods, Numer. Algorithms 65, 3 (2014),
377–399.

[20] Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H., Extrapolated
Implicit-Explicit Runge-Kutta Methods, Math. Model. Anal. 19, 1 (2014)
18–43.

[21] Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H., Construction of
highly stable implicit-explicit methods, Discrete Contin. Dyn. Syst.,
AIMS Proceedings 2015 (2015), 185–194.

[22] Cardone, A., Jackiewicz, Z., Verner, J.H., Welfert, B., Order conditions
for general linear methods, Appl. Numer. Math. 119 (2017), 94–114.

[23] Cardone, A., Messina, E., Vecchio, A., An adaptive method for Volterra–
Fredholm integral equations on the half line, J. Comput. Appl. Math. 228,
2 (2009), 538–547.

[24] Coleman, J.P. Order Conditions for a class of two–step methods for
y′′ = f(x, y), IMA J. Numer. Anal. 23 (2003), 197–220.

[25] Coleman, J.P. Rational approximations for the cosine function; P-
acceptability and order, Numer. Algorithms 3, 1–4 (1992), 143–158.

[26] Coleman, J.P., Ixaru, L.Gr., P -stability and exponential-fitting methods
for y′′ = f(x, y), IMA J. Numer. Anal. 16, 2 (1996), 179–199.

[27] Cong, N.H. Note on the performance of direct and indirect Runge–
Kutta–Nyström methods, J. Comput. Appl. Math. 45, 3 (1993), 347–355.

[28] Cong, N. H., Explicit parallel two-step Runge-Kutta-Nyström methods,
Comput. Math. Appl. 32, 2 (1996) 119–130.

[29] Cong, N. H., Parallel-iterated pseudo two-step Runge-Kutta-Nyström
methods for nonstiff second-order IVPs, Comput. Math. Appl. 44, 1–2
(2002) ,143–155.

[30] D. Conte, G. Capobianco, B. Paternoster, Construction and implemen-
tation of two-step continuous methods for Volterra Integral Equations,
Appl. Numer. Math. 119, 239-247 (2017).

[31] Conte, D., D’Ambrosio, R., Jackiewicz, Z. Two-step Runge-Kutta meth-
ods with inherent quadratic stability, J. Sci. Comput. 44, 2 (2010), 191–
218.

[32] D. Conte, R. D’Ambrosio, Z. Jackiewicz, and B. Paternoster, A practical
approach for the derivation of two-step Runge-Kutta methods, Math.
Model. Anal. 17(1), 65–77 (2012).

[33] Conte, D., D’Ambrosio, R., Jackiewicz, Z., Paternoster, B., Numerical
search for algebraically stable two–step continuous Runge-Kutta methods,
J. Comput. Appl. Math. 239 (2013), 304–321.

[34] Conte, D., D’Ambrosio, R., Paternoster, B., Two-step diagonally-implicit
collocation-based methods for Volterra Integral Equations, Appl. Numer.
Math. 62, 10 (2012), 1312–1324.

[35] Conte, D., D’Ambrosio, R., Paternoster, B., GPU acceleration of wave-
form relaxation methods for large differential systems, Numer. Algorithms
71, 2 (2016), 293–310.

[36] D. Conte, E. Esposito, B. Paternoster, L. Gr. Ixaru,Some new uses of
the ηm(Z) functions, Comput. Phys. Commun. 181, 128–137, 2010.

[37] D. Conte, B. Paternoster, A Family of Multistep Collocation Methods
for Volterra Integral Equations, AIP Conf. Proc. 936, 128–131 (2007).

[38] D. Conte, B. Paternoster, Modified Gauss-Laguerre exponential fitting
based formulae, J. Sci. Comput., 69 (1), 227-243 (2016).

[39] D. Conte, B. Paternoster, Parallel methods for weakly singular Volterra
Integral Equations on GPUs, Appl. Numer. Math. 114,30-37 (2017).

[40] D’Ambrosio, R., De Martino, G., Paternoster, B., Order conditions for
General Linear Nyström methods, Numer. Algor. 65, 3 (2014) 579–595.

[41] D’Ambrosio, R., De Martino, G., Paternoster, B., Numerical integration
of Hamiltonian problems by G-symplectic methods, Adv. Comput. Math.
40, 2 (2014), 553–575.

[42] D’Ambrosio, R., De Martino, G., Paternoster, B., A symmetric nearly
preserving general linear method for Hamiltonian problems, Discrete
Contin. Dyn. Syst. (2015), 330–339.

[43] D’Ambrosio, R., De Martino, G., Paternoster, B., General Nystrom
methods in Nordsieck form: error analysis, J. Comput. Appl. Math. 292
(2016), 694–702.

[44] D’Ambrosio, R., Esposito, E., Paternoster, B. General Linear Methods
for y′′ = f(y(t)), Numer. Algor. 61, 2 (2012), 331–349.

[45] D’Ambrosio, R., Ferro, M., Jackiewicz, Z., Paternoster, B. Two-step
almost collocation methods for ordinary differential equations, Numer.
Algorithms 53, 2–3 (2010), 195–217.

[46] D’Ambrosio, R., Hairer, E., Zbinden, C., G-symplecticity implies
conjugate-symplecticity of the underlying one-step method, BIT Numer.
Math. 53 (2013), 867–872.

[47] D’Ambrosio, R., Hairer, E., Long-term stability of multi-value methods
for ordinary differential equations, J. Sci. Comput. 60, 3 (2014), 627–640.

[48] D’Ambrosio, R., Jackiewicz, Z. Continuous Two–Step Runge–Kutta
Methods for Ordinary Differential Equations, Numer. Algorithms 54, 2
(2010), 169–193.

[49] D’Ambrosio, R., Jackiewicz, Z. Construction and implementation of
highly stable two-step continuous methods for stiff differential systems,
Math. Comput. Simul. 81, 9 (2011), 1707–1728.

[50] D’Ambrosio, R., Moccaldi, M., Paternoster, B., Adapted numerical
methods for advection-reaction-diffusion problems generating periodic
wavefronts, Comput. Math. Appl. 74, 5 (2017), 1029–1042.

[51] D’Ambrosio, R., Paternoster, B., Two-step modified collocation methods
with structured coefficient matrices for ordinary differential equations,
Appl. Numer. Math. 62, 10 (2012), 1325–1334.

[52] D’Ambrosio, R., Paternoster, B., P-stable general Nyström methods for
y′′ = f(y(t)), J. Comput. Appl. Math. 262 (2014), 271–280.

[53] D’Ambrosio, R., Paternoster, B., Exponentially fitted singly diagonally
implicit Runge-Kutta methods, J. Comput. Appl. Math. 263 (2014), 277–
287.

[54] D’Ambrosio, R., Paternoster, B., A general framework for numerical
methods solving second order differential problems, Math. Comput.
Simul. 110, 1 (2015), 113–124.

[55] D’Ambrosio, R., Paternoster, B., Numerical solution of reaction–
diffusion systems of λ − ω type by trigonometrically fitted methods,
J. Comput. Appl. Math. 294 (2016), 436–445.

[56] D’Ambrosio, R., Paternoster, B., Santomauro, G., Revised exponentially
fitted Runge–Kutta–Nyström methods, Appl. Math. Lett. 30 (2014), 56–
60.

[57] Hairer, E., Norsett, S. P., Wanner, G. Solving Ordinary Differential
Equations I - Nonstiff Problems, Springer Series in Computational
Mathematics 8, Springer-Verlag, Berlin, 2000.

[58] Hairer, E., Wanner, G. Solving Ordinary Differential Equations II - Stiff
and Differential - Algebraic Problems, Springer Series in Computational
Mathematics 14, Springer-Verlag, Berlin, 2002.

[59] Henrici, P., Discrete variable methods in ordinary differential equations,
John Wiley & Sons, New York-London, 1962.

[60] Ixaru, L. Gr. Vanden Berghe, G. Exponential Fitting, Kluwer Academic
Publishers, Dordrecht, 2004.

[61] Ixaru, L.Gr., Operations on oscillatory functions, Comput. Phys. Comm.
105 (1997), 1–19.

[62] Ixaru, L. Gr., Paternoster, B., A conditionally P-stable fourth-order
exponential-fitting method for y′′ = f(x, y), J. Comput. Appl. Math.
106, 1 (1999) 87–98.

[63] Ixaru, L. Gr., Paternoster, B., A Gauss quadrature rule for oscillatory
integrands, Comput. Phys. Comm. 133, 2–3 (2001), 177–188.

[64] Jackiewicz, Z. General Linear Methods for Ordinary Differential Equa-
tions, John Wiley & Sons, Hoboken, New Jersey, 2009.

[65] Kramarz, L. Stability of collocation methods for the numerical solution
of y′′ = f(t, y), BIT 20, (1980) 215–222.

[66] Lambert, J.D., Numerical methods for ordinary differential systems: The
initial value problem, John & Wiley, Chichester, 1991.

[67] Lambert, J.D., Watson, I.A., Symmetric Multistep Methods for Periodic
Initial Value Problems, IMA J. Appl. Math. 18, 2 (1976), 189–202.

[68] Paternoster, B. Two step Runge-Kutta-Nystrom methods for y′′ =
f(x, y) and P–stability, in Computational Science - ICCS 2002, ed. by
P.M.A. Sloot, C.J.K. Tan, J.J. Dongarra, A.G. Hoekstra, Lecture Notes in
Computer Science 2331, Part III, 459–466, Springer Verlag, Amsterdam,
2002.

[69] Paternoster, B., Present state-of-the-art in exponential fitting. A contri-
bution dedicated to Liviu Ixaru on his 70-th anniversary, Comput. Phys.
Commun. 183 (2012), 2499–2512.

[70] Petzold, L.R., Jay, L.O., Yen, J. Numerical solution of highly oscillatory
ordinary differential equations, Acta Numer. 6 (1997), 437–483.

[71] van der Houwen, P.J., Sommeijer, B.P., Cong, N.H. Stability of
collocation-based Runge-Kutta-Nyström methods, BIT 31 (1991), 469–
481.

[72] Wright, W.M., General linear methods with inherent Runge-Kutta sta-
bility, Doctoral thesis, The University of Auckland, New Zealand, 2002.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017 

ISSN: 1998-4464 326



Angelamaria Cardone is researcher in Numerical
Analysis of University of Salerno, Italy. She received
her PhD in Computational sciences and applied
mathematics in 2004, from University of Naples
Federico II, Italy. Her research interests regard the
numerical treatment of Volterra integral equations,
ordinary differential equations and more recently
fractional differential equations. Part of the research
deals with the development of mathematical soft-
ware, also in parallel environment.

Dajana Conte is Associate Professor in Numerical
Analysis at University of Salerno, Italy. Her research
activity concerns the development and analysis of ef-
ficient and stable numerical methods for the solution
of evolutionary problems, also with memory, mod-
eled by ordinary differential equations and Volterra
integral and integro-differential equations. She was
involved also on problems related to the numerical
solution of the many-body Schrodinger equation in
quantum molecular dynamics.

Raffaele D’Ambrosio is Associate Professor at the
Department of Engineering and Computer Science
and Mathematics of University the of L’Aquila. He
has been Fulbright Research Scholar in the Aca-
demic Year 2014-15 at Georgia Institute of Technol-
ogy. His research interests cover numerical approxi-
mation of ordinary and partial differential equations,
integral equations, Hamiltonian problems, stochastic
differential equations, piecewise smooth dynami-
cal systems, with particular emphasis to structure-
preserving numerical integration.

Beatrice Paternoster is Full Professor of Numeri-
cal Analysis at University of Salerno, Italy. In her
research she has been involved in the analysis and
derivation of new and efficient numerical methods
for functional equations, in particular differential and
integral Equations. She is also involved in parallel
computation, with concerns to the development of
mathematical software for evolutionary problems.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017 

ISSN: 1998-4464 327




