
 

 

  
Abstract— This work is devoted to an approach to solving the 

task of restoring the wind field structure by the local measurement 
data in a certain set of points with a low density. The peculiarity of 
the proposed approach is to take into account the anisotropy of the 
wind field. In this case, the described algorithm allows us to take into 
account not only the scale of the anisotropy at different points, but 
the local variability of the anisotropy directions. 
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I. INTRODUCTION 
IND speed measurement date, like other data on 
atmospheric parameters, are usually available at a 

certain set of points. Therefore, in order to restore a reliable 
airflow structure, some form of spatial interpolation is 
required.  

The wind speed, as a rule, is quite variable in space and 
strongly depends on local geographic features: the terrain, the 
presence of high vegetation, the proximity of the coast and 
many other factors. 

In general, a qualitative reconstruction of the flow structure 
requires a high density of the observation network, which in 
many cases is impossible to provide. 

On the other hand, in many practical applications, the 
information about the local structure of wind fields is critical. 
For example, these applications include the aviation. 

The fact is that the local intensive variability of the wind 
field, called the wind shear, has a significant effect on the 
dynamics of the aircraft flight and can lead to adverse 
consequences [1]. 

In this connection, tools for monitoring wind fields in the 
vicinity of the aerodrome are developed, as well as algorithms 
for identifying the wind shear, in order to provide the 
meteorological support for flight safety. Such systems include 
low level wind shear alerting systems based on wind speed 
measurements at several points. However, these algorithms use 
the hypothesis of the linear variation of airflow parameters 
between measurement points, which, as already noted, cannot 
in general provide a reliable estimate of the wind speed 
gradients. 
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At present time a wide range of deterministic interpolation 
algorithms is available for use to estimate values at points 
where there aren’t observational data [ 2-4]. The choice of one 
or another method essentially depends on the data spatial 
attributes, since different methods lead to different structures 
of the reconstructed field. 

The peculiarity of the wind field structure is that the 
correlation of the wind field parameters in the wind direction 
and in the orthogonal directions is different even in a free 
atmosphere (far from the earth's surface). According to, for 
example, the generally accepted model of atmospheric 
turbulence, scales in longitudinal (wind speed) and orthogonal 
directions differ by a factor of two. Under the influence of the 
underlying surface, the scale ratio can also vary from point to 
point, depending on the local terrain features. 

To take into account the anisotropy of the wind field while 
solving the problems of restoring its structure by the local 
measurements data, it is necessary to consider the direction 
from the point at which the measurement data are available to 
the point at which the wind speed parameters are estimated. 

If the observation network has a sufficiently high density, 
the application of specialized algorithms that take into account 
anisotropy is not required, since at small distances between 
observation points the interpolation error caused by the use of 
the simplest linear algorithms turns out to be negligible. 

However, if the observation network has a low density, 
taking anisotropy into account while restoring the wind field 
becomes critically important. 

The application of specialized algorithms of anisotropic 
interpolation becomes especially actual with the use of 
expensive measuring instruments, for example, wind lidar 
profilers, the advantage of which is the ability to obtain data 
on wind speed at different altitudes, but on the other hand, the 
observation network always has an extremely low density. 

However, the use of profilers in combination with 
specialized algorithms of the anisotropic interpolation 
potentially allows efficiently restoring the spatial structure of 
the air flow. 

Therefore, there is an actual problem of restoring the 
structure of the wind field by the data of a low-density 
measuring network, taking into account the local anisotropy of 
the wind field. The algorithm for solving this problem is 
presented in this work.  

II. BACKGROUND 
At present time there is a large number of methods for 

interpolating spatial data on an unstructured measurement 
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network. These methods are most intensively used in solving 
tasks of a geophysical data interpretation. Herein we consider 
only a few basic methods, the modification of which is used by 
the developed algorithm. 

In fact, the majority of interpolation methods are used to 
calculate the values of the target variable at arbitrary points 
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The principles used to specify the weighting 
coefficients iw are differ and the expressions for their 
calculation are also different. 

One of the popular interpolation methods is the method of 
Inverse Distance Weighting (IDW). In the method of inverse 
distances, the inverse proportion of the weighted coefficients 
on a certain degree of distance between the calculated point 
and the observation point id is used:  

∑
=

=

n

i p
i

p
i

i

d

dw

1

1

1

, 

where the exponent p usually takes the value 1, 2 or 3. 
It should be noted at once that the method does not allow us 

to reveal the structure of the variability of property, but it can 
serve for accurate interpolation. The basis is the assumption 
that the smaller the distance between the measurement points, 
the closer the values of the observed parameter at these points, 
and their connection weakens as the measurement points are 
removed from one another. The value of the physical quantity 
at the target point will be most similar to the values at nearby 
reference points, and less similar to the values at remote 
reference points.  

The value of the exponent p is chosen in such a way as to 
minimize the root-mean-square interpolation error. The 
integral weights of the used reference points is, as can be 
readily appreciated equal to one. 

The IDW function can be used in cases where the point set 
is sufficiently dense to capture the local variability of the 
analyzed data structure. 

The values calculated by this method cannot be higher than 
the values at the reference points. This method does not allow 
us to estimate the interpolation error. 

The Shepard method is analogous to the method of inverse 
distances. It also uses inverse distances while calculating 
weighted coefficients with the exponent p=2. The difference is 
that while constructing an interpolation function in local areas, 
the least squares method is used. This reduces the probability 
of appearance of false patterns around the observation points 
in the generated structure. 

Anisotropy in the method of inverse weighted distances is 
considered by scaling the relative coordinates when calculating 
the distance between points: 

( ) ( ) ( )22222
iziyii zzkyykxxd −+−+−= , 

where ( )zyx ,, , ( )iii zyx ,,  are the respective 
coordinates of the interpolation and measurement points in a 
coordinate system whose axis of abscissas coincides with the 
main semiaxis of the anisotropy ellipsoid, zy kk ,  are scale 

factors that show how many times the length of the main 
semiaxis is greater than the semiaxis of the ellipsoid of 
anisotropy in other coordinates. 

Another example of spatial data interpolation methods is the 
method of Radial basis functions (RBF). In this method, 
mathematical functions are used to estimate the values, which 
minimize the surface warp. The surfaces constructed with the 
use of these functions will pass through all the reference 
points. Therefore, this method of describing the surface does 
not reveal the structure of variation of the physical quantity, 
but it is an accurate interpolator. Each radial function has a 
different shape and results for different interpolation surfaces. 
The RBF methods are a form of artificial neural networks. 

This method is most convenient for constructing slowly 
varying surfaces in the presence of a large number of reference 
points. A decrease in the number of reference points leads to a 
change in the shape of the isolines, but the general nature of 
the surface of the studied space (the position and intensity of 
the extrema, etc.) is preserved or changes to an insignificant 
degree. 

In this method, the target function is found as a linear 
combination of a set of radial basis functions: 
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where а is a constant, i is the index of the measurement 
point, iµ  is unknown coefficients, ( )iB r  is basic functions 
that depend on the distance of the point r to the i-th 
observation point ir . 

Several types of basic functions are used: 
- Inverse Multiquadric  
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- Multilog  

( ) ( )22log δ+= ii ddB  
- Multiquadric 

( ) 22 δ+= ii ddB . 

Most often used; 
- Natural Cubic Spline 

( ) ( ) 2
3

22 δ+= ii ddB , 
- Thin Plate Spline  
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( ) ( ) ( )2222 log δ+δ+= iii dddB ,  

where 2δ  is the smoothing factor, the larger the parameter, 
the smoother the structure of the reconstructed field will be. 
Reasonable values of the indicator are in the range from the 
average point-to-point distance of the sample to half of this 
average mean. 

III. INTERPOLATION ALGORITHM 
Suppose that the measurement data are available in a certain 

set of points arbitrarily located in space having known 
coordinates (fig. 1). 

 
Fig. 1 local coordinate systems for considering the spatial anisotropy 
of the wind field 

 
Without limitation of generality, it is assumed that the 

means for measuring the wind field parameters located in a 
horizontal plane with coordinates ( )ii zx ,  allows measuring 

airflow parameters at several altitudes ( ) ( ){ }i
s

i
i

yy ,...,1 . At the 

same time, the number of measurement heights and the actual 
height of the wind field measurements at points with different 
coordinates do not necessarily coincide. 

When speaking about the task of restoring the wind field, 
the solution of the problem will be considered with respect to a 
single component of the wind speed, since the problem is 
solved similarly and independently for other components. 

At each measurement point ( )iii zyx ,, , the velocity 

vector of the air flow is known ( )iiii wvu ,,=W . 
Let us introduce into consideration at each measurement 

point a local coordinate system whose direction of the abscissa 
axis iξ coincides with the local wind speed iW at this point, 
and the direction of the applicator axis is calculated as a vector 
product  

yii eξζ ×= , 

while the ordinate axis is calculated as a vector product in 
the form of  

iii ξζη ×= , 

where ye  is a single unit vector of the vertical axis in the 

Cartesian terrestrial coordinate system. 
Let us assume that the scale coefficients of the anisotropy 

( )ii kk ζη ,  at each measurement point are known. As a first 

approximation, the turbulence scales of the wind field can be 
used to calculate these coefficients, for example, according to 
the model MIL-HDBK-1797B or MIL-F-8785C [5, 6]. 

Let us assume that the radius vector from the measurement 
point ( )iii zyx ,,  to the point ( )zyx ,,  at which the 
interpolated value of the wind speed parameters is calculated 
is: 

( )iiii zzyyxx −−−= ,,r . 

The coordinates of the vector ir in the local coordinate 

system ( )iii ζηξ ,,  associated with the measurement point 

( )iii zyx ,,  are calculated as: 

( )iiis ξr ,=ξ , ( )iiis ηr ,=η , ( )iiis ζr ,=ζ . 

Herein the right-hand side of the relations presented is the 
scalar product of the corresponding vectors. 

Then the value of the wind velocity components at the point 
( )zyx ,,  is calculated by the formula: 
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Recommended value of the exponent p=2. 
The formula (1) features coefficients iµ that do not usually 

coincide with the measured values of the wind field parameters 
at the measurement point. These coefficients are calculated 
from a system of equations of the following form: 
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where 
222222

jijjijjiji sksksd ζζηηξ +++δ= ,   (3) 

( )jijjis ξr ,=ξ , ( )jijjis ηr ,=η , ( )jijjis ζr ,=ζ ,  (4) 

( )jijijiij zzyyxx −−−= ,,r . 

It is clear that, in accordance with formulas (3) and (4) the 
inequality ijji dd ≠ present in the general case: 

- in the formula (3) various scale factors are present 
depending on the measurement point, 

- coordinates ( )jijiji sss ζηξ ,, , ( )ijijij sss ζηξ ,,  of the 
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same radius vector ijr are calculated in different local 

coordinate systems ( )jjj ζηξ ,,  and ( )iii ζηξ ,,  

correspondingly. 
The necessity to calculate the coefficients iµ in the formula 

(1) from the system of equations (2) instead of directly using 
the measured values is due to the fact that the direct use of iW  
can lead to the fact that the values of the interpolated wind 
field at the measurement points will differ from the measured 
values.  

IV. DISCUSSION 
To estimate the effect of taking the anisotropy into account, 

calculations were made on the wind field interpolation from 
two measurement points lying in one plane. An examination of 
such a simple case allows estimating the influence of 
accounting the anisotropy on the structure of the interpolated 
field. In the considered model problem the measurement points 
are located at a distance of 2. The distance is taken in 
dimensionless units. The scale factor is assumed equal to 

2=ζik .  

In the first example considered, it was assumed that the 
exponent is p = 2. The measured wind speed values at both 
points were assumed to be the same, and only the flow 
direction differs. The difference between the flow directions at 
two measurement points was assumed equal to 45° and the 
flow direction at the first measurement point varied in the 
range 0°…75°.  

Fig. 2 shows the spatial distribution of the interpolated flow 
direction as an orientation increment of the velocity vector 
depending on the distance from the first measurement point: 

( ) ( ) ( )0=ϕ−ϕ=ϕ∆ ddd ii . 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

45

50

d

∆
ϕ

 

 

IDW
AI fi1 = 0

AI fi1 = 15

AI fi1 = 30

AI fi1 = 45

AI fi1 = 60

AI fi1 = 75

 
Fig.2 change in the anisotropic flow direction at a distance from 

the first measurement point, depending on its direction at this point. 
 
The orientation angle of the velocity vector 0° corresponds 

to the wind speed direction along the radius vector between 
two measurement points. As a comparison, the solid line 
shows the calculation performed by the method of inverse 
distances.It is seen that the method of inverse distances gives 
the same structure of the change in the flow direction without 
distinction of its initial orientation (direction at the first 
measurement point). While taking the anisotropy into account, 

the dynamics of the change essentially depends on the initial 
direction of the wind speed vector. It should be noted that the 
change in the structure turns out to be essentially nonlinear 
when the initial orientation of the wind speed vector changes. 
If the corresponding curve of the direction increment shown by 
the dashed line lies below the curve calculated by the method 
of inverse distances taking into account the initial orientation 
of the air flow in the direction from the first measurement 
point to the second one, it is located higher even at angles of 
the flow 15°…30°. When the flow is oriented at an angle of 
45°, the direction change curve roughly coincides with the 
curve calculated by the method of inverse distances. At angles 
of 60°…75° the corresponding dependencies are relocated 
below the IDW curve, but the graph corresponding to the 
direction of  75° passes higher than the graph corresponding to 
the direction of 60°.  

Such a discontinuous variation of the structure is resulting 
from the different orientation of the anisotropy ellipsoids, 
which determine the degree of influence of each measurement 
point in different directions relative to each other. 

It should also be noted that if the change in the flow 
direction at the first and second halves of the distance ([0,1] 
and [1,2], respectively) is approximately the same while 
calculating with the use of the method of inverse distances, the 
changes are more non-linear while taking the anisotropy into 
account: a change in direction may have a sharper character 
either at the first or second distance depending on the initial 
orientation of the flow. This may lead to the appearance of the 
wind shear phenomenon mentioned at the beginning of the 
article. 

V. CONCLUSION 
Therefore, even the simplest example shows that the 

variability of the wind speed direction at the measurement 
points can lead to a different structure of the restored wind 
field by the measurement data taking its anisotropy into 
account. In the general case, this picture turns out to be more 
nonlinear both from the viewpoint of the dynamic pattern of 
the wind field parameters in space and the variability of the 
flow structure as a whole, depending on the measurement data. 
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