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Hybrid Boundary Value Methods for the
Solution of First Order Stiff Systems
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Abstract— Recently, several Boundary Value Methods (BVMs)
have been developed to overcome the limitations of the popular
Linear Multistep Methods (LMMs). In this work, we introduce a new
class of BVMs called the Hybrid Boundary Value Methods
(HBVMs), which are based on the LMMs by utilizing data at both
step and off-step points. Numerical tests on both linear and nonlinear
stiff systems were presented so as to illustrate the process by using
the specific cases: k=4 and 6 . The results were of high accuracy as
the Rate of Convergence (ROC) of the solutions were compared to a
symmetric scheme known as Extended Trapezoidal Rule (ETR) of
order 6.
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I. INTRODUCTION

UE to the modelisation of real world phenomena, the

numerical approximation of solutions of Differential
Equations (DEs) continues to be an active field of
investigation.

In this paper, our focus will be on the first order Initial
Value Problem (IVP) of the form:

Y =1(%Y), ¥(X)=Yer X&[X0Xy] (1.2)
where all f:R™ —R™ are continuous functions and satisfy the
conditions for existence and uniqueness of solutions, which are
guaranteed by the theorem of Henrici in [1].

Numerical analysts have developed several numerical
methods for the solution of this type of VP and other types of
Differential problems [2] — [7]. Among such methods, we have
the Linear Multistep Formula (LMF), which is of the form:

k K
Zar Yoir = hZﬂr fn+r
r=0 r=0

Several modifications of these formulas have been
introduced, which include, but not limited to, the hybrid
methods. These hybrid methods share the characteristic
property of Runge-Kutta methods, which are more flexible
than the LMMs in the way they are used as data are been
utilized at off-step points [8] — [12].

(1.2)
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We define a k —step hybrid formula to be a formula of the
type:

iar Yo = hiﬁr fn+r + hﬂv fn+v (13)
r=0 r=0

where ¢, , g, are constants, v {0,1.....k} and ., = f(X.,. Vo).

Although the LMMs are used for the approximation of both
IVPs and Boundary Value Problems BVPs (via the shooting
method), they however have limitations: requiring starting
methods or values, stability problems (Dahlquist barriers) [13],
and so on.

The new Boundary Value Methods (BVMs) were
introduced to overcome these limitations. For instance, the
same continuous scheme used to generate the main methods is
also used in generating the additional methods, which are then
applied at the end points thereby avoiding some of the stability
problems encountered by the LMMs [14].

Several BVMs have been developed and used for the
numerical integration of ODEs, PDEs, and so on [14] — [25].
Also their convergence and stability analysis have been fully
discussed. For a comprehensive work on BVMs, see [26].

Our focus in this work is to develop new BVMs that utilize
data at off-step points and which will be called Hybrid
Boundary Value Methods (HBVMS). In deriving these
methods, we will be adopting the Adams Moulton methods,
which is a LMM of the form:

3
Yook = Yoeka = hZﬂl fn+i (14)
i—0

Il. OVERVIEW OF THE BOUNDARY VALUE METHODS [27]- [28]

In this section, we present an overview of the BVMs.
Consider the IVP in (1.1). To approximate this problem, we
consider the k-step LMF:

k k
Zooayn+r = hZOﬂ, Fror
This discrete problem needs k independent conditions to
be imposed so as to get the discrete solution{y,} . Now, the
first k —1 values need to be generated, since the IVP (1.1) has
provided the first value y, . Hence, we are to obtain the k-1
values: vy,,...,y, , of the discrete solution.
By this process, we say that the given continuous IVP has
been approximated by means of a discrete I\VVP and this is what
is known as IVM.

(2.1)
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On the other hand, if we decide to fix the first K, values of 85T, +13606f, , +10546f, ,
. . 5h
the discrete solution, Y,,..., Yia and the last K, values of Yz = Yna =~ 590304 5 6560 f,_, + 7442, . —49f, ,
the discrete solution, y,,...,Yy.,, such that k,k, are | 7202f, + 60141, , +44181,
integers and k, +k, =k . The discrete problem becomes. : 127 f +44446f , +43480f, _,
Ky Ky
Z ar+k1 Yoer = h Z ﬂHk1 fn+r (22) Yz = Yna =" 226800 —494 fN_3 B 23fN_4 ~1976 fN‘%
=k = +141928f, , -872f , +184f ,
By this, we have succeeded in fixing the first k; and final - ’ ’ -
K, values of the discrete solution.
By this process, we say that the continuous IVP has been h —32877 1, +42494f,, +1161201, ,
approximated by means of a discrete BVP and this approach is Yn = Yna == peann 31154 Fy s +8331y
what is called BVM. 22823f _, +15011f
—8 2 2
+9341f, , +953f

I1l. DERIVATION OF METHODS (HBVMS)
We shall construct, via interpolation and collocation, ~B. For case k=6

methods of the form: The main method is as follows:
k 28151f +4721736f , +529200405f
— = h f n n+l n+2
Yoow = Ynva r;G) Pt +1047943344f ., +529200405f _,
4721736f . +28151f
k +1 + n+5 n+6
5 for Odd k yn+4 - yn+2 = h

2554051500 7923 fm% +531095 fn%

k —64| — -
> for even k 64 23916042fn+% 23916042fn+%

+531005f , +7923f

where v =

For example for K =1, v =1 we have the formula L

Yo =¥n = hLﬂo fot B, fu+F fn+1J which is used together with the following initial methods:
After the derivation, we implement these LMMs as BVMs
while considering two specific cases: k=4and 6. 50840663f, —15631690812f,
-17564506125f, —13516516608f,
A. For case k=4 X —4999623795f, — 510865092f,
The main method is as follows: Y- Y, = _6279127f6 _ 3507456066&
: 21525504000 2
A 13f, +5494f , +10870f , —3243018230f% + 15178447404f%
Ynea ™Yo = Seaes +5494f ., +13f , +9451486164f, +1927727350f,
-82(71,,, -851( ., + 1,.,)+7 f.) +183198274f,,
which is used together with the following initial methods:
456196373f, + 72649122828f,
A 33953f, —3244786f, —1317280f, —~2008959454935f, — 576826591488f,
Yy =V = oeeng | 2942861, 72971, ~13755941, \ ~171945526185f, —15894332172f,
+1752542f, + 755042f, + 68906f, Yy = Y2 = coaneo7a72000 | LB432987 71, — 77282472061,
) ~1152341705090f, +826951939524f,
b | 7297 T +1638286f, ~8331201, +353303854524f, + 62574497410f,
Yy = Yo = oo s | ~142004f, ~3233 1, ~ 99626 f, asosBac20ut,
+2631838 f, + 397858 f, +31594f, - I
h | 81f,+19118f, +44640f, — 2862 f, — 49f, 184329877, + 221059776121,
Ys = Y1 = 39600| ~1098, + 50814, + 232341, + 5521, +1284137567145f, — 510641870592f,
) 2 2 : : ~116161302825f, — 9856152588f,
and the final methods Yooy, =—— | 1095518931, — 28524847741,
-9, +158f, , —360f, , +18f ‘ 5230697472000 y
N N N-2 N=3 —125367467650f, +1771726903236f,
Yoo = Yoy == h 9f, , +333f ’ :
N TN = 5800 401, , 48 zf , zf +260516522556f, -+ 40149664130f,
+4031y s +2791, +1516601766f,,
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h
Y™ Y2 = 21525504000

z °% 41845579776

7h
yl,zl*yz =

and the final methods

h
Yns~ Y2 =

h

688087f, +80355012f;
+4938122355f, +10933456128f,
—824424435f, —51176388f,
—521303f; —10514754f%

—451692790f, +11828012076f,
+5609039316f,
+229447670f, + 7465026f ,

387173f, +40903116f,
+2009196729f, + 4356823296f,
+4948419015f, —100766412f
—637669f, — 5670918f%

—211497890f, + 4450127364f,
+3692434428f, +1732368034f,
+10703622f,,

106748928000

" 40864824000

4616563f, +390117588f,
+6701781375f, + 2481846474f,

2261849856f,+2229061815f,
+1586077044f, —5121461f,
7| -8852838f, — 224093890f,

+349026372f, — 230586948f,
+299226050f,

584203f,, +83659728f,
+8440941375f,,_, +8383546752f,
+26265105f,_, —8111952f,
~133787f, , —9718596f, ,

~561950380f, , +24975451224f
—~485424216f, _, +18109100f,
+1605444f,

-6887 f,, —402672f, ,+27874005f, ,
+51015552f,, , +53970075f, ,
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10480453f,, + 7415784528f, |
+4647521745f, , — 4370314368f, ,
~1693823265f, , —173397072f,
h —2123957f,

40864824000 | (_57299919f, , +6811487435f,
+4| 11040444586, +792336726f,
+163656245f, , +7048911f

337524401, +1375937544f,,,
+8583673365f,, ,+11191323696f,
+4457911725f, , + 4726351441,
h +5942359f,
2554051500 36391167f, , +108748075f,
64| +180492462f . +127879902f

+27426835f, , +1217847f

i
2

Yna— Yn2 =

-1
2

YN~ Yn2 =

-1
2

-2
2

IV. NUMERICAL EXAMPLES

In this section, we apply the HBVMs of order 4 and 6
derived in the previous section to two (2) stiff systems. For the
first problem, the methods are compared with Extended
Trapezoidal Rule (ETR) of order 6, which is the first
symmetric scheme (BVM) introduced by Amodio and Mazzia
(1995) [18].

Problem 4.1: Consider the linear first order stiff system [28]:

y; =—21y, +19y, — 20y,
y, =19y, —21y, +20y,
Y; =40y, 40y, — 40y,

for x€[0,0.4]

with initial conditions:
yl(O):l’ Y, (0)20, y3(0)=—l

and with exact solutions:

1 o 1
=—e&yZe
=5 & (
1, 1
=¥ _=
Y, 2 2

sin40x + cos40x)

e%OX(

sin40x + cos40x)

Vs —Yno= +30828528f,, , +44983f, , +826441
+455900f, , +113824584f , +117908664f, ,

+109885220f,,_, —976596f, ,

" 168168000

-9
2

739276f,, +58489176f,
+491088915f,,_, +1267922544f,
+1006809120f,,_, +171401976f,,
2h ~42194069f,

Yue = Yn-2 = 538512875

302481f, , +6723935f ,
32| +37948986f, _, +51102126f, ,
+27054245f,, +90958L1f,
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y, =€ (sin 40x — cos 40x)

Problem 4.2: Consider the nonlinear first order stiff system:

y, =-1002y, +1000y?
Y=Y =Y, (1+Y,)

for xe[0,1]
with initial conditions: y,(0)=1, y,(0)=1
and with exact solutions: y,=e™®, y,=ge™
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Fig. 1: Exact Solution of Problem 4.1
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Fig. 2: Approximate Solution of Problem 4.1 computed with
HBVM (k = 4, h =0.005)
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Approximate Solution of Problem 4.1 computed with
HBVM (k = 6, h = 0.005)
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V. CONCLUSION

In this paper, we have proposed the hybrid of the Boundary
Value Methods, which are new class of methods that are based
on the Linear Multistep Methods. We implemented the Adams
Moulton methods as BVMs for the numerical approximation
of linear and nonlinear stiff systems. The Adams Moulton
methods were derived through interpolation and collocation
procedure by utilizing data at both step and off-step points.
Numerical tests confirmed that these methods give high
accuracy results as the results were very close to their
analytical solutions.
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Table I: Maximum errors for HBVMs of order 4 and 6 with ETR of order 6 (Problem 4.1)

ETR of order 6 HBVM of order 4 HBVM of order 6
h ||e||w Rate ||e||0o Rate ||e||w Rate

4e-2 5.4985e-02 - 1.2226e-02 - 1.8315e-02 -
2e-2 6.2297e-03 3.14 3.5013e-04 5.13 8.8319¢e-05 7.70
le-2 3.23923-04 4.27 1.9979e-06 7.45 5.4155e-08 10.67
5e-3 8.0594e-06 5.33 8.8177e-09 7.82 5.4248e-09 3.32
2.5e-3 1.5402e-07 5.71 2.7689%¢e-11 8.31 2.4902e-10 4.45

Table 1I: Maximum errors for HBVMs of order 4 and 6 (Problem 4.2)
HBVM of order 4 HBVM of order 6
h ||e||oo Rate ||e||w Rate
le-1 6.38392e-12 - 4.92964e-10 -

5e-2 4,07419e-12 0.65 4.62916e-10 0.09

2.5e-2 1.97988e-12 1.04 3.72713e-10 0.31

1.25e-2 5.33658e-12 1.43 8.62215e-10 1.21

6.25e-3 4.56693e-12 0.22 5.00906e-10 0.78
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