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Abstract— In the present work we consider a novel approach to
model the dynamic of financial bubbles. In particular, we exploit a
technique based on trinomial trees, which is mainly inspired by the
typical Market Order Book (MOB) structure. We use a bottom-up
approach, according to the typical MOB rules, to derive the relevant
generator process for the financial quantities characterizing the market
we are considering. Our proposal pays specific attention to consider
the real world changes in probability levels characterizing the bid-
ask preferences driven by market movements. We show that financial
bubbles are, indeed, originated by these movements which, in turn,
amplify their growth. Numerical experiments are provided to show
the effectiveness of our results within real volatility wars scenarios.
Namely, we study realistic economic frameworks characterized by
volatility levels showing great fluctuations, in relatively small times.

Keywords— Bubbles, Constraints, Stochastic Dynamics, Trinomial
Models.

I. INTRODUCTION

The rise of financial bubbles is a well-known phenomenon in
real world markets. It substantially consists in episodes in which
abnormal and unpredictable increasing of prices are followed by
sudden collapses of the same.

Famous examples could be easily recognized in the past as
well as during recent times. The general dynamic of such fi-
nancial phenomena present rather similar characteristics, even
if each bubble has its own history. In fact, the financial assets
involved are part of very different economic scenarios, span-
ning from contracts based on natural products to exclusively
speculative structured derivatives. So that, during history, we
can recognize both old bubble bursts, as in the case of Dutch
Tulipomania (1634/6-1637), see, e.g., [7], the Kipper- und Wip-
perzeit bubble, see, e.g., [27], which was triggered by the lack
of an effective taxation and proper methods to identify the real
value of currencies coined by different countries which aimed
at raise revenue for the Thirty Years’ War, and more recent rises
and sudden falls of strictly financial products, as happened dur-
ing the 2007-2008 US crisis of of sub-prime mortgages market,
see, e.g., [10], whose effects have clearly shown the effective-
ness of the so called glocalisation phenomena, see, e.g., [23],
namely the intimate interconnections between economic markets
around the world, see also,e.g, [12] for more nested commodi-
ties related bubbles, and, e.g., [3, 13, 26], and references therein,
with respect to (also potential) bubbles based on the new digital
economy.
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Therefore, researchers have been focused on these phenomena,
rigorously studying them from the macroeconomic perspective
as well as from the mathematical point of views, see, e.g., the
recent papers [17, 18, 33], where the local martingale approach
is used to study stock financial bubbles within both complete and
incomplete markets, also providing a methodology for bubble
detecting. In what follows, we focus our attention on the rela-
tion between bubbles formation and how stocks are exchanged
through market order books. Inspired by the MOB structure
and rules, we built up a model for stock prices. In particular
we exploit a methodology based on trinomial tree. Thus, in this
framework the market price is given endogenously. It is worth
to mention that within the MOB scenario, characterized by a
rather strict structure, a trader who wants to buy or sell a certain
security can put orders in two different way: limit orders and
market orders. The trader could place a limit order to buy or
sell a security, or, broadly speaking, a general type of a financial
instrument, at a specified price.

That kind of orders may not be executed if the price set by the
trader cannot be met during the period of time in which the order
is left open. Alternatively, the trader could place a market order
and instantly transact the desired quantity at the best bid or at the
best ask price. Additionally, a market order will cause a shock
to the order book removing liquidity. At each time the MOB
consists of a queue of buyers and a queue of sellers. Prices and
orders arrival times, both determine the place where a new order
is ordered in the MOB. The ranking procedure is of the First In
First Out (FIFO) type, with respect to any specific price. When
there is an overlap between the two queues, the intersection of
all orders will be transacted, and a new price is formed. We will
analyse the dynamic of possible bubbles in such a MOB scheme.

Another really important characteristic of stocks that we con-
sider here is the birth of a bubble. We underline that the model
we are considering are based on the macroeconomic theory that
sees the great investors as triggering factors for the birth of
the financial bubbles. In order to model this phenomenon we
considered the financial movements, characterizing the bid-ask
preferences, once some great investor put its order, shifting real
world probabilities for subsequent orders.

The volatility clustering property of financial returns comes in
a naturally way from the model’s dynamic. We give much more
insights also on the relation between the boundedness of the
MOB and the volatility clustering property. The paper is struc-
tured as follows: in Section II we provide the model setup, also
by showing some examples illustrating the model’s dynamic; in
Section III, we shall describe the way we model the birth and
the death of financial bubbles within the endogenously deter-
mined stock price; while in Section IV, resp. in Section V, we
will provide, using different probability distributions, numeri-
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cal examples and simulations, resp. we will discuss possible
developments and caveats.

II. THE SETUP

We consider a market consisting of a single stock which is traded
through a Limit Order Book (LOB). In general LOBs have dif-
ferent bid-ask levels so that the resulting structure could easily
become rather nested. In order to simplify this structure, we will
consider just two LOB levels, namely the first bid, resp. the first
ask, levels. The latter implies that traders can only exercise their
orders using such two levels. We underline that this hypothesis is
not unrealistic, since any more general order, can be subdivided
as a sum of the aforementioned twos. Fig. 1 represents the
typical LOB queue at time n≥ 0.

In particular, the first ask level has position 0 with quantity
qn,0 that is the quantity that can be traded at time n, while the first
bid level has position 1, with quantity qn,1. The bid-ask spread
is fixed as 2ε , where ε > 0 represents the distance between the
actual price and the bid/ask price offers.

position = 0 = ask1

actual price + ɛ

position = 1 = bid1

actual price - ɛ

actual price

q_{n,0}

q_{n,1}

Order book considered at time n.

It follows that the LOB representation here provided is of static
type, while the dynamic of the order book will be determined
by orders arrival. In particular, traders put their orders at each
trading day, composed by N trading instants. As an example, N
could be the number of seconds or the number of milliseconds
between the opening of the market and its closure. Then, in
each trading day we have 0 ≤ n ≤ N trading moments, with
orders arrivals that are randomly distributed over time. Moreover
their magnitude is random, too. Last but not least, each order
could be of bid, or ask type. In what follows, we model orders
arrivals supposing that at each time 0≤ n≤ N, an order can be
placed or not with certain probabilities. Sources of randomness
characterizing the LOB are

• Order’s arrival;
• Bid or ask level of the order;
• Quantity of the order.

It is worth to mention that the first two sources of randomness
are binary. In fact an order can arrive or not and the order can
be on bid level or ask level, While we model the last component
by a probability distribution for the orders quantities. Further-
more traders can make limit orders or market orders. Market
orders can only remove a specific quantity from the level chosen,
because a market order is traded at the best bid or ask level.
Instead, limit orders can also add quantity to the level chosen.

We will model this property of orders by assuming a symmetric
probability distribution and considering the sign of the quantity
as a discriminant factor. If the quantity is positive we will add
quantity to the level chosen, otherwise we will subtract it.

Let us consider an example of the just introduced LOB dy-
namic:

• n = 0, qn,0 = 50, qn,1 = 38. We have an order of bid level
(position 1), with quantity −20.
• n = 1, qn,0 = 50, qn,1 = 18. We have no order.
• n = 2, qn,0 = 50, qn,1 = 18. We have an order of ask level

(position 0), with quantity +50.
• n = 3, qn,0 = 100, qn,1 = 18. We have an order of bid level

(position 1), with quantity −30.
• n = 4, qn,0 = 100, qn,1 = 12. We have no order.

The last two steps of the above example produce a price
change. Indeed, since the last order fills completely the bid
quantity, then a new price is formed. The remaining quantity
12 = 30−18, becomes the new quantity for the new bid level.
Remind that a price is formed whenever the ask or the bid level
is completely filled by an order, namely when there is an overlap
between the bid queue and the ask queue.

In particular, at time n+1, considering a price variation ε > 0,
the price Xn+1 can be Xn± ε or still Xn if there is no overlap.
For example if a trader buy qn,0 price shares at Xn + ε then a
new price Xn+1 = Xn + ε is formed. Equivalently, if a trader sell
qn,1 price shares at Xn− ε then the new price Xn+1 = Xn− ε is
formed. In other cases a price is not formed and the resulting
price will be still Xn+1 = Xn. We will now make the whole
structure more precise and formal. Let (Ω,F,P) be a probability

space, and, discretizing time, let us define on : Ω→ R as the
binary random variable describing if an order is arrived at time n,
being 0≤ n≤ N, for a given horizon N ∈ N+. We assume that
P(on = 0) = λ = 1−P(on = 1), where λ ∈ (0,1). Moreover,
we define Pn : Ω→ R, as the random variable describing the
bid-ask level of the market order, once this is arrived. Since
also Pn is a Bernoulli random variable, taking p ∈ (0,1), we
set P(Pn = 0) = p = 1−P(Pn = 1). Concerning the magnitude
q∗n of the n−th order, we model it as follows: q∗n ∼ N(µ,σ2).
It is worth to mention that latter Gaussian-type assumption, is
coherent with our aim to have a benchmark, or starting point,
to calibration purposes. Let us remind that once an order has
arrived, and the trader has chosen its position, a negative, resp.
positive, quantity corresponds to a subtraction, resp. an addition.
Since the formation of a new price, when dealing with a bid
order, depends on the fact that q∗n ≤ qn,0, or qn,1, then the price
at time n+1 is defined as follows:

Xn+1 = (Xn + ε)1{on=1}1{q∗n<−qn,0}1{Pn=0}

+(Xn− ε)1{on=1}1{q∗n<−qn,1}1{Pn=1}

+Xn1{on=1}1{q∗n>−qn,0}1{Pn=0}

+Xn1{on=1}1{q∗n>−qn,1}1{Pn=1}+Xn1{on=0}

(1)
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=Xn+ε

[
1{on=1}

(
1{q∗n<−qn,0}1{Pn=0}−1{q∗n<−qn,1}1{Pn=1}

)]
(2)

To simplify notation we define:

Jn
.
= 1{on=1}

(
1{q∗n<−qn,0}1{Pn=0}−1{q∗n<−qn,1}1{Pn=1}

)
,

so that
Xn+1 = Xn + εJn .

Moreover, we have that

Xn+1(ω)=


Xn + ε P(Xn+1 = Xn + ε) = λ pN(−qn,0)
Xn− ε P(Xn+1 = Xn− ε) = λ (1− p)N(−qn,1)

Xn P(Xn+1 = Xn) =
1−λ [pN(−qn,0)

−(1− p)N(−qn,1)]

and

E[Xn+1] = E[Xn]+ εE[Jn]

= Xn + ε[λ (p ·N(−qn,0)− (1− p) ·N(−qn,1))]
(3)

Hence to be a martingale, the price process has to fulfill the
following condition

ελ (p ·N(−qn,0)− (1− p) ·N(−qn,1)) = 0 . (4)

Therefore, we completely define the order book process
{qn,0,qn,1}0≤n≤N , exploiting the triple {on,Pn,q∗n}0≤n≤N , as
well as the intra-day price process {Xn}0≤n≤N , supposing that
on,Pn,q∗n are mutually independent. We note that by using
the quadruple {n,on,Pn,q∗n}0≤n≥N , we have indeed defined the
whole supply curve associated to the price process.

III. THE BIRTH OF A BUBBLE

In this section we will focus our attention on the financial bubbles
bursting mechanism, within the framework defined along the
previous section. A ever present feature of a bubble is that it is
characterized by changes that strongly deviate a market price
from its intrinsic value, see, e.g, [33]. We will characterize the
birth of a bubble by the arrival of a great order in the order book.

It is worth to mention that such great orders could be triggered
by different micro as well as macro economic factors, as, e.g.,
market uncertainty, speculative politics acted by big financial
players, insider trading and mass media attacks, etc.

As a matter of fact, empirical evidences based on the analysis
of a huge quantity of time series, show that small to medium
investors are likely to suddenly change their trading intentions
when great magnitude orders hit the markets. Such type of dy-
namics for crowds, or collective aggregation, which are mostly
ethero directed have been widely analysed, also because of sim-
ilarities across etherogeneous frameworks, and then applied in
population biology, particle physics, social sciences, etc., see,
e.g., [2, 9, 11, 20, 22, 35], and references therein. In our set-
ting, the latter means that preferences on bid/ask level change
as well as probabilities. In particular, we have a change of

the probability level p. We identify the arrival of huge orders
with q∗n being under a certain threshold. Having assumed that
q∗n ∼ N(µ,σ2), we choose q∗n ∼ N(−1,1), so that to have a
threshold q∗n =−5.6, if N = 10000 and the number of days of the
simulation n∗ = 252∗10. The reason of the latter choice lies in
the fact that the intra-day price process simulation brings N real-
ization of the process {q∗n}0≤n≤N each day and for n∗ = 252∗10
days, then taking q∗n =−5.6 we have N(−q∗n)< 2.11 ·10−6. Is
such an order arrive, then many traders start to replicate it, memo-
rizing its arrival position, in time, and then changing accordingly
the probabilities in the bid/ask level choice. We underline that
this approach has been inspired by to the one suggested in [5],
see Remark 3.3.

A further peculiarity of bubbles concerns their duration. Even
limiting our attention to the financial scenario, bubbles could last
days or months. Moreover, due to the increasing relevance of
high frequency trading, smaller bubbles have been studied with
very short durations, see, e.g., [8, 19, 32]. We will focus our
study on bubbles with fixed duration tvol , analysing their decay
dynamic. Indeed, whenever we are in a bubble regime, we can
exploit empirical data to predict the time region where the bubble
will end up. It should be underlined that, in most of the cases
the end of a financial bubble does not consist in a instantaneous
renormalization of prices, but rather it follows a renormalization
regime that may happens at slow speed. In what follows we
will consider the changes in probability until we arrive at tvol

2
and after that we use reversed probabilities. As to make an
example, supposing p = 0.5, with a huge order arrival at time n,
namely (on = 1,Pn = k,q∗n <−5.6), k ∈ {0,1} being fixed, then
for n ∈ [n+1,N], in the next tvol/2 days, the probabilities of the
Pn process change, so that

P≤tvol/2
n (ω) =

{
k p1 = 0.6

1− k 1− p1 = 0.4

From tvol/2 to tvol we invert probabilities to simulate the bubble’s
death, therefore

P>tvol/2
n (ω) =

{
k p1 = 0.4

1− k 1− p1 = 0.6 ,

and we will refer to this scheme as to the first scheme. Even if we
have considered instantaneous jumps in probability, to make the
example more clear, probabilities changes could happen in less
sudden ways, e.g. following some smooth dynamic of exponen-
tial type. Indeed, in real world settings, bubbles are characterized
by three important phases: birth, death and a period, separating
the first twos, of more quiescent volatility levels. Such time
interval results is tipically longer than the bubble’s burst and
death periods. Aiming at improving our approach, we consider
the bubble life as subdivided into four parts, as follows

P<tvol/4
n (ω) =

{
k p1 = 0.6

1− k 1− p1 = 0.4 ,

hence recovering a middle part where we restore the initial prob-
abilities. Therefore, we are now exploiting a regime switching
approach

P
[

tvol
4 ,

3tvol
4 )

n (ω) =

{
k p1 = 0.5

1− k 1− p1 = 0.5 ,
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where, from 3tvol
4 to tvol , we invert probabilities, to model the

bubble’s death. In particular, we will have

P
≥ 3tvol

4
n (ω) =

{
k p1 = 0.4

1− k 1− p1 = 0.6 ,

and we define such scheme as the "second scheme".

IV. SIMULATION RESULTS

i. Gaussian case

In this section we provide numerical results related to the
methods introduced during previous sections. We consider
n∗ = 252 ·10, ten financial years, and we simulate the dynamic
of our order book in N = 10000 financial intra-day moments.

We fix ε = 0.2, and the initial price X0 = 100. We suppose that
the initial order book is normalized and characterized by {q0,0 =
1,q0,1 = 1}n≥0, and that quantities of orders are distributed as
q∗n ∼ N(µ =−1,σ2 = 1), the choice of µ =−1 being forced to
obtain non trivial dynamics. Indeed, choosing µ = 0, implies
50% of orders adding/subtracting some quantity to the bid/ask
level chosen.

To optimize our approach, we give a greater probability of
having subtracting operation on bid/ask level, instead of addition
ones. n. Regarding probabilities levels, we set λ = 1

2 , p = 1
2 .

Great orders arrive within the threshold q∗n < −5.6 and we
fixed tvol = 200 and p1 = 0.515. Figures from 2a to 3b, show
the results obtained following the first scheme. Fig.2a shows the
price process during days namely we report the last price of each

0 500 1000 1500 2000 2500
0

50

100

150

200

Fig.2a:Price process simulated. First Scheme.

simulation of the intra-day price process {Xn}0≤n≤N , plotting
the new sequence (XN1 ,XN2 ,XN3 , ...,XNn∗ ), XNi which represents
the last price of the i-th day. Furthermore, we made a simple
analysis of our price as if they are given as exogenous quantities.

In figure 2b we consider the volatility process fitted with
the Auto Regressive Conditional Heteroskedasticity (GARCH)
method

0 500 1000 1500 2000 2500

0.020

0.025

0.030

0.035

0.040

Fig.2b:Volatility fitted using GARCH methodologies. First Scheme.

The logarithmic returns of prices are represented in figure 3a
below

0 500 1000 1500 2000 2500
−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Fig.(3a):Logarithmic returns.

while in figure 3b we report their empirical distribution, again
using the first scheme approach.
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Fig.(3b):Distribution of logarithmic returns. First Scheme.

We would like to underline how the obtained results clearly
show that the proposed model well represent realistic market dy-
namics. In particular, we outline how the computations highlight
that logarithmic returns share the volatility clustering property.
It is also worth to mention that the variables here considered
are independent between each other. Hence, it seems that the
volatility clustering property is intrinsic, being mainly realized
by the structure of the order book, instead of being triggered
by the structure of the involved random variables. Furthermore
this may suggest that, in a realistic framework where order book
have various bid/ask levels, as well as different characteristics
due to social, economic and financial factors, it is reasonable
that the volatility clustering property comes from the order book
structure. It is worth to mention that the red lines which compare
in figures 2a and 3a, represent the bubble’s regime. As we can
see, initially the bubble burst and after tvol

2 = 100 days, the pref-
erences in bid/ask level change. The graphs presented in figures
from 4a to 5b, are related to simulation results obtained using
the same constant aforementioned specified, but now the method
used is the second scheme one.

Looking at figure 4a

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

400

450

Fig.(4a):Price process simulated. Second Scheme.

we can see that, after the bubble burst, price fluctuate showing

an average volatility behavior. Then, the bubble tends to its end.
As before we can fit the volatility levels obtained by computa-
tions, using the GARCH method, in order to have the following
graph

0 500 1000 1500 2000 2500
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fig.(4b): Volatility fitted using GARCH methodologies. Second Scheme.

While figures 5a and 5b respectively show the logarithmic
returns behavior and the associated empirical distribution.
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Fig.(5a):Logarithmic returns. Second Scheme.
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Fig.(5b):Distribution of logarithmic returns. Second Scheme.

Remark 1. Aiming at deriving a more complete analysis of
our approach, in what follows we consider different type of
probability distributions, hence moving away from the Gaussian
perspective. In particular, we will show how the flexibility of
the proposed model allows to consider the dynamic of analyzed
financial quantities by using different types of probability dis-
tributions. The latter permits to see how the involved priced
behaviors change passing from a given random framework to
another. By the very definition of our model, possible distribu-
tion choices have to be done with respect to random variable
distributed over all the real line. This is motivated by the fact
that quantities related to our trinomial model must have a sign.
Therefore, we will discard all distribution defined just in the
real positive line and we consider the Cauchy distribution and
the t-Student distribution. Of course, previous options have to
be handled with care, namely a great attention has to be put
concerning the parameters selection. This is to have dynamics
similar to the Gaussian case in regarding the presence of bubbles,
their lifetime as well as concerning the probability assigned to
the presence of orders of great magnitude.

ii. Cauchy case

As in the Gaussian case, we again consider n∗ = 252 ·10, namely
ten financial years, and we simulate the dynamic of our order
book in N = 10000 financial intra-day moments. We fix ε = 0.2,
and the initial price X0 = 100. We suppose that the initial order
book is normalized and characterized by {q0,0 = 1,q0,1 = 1}n≥0,
and that quantities of orders are distributed as q∗n ∼C(−q∗n−1,1),
where we considered a Cauchy distribution defined as:

C(x0,γ) =
1

πγ(1+( x−x0
γ

)2)
, (5)

so that we choose the location parameter to be the quantity of
the previous financial moment and the scale interpreted by the
gamma factor as 1. Regarding probabilities levels, we set λ = 1

2 ,
p = 1

2 . We also fix tvol = 200 and p1 = 0.515. To model great

orders arrival, we then must choose a threshold in such a way
that the probability of such an event results as a very rare case.
In order to do this we consider q∗n < −150000. Therefoere,
the resulting cumulative distribution function of the Cauchy
distribution give us a very little probability to have a great order.
Namely, we have C(−q∗n) = 2.12 ·10−6. Figures from 6a to 7b
show the computational results for the present Cauchy approach.
In Fig. 6a we can see the simulation for the price dynamic,
according with the second scheme

0 500 1000 1500 2000 2500
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200

225

250

Price and bubbles

Fig.(6a):Price process simulated in the Cauchy case. Second Scheme.

while the following figure 6b is about the volatility levels
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The volatility fitted via GARCH

Fig.(6b):Volatility in the Cauchy case. Second Scheme.
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The logarithmic returns as well as their empirical distribution,
are shown in figures 7a and 7b below

0 500 1000 1500 2000 2500
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Fig.(7a):Logarithmic returns in the Cauchy case. Second Scheme.
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Fig.(7b):Distribution of logarithmic returns in the Cauchy case. Second
Scheme.

iii. t-Student case

In what follows we adopt the t-Student probability distribution to
model the random quantities we are interesting in. Therefore, as
before, we set n∗ = 252 ·10, namely ten financial years, and we
simulate the dynamic of our order book in N = 10000 financial
intra-day moments. We also fix ε = 0.2, while the initial price is
taken as X0 = 100. We suppose that the initial order book is nor-
malized, being also characterized by {q0,0 = 1,q0,1 = 1}n≥0.
Moreover, the quantities of orders are distributed as follow
q∗n ∼ t(−q∗n−1,1,1), where we have considered the t-Student
probability distribution function defined by:

t(x,d f ,γ) =
γ((d f +1)/2)√

(π ∗d f ) · γ(d f/2) · (1+ x
2

d f )((d f+1)/2)
, (6)

therefore we choose the location parameter to be the quantity
of the previous financial moment, the parameter d f as 1, while
is taken as γ = 1. Regarding probabilities levels, we set λ = 1

2 ,
p = 1

2 . We also fix tvol = 200 and p1 = 0.515. Great orders
arrivals are modeled by considering a a threshold in such a way

that the probability of the correspondent random event results as
a very rare case.

The latter implies large negative values for q∗n. In particular,
we consider q∗n < −150000, so that the resulting cumulative
distribution function results in a tiny probability og having a
great order, namely we obtain t(−q∗n) = 2.12 ·10−6.

In Fig. 8a we show the price process in days. This is
the last price of each simulation of the intra-day price pro-
cess {Xn}0≤n≤N . In particular we plotted the new sequence
(XN1 ,XN2 ,XN3 , ...,XNn∗ ), XNi representing the last price of the
i-th day.
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Fig.(8a):Price process simulated in the t-Student case. Second Scheme.

while Fig.8b below represents the associated volatility levels
fitted with GARCH method.
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Fig.(8b):Volatility in the t-Student case. Second Scheme.
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Moreover, in figures 9a, 9b we show the related logarithmic
returns of the price, with their empirical distribution.
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Fig.(9a):Logarithmic returns in the t-Student case. Second Scheme.
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Fig.(9b):Distribution of logarithmic returns in the t-Student case. Sec-
ond Scheme.

V. CONCLUSION

In this paper we provided a mathematical method, discrete in
time, to model stocks’ bubbles dynamics, focusing the attention
on the market micro-structure in terms of Market Order Book
(MOB). In particular we described how micro-economic trading
interactions determine a shift in probabilistic traders’ perspec-
tives. We proposed a constructive methodology that determine
endogenously price processes. We also provided a model that,
starting from the changes in bid-ask preferences, determines the
formation of a bubble.

Numerical simulations have been also reported to show the
effectiveness of the proposed approach. Our setting is very flexi-
ble, indeed it can be adapted to a large class of financial scenario,
also taking into account different types of market and socio-
economics factors. The latter is also witnessed by the use of
different probability distributions setting, namely spanning from
the Gaussian to the t-Student one, we have considered. It is worth
to mention that obtained results seem to be very stable under
such kind of random changes, hence maintaining the possibility
to sharp model bubbles’ dynamics. Future improvements are
related to the continuous counterpart of the proposed schemes,
as well as concerning its mathematical relationships with the
general local martingale approach.
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