
 

 

  

Abstract—Approximate computing is emerging as an alternative 

to accurate computing due to its potential for realizing digital circuits 

and systems with low power dissipation, less critical path delay, and 

less area occupancy for an acceptable trade-off in the accuracy of 

results. In the domain of computer arithmetic, several approximate 

adders and multipliers have been designed and their potential have 

been showcased versus accurate adders and multipliers for practical 

digital signal processing applications. Nevertheless, in the existing 

literature, almost all the approximate adders and multipliers reported 

correspond to the synchronous design method. In this work, we 

consider robust asynchronous i.e. quasi-delay-insensitive realizations 

of approximate adders by employing delay-insensitive codes for data 

representation and processing, and the 4-phase handshake protocols 

for data communication. The 4-phase handshake protocols used are 

the return-to-zero and the return-to-one protocols. Specifically, we 

consider the implementations of 32-bit approximate adders based on 

the return-to-zero and return-to-one handshake protocols by adopting 

the delay-insensitive dual-rail code for data encoding. We consider a 

range of approximations varying from 4-bits to 20-bits for the least 

significant positions of the accurate 32-bit asynchronous adder. The 

asynchronous adders correspond to early output (i.e. early reset) type, 

which are based on the well-known ripple carry adder architecture. 

The experimental results show that approximate asynchronous adders 

achieve reductions in the design metrics such as latency, cycle time, 

average power dissipation, and silicon area compared to the accurate 

asynchronous adders. Further, the reductions in the design metrics 

are greater for the return-to-one protocol compared to the return-to-

zero protocol. The design metrics were estimated using a 32/28nm 

CMOS technology.                   

 

Keywords— Asynchronous design, Approximate computing, 

Adders, Ripple carry adder, Early output, Standard cells, CMOS 

I. INTRODUCTION 

PPROXIMATE computing [1 – 3] is emerging as an 

alternative to accurate computing given that various 

digital signal processing applications such as image, video, 

and audio processing etc. can tolerate minor degradation in the 

quality of results, which may not be noticeable due to the 
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limitations of human perception [4 – 6], to achieve reduced 

design metrics. This implies that approximate results which 

correspond to a specified error bound are acceptable.   

In computing units, arithmetic operations such as additions 

and multiplications are found to be responsible for a majority 

of the power consumption. For example, more than 70% of the 

power consumed by a graphics processing unit is attributed to 

arithmetic operations [7], and about 80% of the power 

consumed by a fast Fourier transform (FFT) processor is 

attributed to adders and multipliers [8]. The FFT and inverse 

FFT operations are common in the OFDM transceiver, used in 

a wireless communication system. Further, in a JPEG encoder 

or decoder, which is used for digital image processing, or in a 

MPEG encoder or decoder, which is used for digital video 

processing in multimedia applications, the discrete cosine 

transform (DCT) and the inverse DCT operations are common 

which involve additions and multiplications.   

Computer arithmetic is indeed pervasive in digital signal 

processing, and adders and multipliers are predominant in the 

datapath of a digital signal processing unit. Hence, the bulk of 

the reported research on approximate computing has focused 

on the design of approximate adders and multipliers [9] [10]. 

However, almost all the approximate adders and multipliers 

reported in the literature correspond to the synchronous design 

method. Reference [11] is perhaps the first work that discussed 

the implementation of approximate quasi-delay-insensitive 

(QDI) asynchronous adders and evaluated their performance 

vis-à-vis accurate QDI asynchronous adders. The delay-

insensitive dual-rail code was used for data encoding, and the 

4-phase return-to-zero (RTZ) handshake protocol was used for 

data communication. Weak-indication and early output 32-bit 

approximate adders, which incorporate approximation sizes 

ranging from 4- to 20-bits in the least significant positions, 

were implemented alongside the accurate 32-bit asynchronous 

adders. It was observed the approximate asynchronous adders 

paved the way for optimization of the design metrics such as 

latency, cycle time, area, and average power dissipation 

compared to the accurate asynchronous adders. Also, it was 

observed the early output approximate asynchronous adders 

exhibit improved design metrics than the weak-indication 

approximate asynchronous adders.  
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This work builds upon [11] by implementing approximate 

asynchronous adders based on the 4-phase return-to-one 

(RTO) handshake protocol, besides the 4-phase RTZ 

handshake protocol. This is important since it was shown 

recently in [12] that the 4-phase RTO protocol could facilitate 

enhanced optimization of the design metrics compared to the 

4-phase RTZ protocol for QDI asynchronous arithmetic 

circuits. In this work, we specifically consider approximate 

implementations of robust early output asynchronous adders 

for approximation sizes varying from 4- to 20-bits in the least 

significant positions and compare them with the accurate 

implementations based on the RTZ and RTO handshake 

protocols. We adopt the delay-insensitive dual-rail code for 

data encoding. The accurate and approximate early output 

asynchronous adder implementations are QDI. QDI [13] 

asynchronous circuits are the practically realizable delay-

insensitive asynchronous circuits with the only exception and 

assumption of isochronic forks, which form the weakest 

compromise to delay-insensitivity. Isochronicity implies that 

the signal transitions are assumed to happen concurrently at all 

the ends of an isochronic fork. It was shown in [14] that 

isochronicity is realizable even in nanoelectronic circuits.    

The rest of the article is organized as follows. Section II 

discusses the fundamentals of QDI asynchronous circuit 

design. Section III describes the approximate asynchronous 

adder architecture, and portrays the approximate asynchronous 

adder components based on the 4-phase RTZ and RTO 

handshake protocols. Section IV presents the simulation 

results corresponding to the accurate and approximate 32-bit 

asynchronous adders based on physical implementation using a 

32/28nm CMOS process. Finally, Section V concludes and 

also suggests a direction for further work.   

II. QDI ASYNCHRONOUS CIRCUIT DESIGN                                         

A background about QDI asynchronous circuit design is 

provided by describing the delay-insensitive dual-rail data 

encoding and the 4-phase RTZ and RTO handshaking. Also, 

the various types of QDI asynchronous circuits are discussed.  

A. Dual-Rail Data Encoding and 4-Phase Handshaking 

The dual-rail code, also known as the 1-of-2 code, is the 

simplest member of the family of delay-insensitive m-of-n 

codes [15]. Among the m-of-n codes, the 1-of-n codes 

represent a subset and are called one-hot codes. In a 1-of-n 

code, only 1 out of n wires is asserted as 1 to represent the 

binary data. The 1-of-n coding scheme is said to be unordered 

[16] since none of the code words forms a subset of another 

code word. Also, the 1-of-n coding scheme is said to be 

complete [17] if all the n unique code words are utilized to 

encode the specified binary inputs.  

When adopting the 4-phase RTZ protocol [18], and as per 

the dual-rail code, a single-rail binary input W is encoded 

using two wires as say, W1 and W0. W = 1 is represented by 

W1 = 1 and W0 = 0, and W = 0 is represented by W1 = 0 and 

W0 = 1. Note that W1 and W0 cannot assume 1 concurrently 

as it is illegal and invalid since the coding scheme will become 

unordered. However, W1 and W0 can assume 0 concurrently 

and it is called the spacer. Hence, when utilizing the 4-phase 

RTZ protocol for data communication, and as per the dual-rail 

code, the data is specified by either W1 or W0 assuming 1 and 

the other assuming 0, and the condition of both W1 and W0 

assuming 0 is called the spacer. Thus the spacer is an all-zero 

in the case of the 4-phase RTZ protocol.   

On the other hand, when adopting the 4-phase RTO 

protocol [19], and as per the dual-rail code, a single-rail binary 

input W is encoded using two wires as say, W1 and W0, where 

W = 1 is represented by W1 = 0 and W0 = 1, and W = 0 is 

represented by W1 = 1 and W0 = 0. Note that W1 and W0 

cannot assume 0 concurrently. However, W1 and W0 can 

assume 1 concurrently and is referred to as the spacer. Hence, 

when employing the 4-phase RTO handshake protocol for data 

communication, and as per the dual-rail code, the data is 

specified by either W1 or W0 assuming binary 0 and the other 

assuming binary 1, and the condition of both W1 and W0 

assuming binary 1 is called the spacer. Hence, there is an all-

one spacer in the case of the 4-phase RTO protocol.    

A QDI asynchronous circuit stage that employs the delay-

insensitive dual-rail code for data representation and 

processing and a 4-phase RTZ or RTO handshake protocol for 

data communication is shown in Fig 1. As the name implies, a 

4-phase handshake protocol consists of four phases which will 

be explained with reference to Fig 1 by assuming the dual-rail 

encoded data. Nevertheless, this explanation would be 

applicable for data represented using any 1-of-n code. We first 

describe the 4-phase RTZ handshaking, followed by the 4-

phase RTO handshaking.   

 

 
 

Fig 1 A QDI asynchronous circuit stage correlated with the sender-receiver 

analogy 

 

According to the 4-phase RTZ protocol, in the first phase, 

the dual-rail data bus shown in Fig 1 which is specified by 

(W1, W0) etc. is in the spacer state and so ACKIN is 1. The 

sender transmits a code word i.e. data and this results in rising 

signal transitions from 0 to 1 on anyone of the corresponding 

dual rails of the entire dual-rail data bus. In the second phase, 
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the receiver receives the code word sent, and then it drives 

ACKOUT to 1. In the third phase, the sender waits for ACKIN 

to become 0 and then resets the entire dual-rail data bus (i.e. 

spacer). Subsequently, in the fourth phase, after an unbounded 

time duration, which is deemed finite and positive, the receiver 

drives ACKOUT to 0 i.e. ACKIN becomes 1. With this, one 

data transaction is said to be completed, and the asynchronous 

circuit stage is allowed to commence the next data transaction. 

Therefore, the application of input data follows the sequence: 

data-spacer-data-spacer, and so forth.  

According to the 4-phase RTO protocol, in the first phase, 

ACKIN is 1. The sender transmits the spacer and this results in 

rising signal transitions on the entire dual-rail data bus. In the 

second phase, the receiver receives the spacer sent, and it 

drives ACKOUT to 1. In the third phase, the sender waits for 

ACKIN to become 0 and then sends the data by resetting 

anyone of the corresponding rails of the entire dual-rail data 

bus. Subsequently, in the fourth phase, after an unbounded 

time duration, which is deemed finite and positive, the receiver 

drives ACKOUT to 0 i.e. ACKIN becomes 1. One data 

transaction is now said to be completed, and the asynchronous 

circuit stage is permitted to commence the next data 

transaction. Thus the application of input data follows the 

sequence: spacer-data-spacer-data, and so forth.   

B. Types of QDI Asynchronous Circuits 

QDI asynchronous circuits are generally categorized as 

strong-indication [20] [21], weak-indication [20] [22], and 

early output [23] [24] types. Indication means providing 

acknowledgment for the receipt of the primary inputs through 

the primary outputs. This is accomplished by ensuring that 

indication is also provided by the intermediate outputs [18]. 

With respect to the asynchronous circuit stage shown in Fig 1, 

the indication mechanism may be local or global [25] [26]. 

The indication mechanism is called local if the asynchronous 

circuit by itself is capable of acknowledging the receipt of all 

the primary inputs. The indication mechanism is called global 

if the asynchronous circuit stage on the whole indicates the 

receipt of all the primary inputs in conjunction with the 

asynchronous circuit present within it. The input-output timing 

behavior of strong-indication, weak-indication, and early 

output asynchronous circuits is illustrated by a representative 

timing diagram shown in Fig 2.  

A strong-indication asynchronous circuit starts data 

processing to produce the required primary outputs only after 

receiving all the primary inputs whether they are data or 

spacer. A weak-indication asynchronous circuit could start 

data processing and produce some of the primary outputs after 

receiving just a subset of the primary inputs. Nonetheless, the 

production of at least one primary output is delayed till the last 

primary input is received. An early output asynchronous circuit 

could start data processing and produce all the primary outputs 

after receiving just a subset of the primary inputs. If all the 

primary outputs are produced after receiving the data on a 

subset of the primary inputs, the early output asynchronous 

circuit is said to be of early set type. On the other hand, if the 

spacer is produced on all the primary outputs after receiving 

the spacer on a subset of the primary inputs, the early output 

asynchronous circuit is said to be of early reset type. The early 

set and reset properties of early output asynchronous circuits 

are depicted through the violet and orange ovals in dotted lines 

in Fig 2. Among the different timing models, the strong-

indication is the most restrictive and the early output is more 

relaxed. The early output asynchronous circuits could pave the 

way for enhanced optimizations of the design metrics 

compared to strong-indication or weak-indication circuits, and 

this has been demonstrated through many works in the 

literature [24] [27 – 32].     

 

 
 

Fig 2 Strong-indication, weak-indication, and early output timing models for 

QDI asynchronous circuits 

 

In a QDI asynchronous circuit, any transition on the primary 

inputs are required to propagate monotonically i.e. 

unidirectionally throughout the entire circuit depth from the 

primary inputs to the primary outputs with no unacknowledged 

signal transition on any intermediate gate output [33]. For 

indication, the signal transitions should either monotonically 

increase from binary 0 to 1, or monotonically decrease from 

binary 1 to 0 throughout the entire circuit. For data represented 

using the dual-rail code and communicated based on the 4-

phase RTZ handshaking, when data are supplied the transitions 

would monotonically increase and for the application of spacer 

the transitions would monotonically decrease throughout the 

circuit depth. On the other hand, for data represented using the 

dual-rail code and communicated based on the 4-phase RTO 

handshaking, when the spacer is supplied the transitions would 

monotonically increase and for the application of data, the 

transitions would monotonically decrease throughout the 
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circuit depth. An unacknowledged signal transition on an 

intermediate gate output is termed as gate orphan, which is to 

be avoided in a QDI asynchronous circuit. The issue of gate 

orphan has been clearly explained through diverse scenarios in 

[34 – 38].   

Care should be taken to ensure that any logic transformation 

or optimization performed in a QDI asynchronous circuit 

conforms to the safe QDI logic decomposition principles [39]. 

This is because indication and robustness go hand-in-hand in 

QDI asynchronous circuits, and any arbitrary decomposition of 

logic gate(s) might give rise to gate orphan(s) which could 

potentially affect the robustness of a QDI circuit. Moreover, 

resolving the gate orphan(s) is non-trivial and may require 

extensive timing analysis [40] and perhaps additional timing 

assumptions which could complicate the physical realization of 

a QDI circuit. Further, if gate orphans are left unresolved, they 

may become problematic to a QDI circuit or system operation 

[41] [42], and might even cause a stall.   

III. APPROXIMATE ASYNCHRONOUS ADDERS 

An n-bit ripple carry adder (RCA) is realized by cascading 

(n – 1) full adders with a least significant half adder. The half 

adder adds an augend and an addend input and produces the 

sum and carry overflow outputs. On the other hand, the full 

adder [43 – 45] adds an augend and an addend input along 

with any carry input and produces the sum and carry outputs. 

The accurate 32-bit QDI asynchronous RCA is shown in Fig 

3a, which consists of 31 full adders (FA31 to FA1) and a half 

adder (HA1). Note that the inputs and outputs of the accurate 

and approximate 32-bit asynchronous adders shown in Fig 3 

are dual-rail encoded, with a 4-phase RTZ or RTO protocol 

used for handshaking.  

The approximate 32-bit QDI asynchronous adders are 

shown in Figs 3b to 3f, with 4-, 8-, 12-, 16-, and 20-bits 

approximation incorporated in the least significant adder 

positions. The approximate adders shown in Fig 3 basically 

consist of an accurate sub-adder and an approximate sub-

adder. Addition is performed accurately in the former and 

inaccurately in the latter. The number of bits allotted to the 

accurate and approximate sub-adders are clearly marked in 

Figs 3b to 3f. Full adders are used to produce the accurate sum 

bits of the accurate sub-adders, and 2-input OR gates (shown 

as OR1 to OR20 in Figs 3b to 3f) are used to produce the 

approximate sum bits of the approximate sub-adders. The most 

significant augend and addend bit pair of the approximate sub-

adder is AND-ed and its output is supplied as the carry input to 

the accurate asynchronous sub-adder. If the logical product of 

the most significant augend and addend bit pair of an 

approximate sub-adder yields 1, then a carry input of 1 is 

supplied to the accurate sub-adder; otherwise a carry input of 0 

is supplied in the dual-rail encoded form.     

The approximate adders, portrayed by Figs 3b to 3f, are 

derived from the approximate adder architecture presented in 

[46] but with the exception that these approximate adders 

correspond to QDI asynchronous implementations. The utility 

of the approximate adder of [46] had been demonstrated 

through soft-computing applications such as a 3-layer face 

recognition neural network, and the hardware de-fuzzification 

block of a fuzzy processor.  

Accurate and approximate early output 32-bit QDI 

asynchronous adders were realized using the standard library 

cells of a 32/28nm CMOS process [47]. The 2-input C-element 

was alone manually realized using the AO222 complex gate by 

incorporating feedback. The C-element is indispensable in 

QDI asynchronous circuit designs, and would output 0 or 1 if 

all its inputs are 0 or 1 respectively. However, if the inputs to a 

C-element are non-identical, the C-element would maintain its 

existing steady-state. The C-element is represented by the 

circle with the marking C in Fig 4.  

The dual-rail full adder and half adder form the building 

blocks of the accurate 32-bit asynchronous adder depicted in 

Fig 3a, and the dual-rail full adder, half adder, 2-input AND, 

and 2-input OR form the building blocks of the approximate 

32-bit asynchronous adders depicted in Figs 3b to 3f. All the 

building blocks used correspond to the early output type. The 

logic compositions of the dual-rail full adder, half adder, 2-

input AND, and the 2-input OR are shown in Fig 4. Figs 4a, 

4c, 4e and 4g show the implementations of the building blocks 

in adherence to the RTZ protocol, and Figs 4b, 4d, 4f and 4h 

show the implementations according to the RTO protocol.  

The rules for transforming a logic corresponding to the RTZ 

protocol into that suitable for the RTO protocol, and vice-

versa, have been stated and proved in [12], and the interested 

reader is referred to the same for details. In general, the logic 

transformation rules governing the conversion from RTZ to 

RTO, and vice-versa, are found to obey the duality principle of 

Boolean algebra. The duality principle states that a logic 

expression derived by interchanging the logical operators and 

the identity elements of an original logic expression also 

remains valid [48]. However, it is important to note that the 

logic transformation rules based on the duality principle, 

which govern the conversion between the RTZ and RTO 

protocols, are applicable only to the discrete and complex 

logic gates, and not to the C-elements. As seen in Figs 4a and 

4b, the inputs to the C-elements remain unchanged when 

transforming a logic corresponding to the RTZ protocol into 

that adhering to the RTO protocol, and vice-versa.  

It may be worth mentioning how the basic building blocks 

shown in Fig 4 are constructed. The dual-rail full adder shown 

in Fig 4a [24] is synthesized using the disjoint sum-of-products 

(DSOP) expression governing the full adder. In a DSOP 

equation [49] [50], the logical conjunction of any two products 

yields 0 i.e. the product terms are mutually orthogonal [51]. 

The logic rules, stated above, are applied to transform the 

dual-rail full adder of Fig 4a into the dual-rail full adder shown 

in Fig 4b. With respect to the dual-rail half adder shown in Fig 

4c, the sum equations are inherently in the DSOP form. The 

dual-rail sum output are synthesized using single complex 

gates to facilitate early output, and these gates are replaced by 

their duals to synthesize the sum output of Fig 4d. However, 
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the dual-rail carry output of Fig 4c is not in the DSOP form. 

Hence the dual-rail carry of Fig 4c is synthesized using a 

simple and a complex logic gate to avoid any problem of gate 

orphans. The duals of these gates are then used to synthesize 

the corresponding RTO logic equivalent, as shown in Fig 4d. 

The early output 2-input AND and OR logic functions are 

implemented as shown in [23]. The true-rail of the AND gate 

(Z1 in Fig 4e) and the OR gate (V1 in Fig 4g) are synthesized 

according to their basic logic functions. The corresponding 

false-rails of the AND gate and the OR gate are synthesized by 

complementing the true-rail outputs. The duals of the dual-rail 

AND gate and OR gate outputs are derived to synthesize the 

corresponding logic conforming to the RTO protocol, as 

shown in Figs 4f and 4h. The dual-rail full adder and the half 

adder incorporate redundant logic [52], which is implicit. This 

is the case with respect to both the RTZ and RTO handshake 

protocols. The dual-rail implementations of the AND and OR 

functions, however, do not feature redundant logic.  
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Fig 3 (a) Accurate 32-bit QDI asynchronous adder – A31 and B31 is the most significant input bit-pair, A0 and B0 is the least significant input 

bit-pair, SUM31 and SUM0 are the most significant and the least significant sum bits, and C32 is the carry output, which are all dual-rail encoded; 

Approximate QDI asynchronous adders with (b) 4-bits, (c) 8-bits, (d) 12-bits, (e) 16-bits, and (f) 20-bits approximation in the least significant 

positions 
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Fig 4 Early output basic building blocks. Full adder realized according to (a) RTZ protocol and (b) RTO protocol; Half adder realized according 

to (c) RTZ protocol and (d) RTO protocol; AND function implementation according to (e) RTZ protocol and (f) RTO protocol; OR function 

implementation according to (g) RTZ protocol and (h) RTO protocol      
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IV. RESULTS AND DISCUSSION 

Accurate and approximate 32-bit QDI asynchronous adders, 

which correspond to the early output type, were realized in 

semi-custom ASIC design style using the digital library cells 

of a 32/28nm CMOS process [47]. As mentioned earlier, the 

2-input C-element was alone manually realized. Minimum 

sized cells were used uniformly for realizing all the adders. 

The inputs and outputs of the asynchronous adders are dual-

rail encoded, and the adders conform to the RTZ and RTO 

handshake protocols. The approximate adders incorporate 

approximations ranging from 4-bits to 20-bits in the least 

significant positions, as shown in Fig 3.    

A QDI asynchronous circuit stage, which is shown in Fig 1, 

consists of the asynchronous circuit, the input registers, and 

the completion detector. The input registers and the 

completion detector of the asynchronous adders corresponding 

to the RTZ and RTO protocols are respectively identical. 

Therefore, any differences between the various asynchronous 

adders are entirely attributed to the diversities in their logical 

composition (i.e. the adder logic), and this explains the reason 

behind the differences in the corresponding experimental 

results obtained. Further, this observation paves the way for a 

straightforward comparison of the design metrics of different 

asynchronous adders which correspond to the RTZ and RTO 

protocols post physical synthesis.  

Latency, cycle time, area, and average power dissipation are 

the design metrics estimated for the different asynchronous 

adders using Synopsys tools. Here, latency generally implies 

forward latency which is the maximum propagation delay 

encountered in an asynchronous adder for the application of 

data. Cycle time refers to the sum of forward and reverse 

latencies, where the reverse latency is the maximum 

propagation delay encountered in an asynchronous adder for 

the application of spacer. In synchronous circuits, the latency 

specifies the rate at which new data can be input to a circuit 

but in QDI asynchronous circuits, the cycle time determines 

the rate at which new data can be input. This is because, unlike 

synchronous designs, in QDI asynchronous designs, there is an 

intermediate RTZ or RTO phase present between two data 

phases. Hence, the cycle time is an important design parameter 

to be considered in QDI asynchronous circuits. Since a static 

timing analyzer normally estimates the critical path delay i.e. 

the forward latency, the reverse latency was estimated based 

on gate-level timing simulations of the asynchronous adders. 

Our experimentation considered a typical case PVT 

specification (1.05V, 25ºC) for the standard cell library [47].        

About 1000 random input vectors were identically supplied 

to all the asynchronous adders at time intervals of 20ns 

through a test bench to verify their functionalities and also to 

capture their respective switching activities. The value change 

dump (.vcd) files generated through the functional simulations 

were used to estimate the average power dissipation. 

Appropriate wire loads commensurate with the different adder 

designs were automatically included while performing the 

experimentation. A virtual clock was used just to constrain the 

input and output ports of the asynchronous adders and it did 

not contribute to the area, delay or power dissipation of the 

adders. Table 1 presents the design metrics of the accurate and 

approximate 32-bit asynchronous adders, which correspond to 

the RTZ and RTO handshake protocols.  

From Table 1, it can be noticed that the areas of the 

corresponding accurate and approximate asynchronous adders 

obeying the RTZ or the RTO protocol are the same despite 

having different logic compositions. In [47], the 2-input OR 

gate and the 2-input AND gate with a similar drive strength 

occupy the same area of 2.03µm2. Also, the AO22 and OA22 

gates with similar drive strengths require the same area of 

2.54µm2. Further, the AO222 and OA222 complex gates with 

similar drive strengths occupy the same area of 3.3µm2. As a 

result, the area occupancies of the basic building blocks, the 

input registers, and the completion detector for the 

corresponding accurate or approximate adders are the same 

whether they correspond to the RTZ or the RTO protocol. 

Having similar cell areas for the dual logic gates such as OR 

and AND, AO22 and OA22, and AO222 and OA222 etc. is 

rather uncommon in commercial standard cell libraries unlike 

[47]. The standard digital cell library [47] does not have 

foundry support and is meant for use in teaching and research. 

Hence, it may be hypothesized that if a commercial digital cell 

library is used instead for the implementation of the QDI 

asynchronous adders given in Table 1, then the RTO protocol 

would facilitate improved optimizations in the design metrics 

than the RTZ protocol. Therefore, the improvements in the 

timing and power parameters achieved by the RTO protocol 

than the RTZ protocol here would only serve as a baseline.    
 

TABLE 1 DESIGN METRICS OF ACCURATE AND APPROXIMATE EARLY OUTPUT 

32-BIT QDI ASYNCHRONOUS ADDERS, BASED ON A 32/28NM CMOS PROCESS 

Approximation 

Size 

Forward Latency  

(ns) 

Cycle Time 

(ns) 

Area 

(µm2) 

Power 

(µW) 

RTZ handshake protocol 

Not Applicable 

(Accurate) 

3.02 3.62 1628.55 2126 

4-bits 

(Approximate) 

2.77 3.37 1557.39 2124 

8-bits 

(Approximate) 

2.44 3.04 1463.87 2120 

12-bits 

(Approximate) 

2.11 2.71 1370.35 2117 

16-bits 

(Approximate) 

1.77 2.37 1276.82 2114 

20-bits 

(Approximate) 

1.44 2.04 1183.30 2110 

RTO handshake protocol 

Not Applicable 

(Accurate) 

2.86 3.47 1628.55 2122 

4-bits 

(Approximate) 

2.62 3.23 1557.39 2120 

8-bits 

(Approximate) 

2.31 2.92 1463.87 2117 

12-bits 

(Approximate) 

2.01 2.62 1370.34 2114 

16-bits 

(Approximate) 

1.70 2.31 1276.82 2111 

20-bits 

(Approximate) 

1.39 2.00 1183.29 2108 
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Although the areas of many simple and complex logic gates 

and their respective duals are the same in [47], when 

considering similar drive strengths, their delay and power 

dissipation values are however different. This explains why the 

latency, cycle time, and average power dissipation are different 

for the RTZ and RTO protocols, as seen in Table 1. It can also 

be seen in Table 1 that as the approximation size increases, the 

design metrics continue to decrease for the approximate 

asynchronous adders relative to the accurate asynchronous 

adders with respect to both the RTZ and RTO protocols. From 

Table 1, it is found that for the RTZ protocol, compared to the 

accurate 32-bit asynchronous adder, the approximate 32-bit 

asynchronous adders, on average, facilitate a 25.1% reduction 

in the cycle time with no trade-off in the area or average power 

dissipation. Likewise, for the RTO protocol, compared to the 

accurate 32-bit asynchronous adder, the approximate 32-bit 

asynchronous adders, on average, facilitate a 24.5% reduction 

in the cycle time at no area or power expense. In comparison 

with the RTZ protocol, the RTO protocol, on average, enables 

a 3.3% further reduction in the cycle time and leads to less 

power dissipation while requiring almost the same area for 

physical implementation.           

V. CONCLUSIONS AND SCOPE FOR FURTHER WORK 

Accurate and approximate QDI asynchronous adders with 

dual-rail data encoding were realized based on RTZ and RTO 

handshake protocols. The adders correspond to the early 

output timing regime. A 32/28nm CMOS process was used as 

the implementation platform, and the adders were realized in 

semi-custom ASIC design style. The experimental results show 

that the approximate asynchronous adders facilitate significant 

reductions in all the design metrics compared to the accurate 

asynchronous adders. It is also noted that the RTO protocol is 

preferable to the RTZ protocol for the efficient realization of 

approximate asynchronous arithmetic circuits. This vindicates 

the observation made in [12], which inferred that the RTO 

protocol is preferable to the RTZ protocol for the efficient 

implementation of accurate asynchronous arithmetic circuits. 

Thus, this invited work, and [12], which is also an invited 

work together demonstrate the supremacy of the RTO protocol 

in effectively synthesizing accurate or approximate QDI 

asynchronous (arithmetic) circuits. As a possible future work, 

the QDI asynchronous implementation of system-level digital 

signal processing units could be considered to evaluate the 

performance of the RTZ and RTO handshake protocols.           
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