

Abstract—Approximate computing is emerging as an alternative

to accurate computing due to its potential for realizing digital circuits

and systems with low power dissipation, less critical path delay, and

less area occupancy for an acceptable trade-off in the accuracy of

results. In the domain of computer arithmetic, several approximate

adders and multipliers have been designed and their potential have

been showcased versus accurate adders and multipliers for practical

digital signal processing applications. Nevertheless, in the existing

literature, almost all the approximate adders and multipliers reported

correspond to the synchronous design method. In this work, we

consider robust asynchronous i.e. quasi-delay-insensitive realizations

of approximate adders by employing delay-insensitive codes for data

representation and processing, and the 4-phase handshake protocols

for data communication. The 4-phase handshake protocols used are

the return-to-zero and the return-to-one protocols. Specifically, we

consider the implementations of 32-bit approximate adders based on

the return-to-zero and return-to-one handshake protocols by adopting

the delay-insensitive dual-rail code for data encoding. We consider a

range of approximations varying from 4-bits to 20-bits for the least

significant positions of the accurate 32-bit asynchronous adder. The

asynchronous adders correspond to early output (i.e. early reset) type,

which are based on the well-known ripple carry adder architecture.

The experimental results show that approximate asynchronous adders

achieve reductions in the design metrics such as latency, cycle time,

average power dissipation, and silicon area compared to the accurate

asynchronous adders. Further, the reductions in the design metrics

are greater for the return-to-one protocol compared to the return-to-

zero protocol. The design metrics were estimated using a 32/28nm

CMOS technology.

Keywords— Asynchronous design, Approximate computing,

Adders, Ripple carry adder, Early output, Standard cells, CMOS

I. INTRODUCTION

PPROXIMATE computing [1 – 3] is emerging as an

alternative to accurate computing given that various

digital signal processing applications such as image, video,

and audio processing etc. can tolerate minor degradation in the

quality of results, which may not be noticeable due to the

Invited Paper.

P. Balasubramanian was with the School of Electrical and Electronic

Engineering, Nanyang Technological University, Singapore. He is now with

the School of Computer Science and Engineering, Nanyang Technological

University, Singapore 639798 (e-mail: balasubramanian@ntu.edu.sg)

limitations of human perception [4 – 6], to achieve reduced

design metrics. This implies that approximate results which

correspond to a specified error bound are acceptable.

In computing units, arithmetic operations such as additions

and multiplications are found to be responsible for a majority

of the power consumption. For example, more than 70% of the

power consumed by a graphics processing unit is attributed to

arithmetic operations [7], and about 80% of the power

consumed by a fast Fourier transform (FFT) processor is

attributed to adders and multipliers [8]. The FFT and inverse

FFT operations are common in the OFDM transceiver, used in

a wireless communication system. Further, in a JPEG encoder

or decoder, which is used for digital image processing, or in a

MPEG encoder or decoder, which is used for digital video

processing in multimedia applications, the discrete cosine

transform (DCT) and the inverse DCT operations are common

which involve additions and multiplications.

Computer arithmetic is indeed pervasive in digital signal

processing, and adders and multipliers are predominant in the

datapath of a digital signal processing unit. Hence, the bulk of

the reported research on approximate computing has focused

on the design of approximate adders and multipliers [9] [10].

However, almost all the approximate adders and multipliers

reported in the literature correspond to the synchronous design

method. Reference [11] is perhaps the first work that discussed

the implementation of approximate quasi-delay-insensitive

(QDI) asynchronous adders and evaluated their performance

vis-à-vis accurate QDI asynchronous adders. The delay-

insensitive dual-rail code was used for data encoding, and the

4-phase return-to-zero (RTZ) handshake protocol was used for

data communication. Weak-indication and early output 32-bit

approximate adders, which incorporate approximation sizes

ranging from 4- to 20-bits in the least significant positions,

were implemented alongside the accurate 32-bit asynchronous

adders. It was observed the approximate asynchronous adders

paved the way for optimization of the design metrics such as

latency, cycle time, area, and average power dissipation

compared to the accurate asynchronous adders. Also, it was

observed the early output approximate asynchronous adders

exhibit improved design metrics than the weak-indication

approximate asynchronous adders.

Approximate Early Output Asynchronous

Adders based on Dual-Rail Data Encoding and

4-Phase Return-to-Zero and Return-to-One

Handshaking

P. Balasubramanian

A

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 445

This work builds upon [11] by implementing approximate

asynchronous adders based on the 4-phase return-to-one

(RTO) handshake protocol, besides the 4-phase RTZ

handshake protocol. This is important since it was shown

recently in [12] that the 4-phase RTO protocol could facilitate

enhanced optimization of the design metrics compared to the

4-phase RTZ protocol for QDI asynchronous arithmetic

circuits. In this work, we specifically consider approximate

implementations of robust early output asynchronous adders

for approximation sizes varying from 4- to 20-bits in the least

significant positions and compare them with the accurate

implementations based on the RTZ and RTO handshake

protocols. We adopt the delay-insensitive dual-rail code for

data encoding. The accurate and approximate early output

asynchronous adder implementations are QDI. QDI [13]

asynchronous circuits are the practically realizable delay-

insensitive asynchronous circuits with the only exception and

assumption of isochronic forks, which form the weakest

compromise to delay-insensitivity. Isochronicity implies that

the signal transitions are assumed to happen concurrently at all

the ends of an isochronic fork. It was shown in [14] that

isochronicity is realizable even in nanoelectronic circuits.

The rest of the article is organized as follows. Section II

discusses the fundamentals of QDI asynchronous circuit

design. Section III describes the approximate asynchronous

adder architecture, and portrays the approximate asynchronous

adder components based on the 4-phase RTZ and RTO

handshake protocols. Section IV presents the simulation

results corresponding to the accurate and approximate 32-bit

asynchronous adders based on physical implementation using a

32/28nm CMOS process. Finally, Section V concludes and

also suggests a direction for further work.

II. QDI ASYNCHRONOUS CIRCUIT DESIGN

A background about QDI asynchronous circuit design is

provided by describing the delay-insensitive dual-rail data

encoding and the 4-phase RTZ and RTO handshaking. Also,

the various types of QDI asynchronous circuits are discussed.

A. Dual-Rail Data Encoding and 4-Phase Handshaking

The dual-rail code, also known as the 1-of-2 code, is the

simplest member of the family of delay-insensitive m-of-n

codes [15]. Among the m-of-n codes, the 1-of-n codes

represent a subset and are called one-hot codes. In a 1-of-n

code, only 1 out of n wires is asserted as 1 to represent the

binary data. The 1-of-n coding scheme is said to be unordered

[16] since none of the code words forms a subset of another

code word. Also, the 1-of-n coding scheme is said to be

complete [17] if all the n unique code words are utilized to

encode the specified binary inputs.

When adopting the 4-phase RTZ protocol [18], and as per

the dual-rail code, a single-rail binary input W is encoded

using two wires as say, W1 and W0. W = 1 is represented by

W1 = 1 and W0 = 0, and W = 0 is represented by W1 = 0 and

W0 = 1. Note that W1 and W0 cannot assume 1 concurrently

as it is illegal and invalid since the coding scheme will become

unordered. However, W1 and W0 can assume 0 concurrently

and it is called the spacer. Hence, when utilizing the 4-phase

RTZ protocol for data communication, and as per the dual-rail

code, the data is specified by either W1 or W0 assuming 1 and

the other assuming 0, and the condition of both W1 and W0

assuming 0 is called the spacer. Thus the spacer is an all-zero

in the case of the 4-phase RTZ protocol.

On the other hand, when adopting the 4-phase RTO

protocol [19], and as per the dual-rail code, a single-rail binary

input W is encoded using two wires as say, W1 and W0, where

W = 1 is represented by W1 = 0 and W0 = 1, and W = 0 is

represented by W1 = 1 and W0 = 0. Note that W1 and W0

cannot assume 0 concurrently. However, W1 and W0 can

assume 1 concurrently and is referred to as the spacer. Hence,

when employing the 4-phase RTO handshake protocol for data

communication, and as per the dual-rail code, the data is

specified by either W1 or W0 assuming binary 0 and the other

assuming binary 1, and the condition of both W1 and W0

assuming binary 1 is called the spacer. Hence, there is an all-

one spacer in the case of the 4-phase RTO protocol.

A QDI asynchronous circuit stage that employs the delay-

insensitive dual-rail code for data representation and

processing and a 4-phase RTZ or RTO handshake protocol for

data communication is shown in Fig 1. As the name implies, a

4-phase handshake protocol consists of four phases which will

be explained with reference to Fig 1 by assuming the dual-rail

encoded data. Nevertheless, this explanation would be

applicable for data represented using any 1-of-n code. We first

describe the 4-phase RTZ handshaking, followed by the 4-

phase RTO handshaking.

Fig 1 A QDI asynchronous circuit stage correlated with the sender-receiver

analogy

According to the 4-phase RTZ protocol, in the first phase,

the dual-rail data bus shown in Fig 1 which is specified by

(W1, W0) etc. is in the spacer state and so ACKIN is 1. The

sender transmits a code word i.e. data and this results in rising

signal transitions from 0 to 1 on anyone of the corresponding

dual rails of the entire dual-rail data bus. In the second phase,

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 446

the receiver receives the code word sent, and then it drives

ACKOUT to 1. In the third phase, the sender waits for ACKIN

to become 0 and then resets the entire dual-rail data bus (i.e.

spacer). Subsequently, in the fourth phase, after an unbounded

time duration, which is deemed finite and positive, the receiver

drives ACKOUT to 0 i.e. ACKIN becomes 1. With this, one

data transaction is said to be completed, and the asynchronous

circuit stage is allowed to commence the next data transaction.

Therefore, the application of input data follows the sequence:

data-spacer-data-spacer, and so forth.

According to the 4-phase RTO protocol, in the first phase,

ACKIN is 1. The sender transmits the spacer and this results in

rising signal transitions on the entire dual-rail data bus. In the

second phase, the receiver receives the spacer sent, and it

drives ACKOUT to 1. In the third phase, the sender waits for

ACKIN to become 0 and then sends the data by resetting

anyone of the corresponding rails of the entire dual-rail data

bus. Subsequently, in the fourth phase, after an unbounded

time duration, which is deemed finite and positive, the receiver

drives ACKOUT to 0 i.e. ACKIN becomes 1. One data

transaction is now said to be completed, and the asynchronous

circuit stage is permitted to commence the next data

transaction. Thus the application of input data follows the

sequence: spacer-data-spacer-data, and so forth.

B. Types of QDI Asynchronous Circuits

QDI asynchronous circuits are generally categorized as

strong-indication [20] [21], weak-indication [20] [22], and

early output [23] [24] types. Indication means providing

acknowledgment for the receipt of the primary inputs through

the primary outputs. This is accomplished by ensuring that

indication is also provided by the intermediate outputs [18].

With respect to the asynchronous circuit stage shown in Fig 1,

the indication mechanism may be local or global [25] [26].

The indication mechanism is called local if the asynchronous

circuit by itself is capable of acknowledging the receipt of all

the primary inputs. The indication mechanism is called global

if the asynchronous circuit stage on the whole indicates the

receipt of all the primary inputs in conjunction with the

asynchronous circuit present within it. The input-output timing

behavior of strong-indication, weak-indication, and early

output asynchronous circuits is illustrated by a representative

timing diagram shown in Fig 2.

A strong-indication asynchronous circuit starts data

processing to produce the required primary outputs only after

receiving all the primary inputs whether they are data or

spacer. A weak-indication asynchronous circuit could start

data processing and produce some of the primary outputs after

receiving just a subset of the primary inputs. Nonetheless, the

production of at least one primary output is delayed till the last

primary input is received. An early output asynchronous circuit

could start data processing and produce all the primary outputs

after receiving just a subset of the primary inputs. If all the

primary outputs are produced after receiving the data on a

subset of the primary inputs, the early output asynchronous

circuit is said to be of early set type. On the other hand, if the

spacer is produced on all the primary outputs after receiving

the spacer on a subset of the primary inputs, the early output

asynchronous circuit is said to be of early reset type. The early

set and reset properties of early output asynchronous circuits

are depicted through the violet and orange ovals in dotted lines

in Fig 2. Among the different timing models, the strong-

indication is the most restrictive and the early output is more

relaxed. The early output asynchronous circuits could pave the

way for enhanced optimizations of the design metrics

compared to strong-indication or weak-indication circuits, and

this has been demonstrated through many works in the

literature [24] [27 – 32].

Fig 2 Strong-indication, weak-indication, and early output timing models for

QDI asynchronous circuits

In a QDI asynchronous circuit, any transition on the primary

inputs are required to propagate monotonically i.e.

unidirectionally throughout the entire circuit depth from the

primary inputs to the primary outputs with no unacknowledged

signal transition on any intermediate gate output [33]. For

indication, the signal transitions should either monotonically

increase from binary 0 to 1, or monotonically decrease from

binary 1 to 0 throughout the entire circuit. For data represented

using the dual-rail code and communicated based on the 4-

phase RTZ handshaking, when data are supplied the transitions

would monotonically increase and for the application of spacer

the transitions would monotonically decrease throughout the

circuit depth. On the other hand, for data represented using the

dual-rail code and communicated based on the 4-phase RTO

handshaking, when the spacer is supplied the transitions would

monotonically increase and for the application of data, the

transitions would monotonically decrease throughout the

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 447

circuit depth. An unacknowledged signal transition on an

intermediate gate output is termed as gate orphan, which is to

be avoided in a QDI asynchronous circuit. The issue of gate

orphan has been clearly explained through diverse scenarios in

[34 – 38].

Care should be taken to ensure that any logic transformation

or optimization performed in a QDI asynchronous circuit

conforms to the safe QDI logic decomposition principles [39].

This is because indication and robustness go hand-in-hand in

QDI asynchronous circuits, and any arbitrary decomposition of

logic gate(s) might give rise to gate orphan(s) which could

potentially affect the robustness of a QDI circuit. Moreover,

resolving the gate orphan(s) is non-trivial and may require

extensive timing analysis [40] and perhaps additional timing

assumptions which could complicate the physical realization of

a QDI circuit. Further, if gate orphans are left unresolved, they

may become problematic to a QDI circuit or system operation

[41] [42], and might even cause a stall.

III. APPROXIMATE ASYNCHRONOUS ADDERS

An n-bit ripple carry adder (RCA) is realized by cascading

(n – 1) full adders with a least significant half adder. The half

adder adds an augend and an addend input and produces the

sum and carry overflow outputs. On the other hand, the full

adder [43 – 45] adds an augend and an addend input along

with any carry input and produces the sum and carry outputs.

The accurate 32-bit QDI asynchronous RCA is shown in Fig

3a, which consists of 31 full adders (FA31 to FA1) and a half

adder (HA1). Note that the inputs and outputs of the accurate

and approximate 32-bit asynchronous adders shown in Fig 3

are dual-rail encoded, with a 4-phase RTZ or RTO protocol

used for handshaking.

The approximate 32-bit QDI asynchronous adders are

shown in Figs 3b to 3f, with 4-, 8-, 12-, 16-, and 20-bits

approximation incorporated in the least significant adder

positions. The approximate adders shown in Fig 3 basically

consist of an accurate sub-adder and an approximate sub-

adder. Addition is performed accurately in the former and

inaccurately in the latter. The number of bits allotted to the

accurate and approximate sub-adders are clearly marked in

Figs 3b to 3f. Full adders are used to produce the accurate sum

bits of the accurate sub-adders, and 2-input OR gates (shown

as OR1 to OR20 in Figs 3b to 3f) are used to produce the

approximate sum bits of the approximate sub-adders. The most

significant augend and addend bit pair of the approximate sub-

adder is AND-ed and its output is supplied as the carry input to

the accurate asynchronous sub-adder. If the logical product of

the most significant augend and addend bit pair of an

approximate sub-adder yields 1, then a carry input of 1 is

supplied to the accurate sub-adder; otherwise a carry input of 0

is supplied in the dual-rail encoded form.

The approximate adders, portrayed by Figs 3b to 3f, are

derived from the approximate adder architecture presented in

[46] but with the exception that these approximate adders

correspond to QDI asynchronous implementations. The utility

of the approximate adder of [46] had been demonstrated

through soft-computing applications such as a 3-layer face

recognition neural network, and the hardware de-fuzzification

block of a fuzzy processor.

Accurate and approximate early output 32-bit QDI

asynchronous adders were realized using the standard library

cells of a 32/28nm CMOS process [47]. The 2-input C-element

was alone manually realized using the AO222 complex gate by

incorporating feedback. The C-element is indispensable in

QDI asynchronous circuit designs, and would output 0 or 1 if

all its inputs are 0 or 1 respectively. However, if the inputs to a

C-element are non-identical, the C-element would maintain its

existing steady-state. The C-element is represented by the

circle with the marking C in Fig 4.

The dual-rail full adder and half adder form the building

blocks of the accurate 32-bit asynchronous adder depicted in

Fig 3a, and the dual-rail full adder, half adder, 2-input AND,

and 2-input OR form the building blocks of the approximate

32-bit asynchronous adders depicted in Figs 3b to 3f. All the

building blocks used correspond to the early output type. The

logic compositions of the dual-rail full adder, half adder, 2-

input AND, and the 2-input OR are shown in Fig 4. Figs 4a,

4c, 4e and 4g show the implementations of the building blocks

in adherence to the RTZ protocol, and Figs 4b, 4d, 4f and 4h

show the implementations according to the RTO protocol.

The rules for transforming a logic corresponding to the RTZ

protocol into that suitable for the RTO protocol, and vice-

versa, have been stated and proved in [12], and the interested

reader is referred to the same for details. In general, the logic

transformation rules governing the conversion from RTZ to

RTO, and vice-versa, are found to obey the duality principle of

Boolean algebra. The duality principle states that a logic

expression derived by interchanging the logical operators and

the identity elements of an original logic expression also

remains valid [48]. However, it is important to note that the

logic transformation rules based on the duality principle,

which govern the conversion between the RTZ and RTO

protocols, are applicable only to the discrete and complex

logic gates, and not to the C-elements. As seen in Figs 4a and

4b, the inputs to the C-elements remain unchanged when

transforming a logic corresponding to the RTZ protocol into

that adhering to the RTO protocol, and vice-versa.

It may be worth mentioning how the basic building blocks

shown in Fig 4 are constructed. The dual-rail full adder shown

in Fig 4a [24] is synthesized using the disjoint sum-of-products

(DSOP) expression governing the full adder. In a DSOP

equation [49] [50], the logical conjunction of any two products

yields 0 i.e. the product terms are mutually orthogonal [51].

The logic rules, stated above, are applied to transform the

dual-rail full adder of Fig 4a into the dual-rail full adder shown

in Fig 4b. With respect to the dual-rail half adder shown in Fig

4c, the sum equations are inherently in the DSOP form. The

dual-rail sum output are synthesized using single complex

gates to facilitate early output, and these gates are replaced by

their duals to synthesize the sum output of Fig 4d. However,

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 448

the dual-rail carry output of Fig 4c is not in the DSOP form.

Hence the dual-rail carry of Fig 4c is synthesized using a

simple and a complex logic gate to avoid any problem of gate

orphans. The duals of these gates are then used to synthesize

the corresponding RTO logic equivalent, as shown in Fig 4d.

The early output 2-input AND and OR logic functions are

implemented as shown in [23]. The true-rail of the AND gate

(Z1 in Fig 4e) and the OR gate (V1 in Fig 4g) are synthesized

according to their basic logic functions. The corresponding

false-rails of the AND gate and the OR gate are synthesized by

complementing the true-rail outputs. The duals of the dual-rail

AND gate and OR gate outputs are derived to synthesize the

corresponding logic conforming to the RTO protocol, as

shown in Figs 4f and 4h. The dual-rail full adder and the half

adder incorporate redundant logic [52], which is implicit. This

is the case with respect to both the RTZ and RTO handshake

protocols. The dual-rail implementations of the AND and OR

functions, however, do not feature redundant logic.

OR1OR2OR3OR4

2

A3

2

B3

2

A2

2

B2

2

A1

2

B1

2

A0

2

B0

2

SUM3

2

SUM2

2

SUM1

2

SUM0

OR5OR6OR7OR8

2

A6

2

B6

2

A5

2

B5

2

A4

2

B4

2

SUM7

2

SUM6

2

SUM5

2

SUM4

FA8

2

SUM8

A8 B8

FA31

2

SUM31

A31 B31

2

C31

2

C32

2

C9

2

C8

OR1OR2OR3OR4

2

A3

2

B3

2

A2

2

B2

2

A1

2

B1

2

A0

2

B0

2

SUM3

2

SUM2

2

SUM1

2

SUM0

OR5OR6OR7OR8

2

A7

2

B7

2

A6

2

B6

2

A5

2

B5

2

A4

2

B4

2

SUM7

2

SUM6

2

SUM5

2

SUM4

OR9OR10OR11OR12

2

A10

2

B10

2

A9

2

B9

2

A8

2

B8

2

SUM11

2

SUM10

2

SUM9

2

SUM8

FA12

2

SUM8

A12 B12

FA31

2

SUM31

A31 B31

2

C31

2

C32

2

C13

2

C12

OR1OR2OR3OR4

2

A3

2

B3

2

A2

2

B2

2

A1

2

B1

2

A0

2

B0

2

SUM3

2

SUM2

2

SUM1

2

SUM0

OR5OR6OR7OR8

2

A7

2

B7

2

A6

2

B6

2

A5

2

B5

2

A4

2

B4

2

SUM7

2

SUM6

2

SUM5

2

SUM4

OR
13

OR
14

OR
15

OR
16

2

A14

2

B14

2

A13

2

B13

2

SUM15

2

SUM14

2

SUM13

2

SUM12

OR9
OR
10

OR
11

OR
12

2

A11

2

B11

2

A10

2

B10

2

A9

2

B9

2

A8

2

B8

2

SUM11

2

SUM10

2

SUM9

2

SUM8

FA16

2

SUM16

A16 B16

FA31

2

SUM31

A31 B31

2

C31

2

C32

2

C17

2

C16

(b)

(c)

(d)

(e)

ACCURATE

(24-bits)
APPROXIMATE

(8-bits)

ACCURATE

(20-bits)
APPROXIMATE

(12-bits)

ACCURATE
(16-bits)

APPROXIMATE
(16-bits)

2 2 2 2

2 2 2 2

2 2 2 2

OR1OR2OR3OR4

2

A2

2

B2

2

A1

2

B1

2

A0

2

B0

2

SUM3

2

SUM2

2

SUM1

2

SUM0

FA4

2

SUM4

A4 B4

FA31

2

SUM31

A31 B31

2

C31

2

C32

2

C5

2

C4

ACCURATE
(28-bits)

APPROXIMATE
(4-bits)

2 2 2 2

(a)

ACCURATE

(32-bits)

HA1

2

SUM0

A0 B0

2

C1
2 2

FA1

2

SUM1

A1 B1

2

C2
2 2

FA2

2

SUM2

A2 B2

2

C3
2 2

FA3

2

SUM3

A3 B3

2

C4
2 2

FA4

2

SUM4

A4 B4

2

C5
2 2

FA31

2

SUM31

A31 B31

2

C31

2
C32

2 2

Carry
output

A3

2

B3

2

AND

A15

2

B15

2

AND

A7

2

B7

2

AND

A11

2

B11

2

AND

A12

2

B12

2

OR1OR2OR3OR4

2

A3

2

B3

2

A2

2

B2

2

A1

2

B1

2

A0

2

B0

2

SUM3

2

SUM2

2

SUM1

2

SUM0

OR5OR6OR7OR8

2

A7

2

B7

2

A6

2

B6

2

A5

2

B5

2

A4

2

B4

2

SUM7

2

SUM6

2

SUM5

2

SUM4

OR
13

OR
14

OR
15

OR
20

2

A14

2

B14

2

A13

2

B13

2

SUM19

2

SUM14

2

SUM13

2

SUM12

OR9
OR
10

OR
11

OR
12

2

A11

2

B11

2

A10

2

B10

2

A9

2

B9

2

A8

2

B8

2

SUM11

2

SUM10

2

SUM9

2

SUM8

FA20

2

SUM20

A20 B20

FA31

2

SUM31

A31 B31

2

C31

2

C32

2

C21

2

C20

(f)

ACCURATE

(12-bits)
APPROXIMATE

(20-bits)

2 2 2 2

A19

2

B19

2

AND

A12

2

B12

2

OR
16

OR
17

OR
18

A17

2

B17

2

A16

2

B16

2

2

SUM17

2

SUM16

2

SUM15

A15

2

B15

2

OR
19

A18

2

B18

2

2

SUM18

Fig 3 (a) Accurate 32-bit QDI asynchronous adder – A31 and B31 is the most significant input bit-pair, A0 and B0 is the least significant input

bit-pair, SUM31 and SUM0 are the most significant and the least significant sum bits, and C32 is the carry output, which are all dual-rail encoded;

Approximate QDI asynchronous adders with (b) 4-bits, (c) 8-bits, (d) 12-bits, (e) 16-bits, and (f) 20-bits approximation in the least significant

positions

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 449

Z0
X0
Y0

Z1
X1

Y1

A0
B1

A1
B0

A0
B0

A1
B1

SUM1

SUM0

A0
B0

A0
B1

A1
B0

COUT0

(c)

Z1
X1
Y1

Z0
X0

Y0

A0
B0

A1
B1

CIN1

CIN0

SUM0

SUM1

CIN1

A1
B1

COUT1

CIN0

A0
B0

COUT0

(a)

C

C

A0
B1

A1
B0

CIN1

CIN0

C

C

A0
B0

A1
B1

CIN1

CIN0

SUM0

SUM1

COUT1

(b)

C

C

CIN1

CIN0

C

C

A0
B1

A1
B0

A1
B1

A0
B0

COUT0

CIN1

CIN0

A1
B0

SUM1
B1
A0

A1
B1

SUM0
B0
A0

COUT1
A1
B1

COUT1
A1
B1

A0
B1

COUT0

B0
A0

A1
B0

(d)

(e) (f)

V0
X0
Y0

V1
X1
Y1

(g)

V1
X1
Y1

V0
X0
Y0

(h)

RTZ protocol logic RTO protocol logic

Fig 4 Early output basic building blocks. Full adder realized according to (a) RTZ protocol and (b) RTO protocol; Half adder realized according

to (c) RTZ protocol and (d) RTO protocol; AND function implementation according to (e) RTZ protocol and (f) RTO protocol; OR function

implementation according to (g) RTZ protocol and (h) RTO protocol

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 450

IV. RESULTS AND DISCUSSION

Accurate and approximate 32-bit QDI asynchronous adders,

which correspond to the early output type, were realized in

semi-custom ASIC design style using the digital library cells

of a 32/28nm CMOS process [47]. As mentioned earlier, the

2-input C-element was alone manually realized. Minimum

sized cells were used uniformly for realizing all the adders.

The inputs and outputs of the asynchronous adders are dual-

rail encoded, and the adders conform to the RTZ and RTO

handshake protocols. The approximate adders incorporate

approximations ranging from 4-bits to 20-bits in the least

significant positions, as shown in Fig 3.

A QDI asynchronous circuit stage, which is shown in Fig 1,

consists of the asynchronous circuit, the input registers, and

the completion detector. The input registers and the

completion detector of the asynchronous adders corresponding

to the RTZ and RTO protocols are respectively identical.

Therefore, any differences between the various asynchronous

adders are entirely attributed to the diversities in their logical

composition (i.e. the adder logic), and this explains the reason

behind the differences in the corresponding experimental

results obtained. Further, this observation paves the way for a

straightforward comparison of the design metrics of different

asynchronous adders which correspond to the RTZ and RTO

protocols post physical synthesis.

Latency, cycle time, area, and average power dissipation are

the design metrics estimated for the different asynchronous

adders using Synopsys tools. Here, latency generally implies

forward latency which is the maximum propagation delay

encountered in an asynchronous adder for the application of

data. Cycle time refers to the sum of forward and reverse

latencies, where the reverse latency is the maximum

propagation delay encountered in an asynchronous adder for

the application of spacer. In synchronous circuits, the latency

specifies the rate at which new data can be input to a circuit

but in QDI asynchronous circuits, the cycle time determines

the rate at which new data can be input. This is because, unlike

synchronous designs, in QDI asynchronous designs, there is an

intermediate RTZ or RTO phase present between two data

phases. Hence, the cycle time is an important design parameter

to be considered in QDI asynchronous circuits. Since a static

timing analyzer normally estimates the critical path delay i.e.

the forward latency, the reverse latency was estimated based

on gate-level timing simulations of the asynchronous adders.

Our experimentation considered a typical case PVT

specification (1.05V, 25ºC) for the standard cell library [47].

About 1000 random input vectors were identically supplied

to all the asynchronous adders at time intervals of 20ns

through a test bench to verify their functionalities and also to

capture their respective switching activities. The value change

dump (.vcd) files generated through the functional simulations

were used to estimate the average power dissipation.

Appropriate wire loads commensurate with the different adder

designs were automatically included while performing the

experimentation. A virtual clock was used just to constrain the

input and output ports of the asynchronous adders and it did

not contribute to the area, delay or power dissipation of the

adders. Table 1 presents the design metrics of the accurate and

approximate 32-bit asynchronous adders, which correspond to

the RTZ and RTO handshake protocols.

From Table 1, it can be noticed that the areas of the

corresponding accurate and approximate asynchronous adders

obeying the RTZ or the RTO protocol are the same despite

having different logic compositions. In [47], the 2-input OR

gate and the 2-input AND gate with a similar drive strength

occupy the same area of 2.03µm2. Also, the AO22 and OA22

gates with similar drive strengths require the same area of

2.54µm2. Further, the AO222 and OA222 complex gates with

similar drive strengths occupy the same area of 3.3µm2. As a

result, the area occupancies of the basic building blocks, the

input registers, and the completion detector for the

corresponding accurate or approximate adders are the same

whether they correspond to the RTZ or the RTO protocol.

Having similar cell areas for the dual logic gates such as OR

and AND, AO22 and OA22, and AO222 and OA222 etc. is

rather uncommon in commercial standard cell libraries unlike

[47]. The standard digital cell library [47] does not have

foundry support and is meant for use in teaching and research.

Hence, it may be hypothesized that if a commercial digital cell

library is used instead for the implementation of the QDI

asynchronous adders given in Table 1, then the RTO protocol

would facilitate improved optimizations in the design metrics

than the RTZ protocol. Therefore, the improvements in the

timing and power parameters achieved by the RTO protocol

than the RTZ protocol here would only serve as a baseline.

TABLE 1 DESIGN METRICS OF ACCURATE AND APPROXIMATE EARLY OUTPUT

32-BIT QDI ASYNCHRONOUS ADDERS, BASED ON A 32/28NM CMOS PROCESS

Approximation

Size

Forward Latency

(ns)

Cycle Time

(ns)

Area

(µm2)

Power

(µW)

RTZ handshake protocol

Not Applicable

(Accurate)

3.02 3.62 1628.55 2126

4-bits

(Approximate)

2.77 3.37 1557.39 2124

8-bits

(Approximate)

2.44 3.04 1463.87 2120

12-bits

(Approximate)

2.11 2.71 1370.35 2117

16-bits

(Approximate)

1.77 2.37 1276.82 2114

20-bits

(Approximate)

1.44 2.04 1183.30 2110

RTO handshake protocol

Not Applicable

(Accurate)

2.86 3.47 1628.55 2122

4-bits

(Approximate)

2.62 3.23 1557.39 2120

8-bits

(Approximate)

2.31 2.92 1463.87 2117

12-bits

(Approximate)

2.01 2.62 1370.34 2114

16-bits

(Approximate)

1.70 2.31 1276.82 2111

20-bits

(Approximate)

1.39 2.00 1183.29 2108

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 451

Although the areas of many simple and complex logic gates

and their respective duals are the same in [47], when

considering similar drive strengths, their delay and power

dissipation values are however different. This explains why the

latency, cycle time, and average power dissipation are different

for the RTZ and RTO protocols, as seen in Table 1. It can also

be seen in Table 1 that as the approximation size increases, the

design metrics continue to decrease for the approximate

asynchronous adders relative to the accurate asynchronous

adders with respect to both the RTZ and RTO protocols. From

Table 1, it is found that for the RTZ protocol, compared to the

accurate 32-bit asynchronous adder, the approximate 32-bit

asynchronous adders, on average, facilitate a 25.1% reduction

in the cycle time with no trade-off in the area or average power

dissipation. Likewise, for the RTO protocol, compared to the

accurate 32-bit asynchronous adder, the approximate 32-bit

asynchronous adders, on average, facilitate a 24.5% reduction

in the cycle time at no area or power expense. In comparison

with the RTZ protocol, the RTO protocol, on average, enables

a 3.3% further reduction in the cycle time and leads to less

power dissipation while requiring almost the same area for

physical implementation.

V. CONCLUSIONS AND SCOPE FOR FURTHER WORK

Accurate and approximate QDI asynchronous adders with

dual-rail data encoding were realized based on RTZ and RTO

handshake protocols. The adders correspond to the early

output timing regime. A 32/28nm CMOS process was used as

the implementation platform, and the adders were realized in

semi-custom ASIC design style. The experimental results show

that the approximate asynchronous adders facilitate significant

reductions in all the design metrics compared to the accurate

asynchronous adders. It is also noted that the RTO protocol is

preferable to the RTZ protocol for the efficient realization of

approximate asynchronous arithmetic circuits. This vindicates

the observation made in [12], which inferred that the RTO

protocol is preferable to the RTZ protocol for the efficient

implementation of accurate asynchronous arithmetic circuits.

Thus, this invited work, and [12], which is also an invited

work together demonstrate the supremacy of the RTO protocol

in effectively synthesizing accurate or approximate QDI

asynchronous (arithmetic) circuits. As a possible future work,

the QDI asynchronous implementation of system-level digital

signal processing units could be considered to evaluate the

performance of the RTZ and RTO handshake protocols.

REFERENCES

[1] J. Han, M. Orshansky, “Approximate computing: an emerging paradigm

for energy-efficient design,” Proc. of 18th European Test Symposium,

pp. 1-6, 2013.

[2] K. Roy, A. Raghunathan, “Approximate computing: an energy-efficient

computing technique for error resilient applications,” Proc. of IEEE

Computer Society Annual Symposium on VLSI, pp. 473-475, 2015.

[3] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, J. Henkel, “Cross-

layer approximate computing: from logic to architectures,” Proc. of 53rd

ACM/EDAC/IEEE Design Automation Conference, Invited Paper, pp.

1-6, 2016.

[4] M.A. Breuer, “Multi-media applications and imprecise computation,”

Proc. of 8th Euromicro Conference on Digital System Design, pp. 2-7,

2005.

[5] H.-Y. Cheong, I.S. Chong, A. Ortega, “Computation error tolerance in

motion estimation algorithms,” Proc. of International Conference on

Image Processing, pp. 3289-3292, 2006.

[6] G.V. Varatkar, N.R. Shanbhag, “Energy-efficient motion estimation

using error-tolerance,” Proc. of International Symposium on Low Power

Electronics and Design, pp. 113-118, 2006.

[7] H. Zhang, M. Putic, J. Lach, “Low power GPGPU computation with

imprecise hardware,” Proc. of 51st Annual Design Automation

Conference, pp. 1-6, 2014.

[8] L. Wanhammar, DSP Integrated Circuits, Academic Press, USA, 1999.

[9] Z. Yang, A. Jain, J. Liang, J. Han, F. Lombardi, “Approximate

XOR/XNOR-based adders for inexact computing,” Proc. of IEEE

International Conference on Nanotechnology, pp. 690-693, 2013.

[10] H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, J. Han, “A comparative

evaluation of approximate multipliers,” Proc. of IEEE/ACM

International Conference on Nanoscale Architectures, pp. 191-196,

2016.

[11] P. Balasubramanian, C. Dang, D.L. Maskell, “Approximate quasi-delay-

insensitive asynchronous adders: design and analysis,” Proc. of 60th

IEEE International Midwest Symposium on Circuits and Systems, pp.

1196-1199, 2017.

[12] P. Balasubramanian, “Comparative evaluation of quasi-delay-insensitive

asynchronous adders corresponding to return-to-zero and return-to-one

handshaking,” Facta Universitatis, Series: Electronics and Energetics,

Invited Paper, vol. 31, no. 1, pp. 25-39, 2018.

[13] A.J. Martin, “The limitation to delay-insensitivity in asynchronous

circuits,” Proc. of 6th MIT Conference on Advanced Research in VLSI,

pp. 263-278, 1990.

[14] A.J. Martin, P. Prakash, “Asynchronous nano-electronics: preliminary

investigation,” Proc. of 14th IEEE International Symposium on

Asynchronous Circuits and Systems, pp. 58-68, 2008.

[15] T. Verhoeff, “Delay-insensitive codes – an overview,” Distributed

Computing, vol. 3, no. 1, pp. 1-8, 1988.

[16] B. Bose, “On unordered codes,” IEEE Transactions on Computers, vol.

40, no. 2, pp. 125-131, 1991.

[17] S.J. Piestrak, T. Nanya, “Towards totally self-checking delay-insensitive

systems,” Proc. of 25th International Symposium on Fault-Tolerant

Computing, pp. 228-237, 1995.

[18] J. Sparsø, S. Furber, Principles of Asynchronous Circuit Design: A

Systems Perspective, Kluwer Academic Publishers, MA, USA, 2001.

[19] M.T. Moreira, R.A. Guazzelli, N.L.V. Calazans, “Return-to-one

protocol for reducing static power in C-elements of QDI circuits

employing m-of-n codes,” Proc. of 25th Symposium on Integrated

Circuits and Systems Design, pp. 1-6, 2012.

[20] C.L. Seitz, “System Timing,” in Introduction to VLSI Systems, C. Mead

and L. Conway (Eds.), pp. 218-262, Addison-Wesley, Reading, MA,

USA, 1980.

[21] P. Balasubramanian, D.A. Edwards, “Efficient realization of strongly

indicating function blocks,” Proc. of IEEE Computer Society Annual

Symposium on VLSI, pp. 429-432, 2008.

[22] P. Balasubramanian, D.A. Edwards, “A new design technique for

weakly indicating function blocks,” Proc. of 11th IEEE Workshop on

Design and Diagnostics of Electronic Circuits and Systems, pp. 116-

121, 2008.

[23] C.F. Brej, J.D. Garside, “Early output logic using anti-tokens,” Proc. of

12th International Workshop on Logic and Synthesis, pp. 302-309,

2003.

[24] P. Balasubramanian, “A robust asynchronous early output full adder,”

WSEAS Transactions on Circuits and Systems, vol. 10, no. 7, pp. 221-

230, 2011.

[25] P. Balasubramanian, N.E. Mastorakis, “Analyzing the impact of local

and global indication on a self-timed system,” Proc. of 5th European

Computing Conference, pp. 85-91, 2011.

[26] P. Balasubramanian, N.E. Mastorakis, “Global versus local weak-

indication self-timed function blocks – a comparative analysis,” Proc.

of 10th International Conference on Circuits, Systems, Signal and

Telecommunications, pp. 86-97, 2016.

[27] P. Balasubramanian, D. Dhivyaa, J.P. Jayakirthika, P. Kaviyarasi, K.

Prasad, “Low power self-timed carry lookahead adders,” Proc. of 56th

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 452

IEEE International Midwest Symposium on Circuits and Systems, pp.

457-460, 2013.

[28] P. Balasubramanian, “An asynchronous early output full adder and a

relative-timed ripple carry adder,” WSEAS Transactions on Circuits and

Systems, vol. 15, pp. 91-101, 2016.

[29] P. Balasubramanian, K. Prasad, “Early output hybrid input encoded

asynchronous full adder and relative-timed ripple carry adder,” Proc. of

14th International Conference on Embedded Systems, Cyber-physical

Systems, and Applications, pp. 62-65, 2016.

[30] P. Balasubramanian, “Asynchronous carry select adders,” Engineering

Science and Technology, an International Journal, vol. 20, no. 3, pp.

1066-1074, 2017.

[31] P. Balasubramanian, K. Prasad, “Asynchronous early output dual-bit

full adders based on homogeneous and heterogeneous delay-insensitive

data encoding,” WSEAS Transactions on Circuits and Systems, vol. 16,

Article #8, pp. 64-73, 2017.

[32] P. Balasubramanian, K. Prasad, “Latency optimized asynchronous early

output ripple carry adder based on delay-insensitive dual-rail data

encoding,” International Journal of Circuits, Systems and Signal

Processing, vol. 11, pp. 65-74, 2017.

[33] V.I. Varshavsky (Ed.), Self-Timed Control of Concurrent Processes:

The Design of Aperiodic Logical Circuits in Computers and Discrete

Systems, Chapter 4: Aperiodic Circuits, pp. 77-85, (Translated from the

Russian by A.V. Yakovlev), Kluwer Academic Publishers, 1990.

[34] P. Balasubramanian, “A critique on “Asynchronous logic

implementation based on factorized DIMS”,” Technical Report

(Comments), 2017.

[35] P. Balasubramanian, K. Prasad, N.E. Mastorakis, “Robust asynchronous

implementation of Boolean functions on the basis of duality,” Proc. of

14th WSEAS International Conference on Circuits, pp. 37-43, 2010.

[36] P. Balasubramanian, Self-Timed Logic and the Design of Self-Timed

Adders, PhD thesis, The University of Manchester, 2010.

[37] P. Balasubramanian, “A latency optimized biased implementation style

weak-indication self-timed full adder,” Facta Universitatis, Series:

Electronics and Energetics, vol. 28, no. 4, pp. 657-671, 2015.

[38] P. Balasubramanian, “Comments on “Dual-rail asynchronous logic

multi-level implementation”,” Integration, the VLSI Journal, vol. 52,

no. 1, pp. 34-40, 2016.

[39] P. Balasubramanian, N.E. Mastorakis, “QDI decomposed DIMS method

featuring homogeneous/heterogeneous data encoding,” Proc. of

International Conference on Computers, Digital Communications and

Computing, pp. 93-101, 2011.

[40] C. Brej, Early Output Logic and Anti-Tokens, PhD thesis, School of

Computer Science, The University of Manchester, 2006.

[41] C. Jeong, S.M. Nowick, “Block level relaxation for timing-robust

asynchronous circuits based on eager evaluation,” Proc. of 14th IEEE

International Symposium on Asynchronous Circuits and Systems, pp.

95-104, 2008.

[42] W.B. Toms, D.A. Edwards, “Indicating combinational logic

decomposition,” IET Computers and Digital Techniques, vol. 5, no. 4,

pp. 331-341, 2011.

[43] P. Balasubramanian, N.E. Mastorakis, “High speed gate level

synchronous full adder designs,” WSEAS Transactions on Circuits and

Systems, vol. 8, no. 2, pp. 290-300, 2009.

[44] P. Balasubramanian, N.E. Mastorakis, “A delay improved gate level full

adder design,” Proc. of 3rd European Computing Conference, pp. 97-

102, 2009.

[45] P. Balasubramanian, N.E. Mastorakis, “A low power gate level full

adder module,” Proc. of 3rd International Conference on Circuits,

Systems and Signals, Invited Paper, pp. 246-248, 2009.

[46] H.R. Mahdiani, A. Ahmadi, S.M. Fakhraie, C. Lucas, “Bio-inspired

imprecise computational blocks for efficient VLSI implementation of

soft-computing applications,” IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 57, no. 4, pp. 850-862, 2010.

[47] Synopsys SAED_EDK32/28_CORE Databook, Revision 1.0.0, 2012.

[48] M.M. Mano, M.D. Ciletti, Digital Design, 4th edition, Prentice-Hall,

New Jersey, USA, 2007.

[49] P. Balasubramanian, R. Arisaka, H.R. Arabnia, “RB_DSOP: A rule

based disjoint sum of products synthesis method,” Proc. of 12th

International Conference on Computer Design, pp. 39-43, 2012.

[50] P. Balasubramanian, N.E. Mastorakis, “A set theory based method to

derive network reliability expressions of complex system topologies,”

Proc. of Applied Computing Conference, pp. 108-114, 2010.

[51] P. Balasubramanian, D.A. Edwards, “Self-timed realization of

combinational logic,” Proc. of 19th International Workshop on Logic

and Synthesis, pp. 55-62, 2010.

[52] P. Balasubramanian, D.A. Edwards, W.B. Toms, “Redundant logic

insertion and latency reduction in self-timed adders,” VLSI Design, vol.

2012, Article ID 575389, pages 13, 2012.

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 11, 2017

ISSN: 1998-4464 453

