
 

 

  
Abstract—There are many color constancy methods based on 

illumination estimation and their error metrics, but it is unclear how 
they perform or which method is more appropriate in a particular 
scene. We chose Reproduction Angular Error (RAE) as the error 
measure to compare the performance of twenty-two illumination 
estimation methods in four different scenes (Open Country, City, 
Indoor, Lab), and present the best method choice to be used with each 
scene type. 
 

Keywords—Color constancy, Illumination estimation，different 
scenes, performance evaluation.  

I. INTRODUCTION 
HEN the spectral component of a light source 

changes, the color of an object’s surface also changes. 
Under different lighting, the human visual system can identify 
the color of object surfaces, which is called color constancy 
[1]. Color constancy has been widely used in many fields. In 
the 20th century, Land and McCann proposed the Retinex 
system [2] [3] which performs well in image enhancement [4] 
[5]. In addition, color constancy can also be applied to video 
surveillance systems [6], color object recognition and detection 
[7], image indexing [8] [9], illumination estimation [10] [11] 
and other fields. 

Color constancy methods are divided into two categories 
[12] [13]: methods based on color invariant descriptors and 
methods based on light estimation. The former extracts the 
color feature information which is independent of the 
illumination. The latter is a two-stage procedure; the 
illumination of a scene is estimated first, then the image color 
is adjusted according to the difference between estimated and 
canonical light [14], which is usually addressed by the Von 
Kries model [15]. For the color recovery of an image, if there 
is a transformation, illumination estimation is superior to color 
invariant descriptors [16]. The focus of this paper is to discuss 
different illumination estimation methods. 

Illumination estimation methods include three groups: (1) 
unsupervised methods; (2) supervised methods; (3) 
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combinational methods. The first group is based on the White 
Patch hypothesis [17] and Gray World hypothesis [18]. 
According to these hypothesis, Gijsenij et al. proposed an 
unsupervised method framework based on image edge [19]. 
The second group has two parts. One is statistic-based 
methods, and the other is based on machine learning. Many 
methods using statistics have been proposed, such as Gamut 
Mapping [19], derivative-constrained Gamut Mapping [20] 
and Color-by-Correlation [21]. And there are some methods 
that use learning phase including Bayesian method [22] [23], 
Color Cat [24], Smart Color Cat [25], and a convolutional 
neural network-based color constancy method [26]. 
Combination methods can be classified into two categories, 
which are direct combination and guided combination [14]. 
The direct combination method obtains an estimate by 
calculating the weighted combination of given estimates. The 
guided combination method obtains results from the attributes 
of image content, including the committee-based color 
constancy method [27], combination methods using natural 
image statistics, texture or other features [28]-[31]. 

  There are four metrics to measure the performance of 
illumination estimation methods: angular error [32], 
chromaticity error [33], perceptual Euclidean distance (PED) 
[34], and reproduction angular error (RAE) [35]. Angular error 
calculates the angle between the RGBs of the measured 
illuminant and estimated illuminant colors; chromaticity error 
calculates the Euclidean distance between the estimated light 
and the true light in the chromaticity space; the weighted 
Euclidean distance between the estimated light and the true 
light is calculated by PED in the RGB space; the RAE is 
defined as the angle between the RGB of a white surface when 
the actual and estimated illuminations are ‘divided out.’ 
There are many methods for illumination estimation, and they 
have different adaptabilities to different scenes [14]. In 
different scenes, the selection of the most optimal method is a 
critical dilemma. We chose RAE as the error measure to 
compare the performance of illumination estimation methods 
in different scenes, and we present the choice of methods for 
different scenes.  

II. ILLUMINANT ESTIMATION METHODS 
The illuminant estimation methods we discuss are the three 

types shown in section Ⅰ:  (1) unsupervised methods; (2) 
supervised methods; (3) combinational methods 
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A. Unsupervised methods 
Unsupervised methods do not rely on prior knowledge, 

which can be estimated by low-level image feature statistics 
[36]. 

Among these of methods, two well-established methods, 
Gray-World and Max-RGB, were proposed early on. 
Gray-World is based on the Gray-World assumption that the 
average reflectance in a scene under a neutral light source is 
achromatic [18]; the Max-RGB method is based on the 
Max-RGB assumption that the maximum response in the 
RGB-channels is caused by a white patch [16].  

To make Max-RGB and Gray-World more general, 
Finlayson et al. proposed the Shades of Gray method by 
introducing the Minkowski norm (p) into these two methods:  

  

( )
1

p pf x dx
ke

dx

 
  =
 
 

∫
∫

 (1) 

When 1p =  , equation (1) is equivalent to Gray-World. In 
contrast, equation (1) is equivalent to the max-RGB 
when p = ∞ . And Shades of Gray is equivalent to (1) 

when1 p< < ∞ .  
Table 1. unsupervised methods 

 
J.V. Weijer et al. proposed the Gray-Edge hypothesis which 

is based on the observation of the color derivative distribution 
of the image color in the oppositional color space [19]; the 
difference between the average reflections of all physical 
surfaces in the scene is achromatic. The methods of General 
Gray-Edge, 1st Gray-Edge, and 2nd Gray-Edge filter the image 
by the order of 0, 1 and 2 respectively. J.V. Weijer et al. 
unified the Max-RGB, Gray-World, Gray-Edge and other 
methods into a computational framework, as seen in (2). The 
specific parameters are shown in Table 1. 
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p is the Minkowski norm, σ is the scale parameter of the 

Gaussian filter, n  is the derivative order, k  is the 

multiplication scalar constraint. And ( )f xσ  is defined as the 
convolution of the image f and the n-order Gaussian filter. 

Because different edges may contain different illumination 

information, Gijsenij et al. weighted the Gray-Edge [18]: 

( )
1

,( ) ( )
p pk

c x cw f f x dx ke• =∫                  (3) 

( )w f is a weighted function, and k can be added to the 
weight. This method uses mirror edge detection to calculate the 
weight. 

B. Supervised methods 
The supervised methods study the information of the known 

illumination color information, then estimate the illumination 
information of the input image by means of an obtained rule or 
model [38]. These methods are divided into two categories: 
statistics-based and machine learning-based. Statistics-based 
methods use a statistical study of the possible light colors in a 
scene and predict the illumination color of the input image with 
the statistical rule obtained. Machine learning-based methods, 
whose expected model is obtained through learning from a 
training set, predict the light color of the input image by the 
model. 

1) Gamut Mapping 
Gamut Mapping is a supervised method based on statistics, 

which was proposed by Forsyth et al. in 1990 [19]. It is based 
on the assumption that the image in the real world, for a given 
illumination, can only accept limited color [39]. If two colors 
are observed under a light, all light colors would also be 
observed between them, and in a particular light, a collection 
of all possible colors forming a convex hull could be seen. 
Figure 1 is the basic flow of Gamut Mapping. This method first 
learns the reflective surface of a standard gamut and image 
gamut as much as possible, and then maps the two, obtaining 
feasibility mapping set N, and finally choosing the optimal 
mapping to calculate the unknown illumination color. 

 
Fig1. the basic flow of Gamut Mapping 

 
Finlayson et al. used convex optimization to improve color 

domain mapping, and improved it to a higher order image [40]. 
We can obtain eight methods by filtering the 0-order, 1-order, 
and 2-order image: Gamut pixel, Gamut fx, Gamut fy, Gamut 
1grad, Gamut 2yy, Gamut 2xy, Gamut 2xx, Gamut 2grad. 

2) Color Cat and Smart Color Cat 
Color Cat (CC) is a machine learning method, which was 

proposed in 2012 by Nikola Bani´c and Sven Lonˇcari´c [24]. 
It relies on a normalized image chromaticity histogram with n3 
bins in the RGB space. Firstly, it uses principal component 
analysis (PCA) to obtain a transformation matrix M and 
coefficients c; M can be used to extract the principal 
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components h’. Then, h’ are used as features for linear 
regression with c to get [ ]0,1x ∈ , which is the normalized 
value between r1 and r2, values that were previously learned as 
likely extreme values. In the end, because of the high linear 
correlation between r and b in previously learned standard 
illumination, r and b can be calculated, and the color of 
estimated illumination is obtained. The details of Color Cat are 
shown in Table 2. 

Table 2. the process of Color Cat method 

 
Color Cat has two problems using the chromaticity 

histogram. The first is that with the increase of n, the upper 
limit of n will be smaller if fewer training sets are used. 
Second, because a large number of bins are used to obtain the 
best value of n and the principal component k during the model 
selection process, the training time is long [25]. To improve 
the effect of Color Cat, Nikola Bani´c and Sven Lonˇcari´c 
proposed Smart Color Cat (SCC) [25], which saves training 
time. Because there are high correlations between individual 
histogram bins of image red chromaticity values and the red 
chromaticity component of the ground-truth, Smart Color Cat 
uses the red chromaticity histogram as the feature of the image 
instead of a chromaticity histogram; the rest of Smart Color 
Cat is the same as Color Cat, which can be seen in Table 3. 

Table 3. the process of Smart Color Cat method 

 

C. Combinational methods 
Unsupervised methods have the advantages of little 

calculation and fast computation, and supervised methods can 
obtain a high accuracy of estimating illumination. However, 
both have an identical defect that the application scope is 
narrow. The combinational methods can improve the 
applicability of the method by integrating other methods.  
  Combinational methods can be divided into two groups: 
direct combination and guided combination [14]. Direct 
combination obtains an estimate by calculating given 
estimates, which can be further partitioned into a supervised 
combination and unsupervised combination. The unsupervised 
combination predefines the parameters, but the parameters of 
the supervised combination need to be trained. A guided 
combination uses the image semantic features to determine the 
choice of given estimates. In this paper, we focus on the 
unsupervised combination. 
  The performance of combinational methods is related to the 
selection of given estimates [41] [42]. We selected 15 methods 
to calculate given estimates: Gray-World, Max-RGB, Gray 

Edge, 1st Gray Edge, 2nd Gray Edge, weighted Gray Edge, 
Gamut fx, Gamut fy, Gamut pixel, Gamut 2yy, Gamut 2xy, 
Gamut 2xx, Gamut 2grad, Gamut 1grad. Five unsupervised 
combinations were compared with other types of methods. The 
following is an introduction to the unsupervised combinations 
that we chose [14]. 

1) Simple Averaging (SA) 
  Average the given estimates and use this as the estimated 
illumination of the input image, as shown in (4). 

  
1

E i
e i

cc
E=

= ∑                                   (4) 

2) Nearest2 (N2) 
  Calculate the Euclidean distance between the given 
estimates in pairs, take the average of the pair of estimates, and 
use the smallest distance as the estimated illumination of the 
input image, the estimate is given by (5). 
  ( ) 2e n mc c c= +   ( ) ( ), min ,n m i jd c c d c c=     (5) 

3) Nearest-N% (N-N%) 
  Similar to N2, calculate the Euclidean distance two by two, 
take the average of (100 + N)% of the pair of estimates, and 
use the smallest distance as the estimated illumination of the 
input image. The formulation is (6). 

  i
ic K

e

c
c

K
∈=

∑
                            (6)  

( ) ( ){ }min, . . , 100 %i i i jK c c K s t d c c N D= ∃ ∈ ≤ +  

4) No-N-Max (NNM) 
Calculate the distances between each given estimate and 

other estimates, find the average, then discard the N distance 
values which are the maximum of the given estimates, and use 
the average of the rest of the given estimates ic as the estimated 
illumination of the input image, the estimation is: 

  
-

1

E N i
e i

cc
E N=

=
−∑                             (7) 

5) Median (MD) 
Similar to NNM, calculate the distances between each given 

estimate and other estimates and sum them, defined as
icD∑ . 

Next, take the minimum estimate as the estimated illumination 
of the input image. 

min( )
ie cc D= ∑                             (8) 

 

III. ERROR MEASUREMENT 
There are four error metrics to measure how our chosen 

methods perform in different situations: angular error [32], 
chromaticity error [33], perceptual Euclidean distance (PED) 
[34], and reproduction angular error (RAE) [35]. 

A. Angular Error 
This error metric represents the angle deviation of the 

estimated illumination ( , , )e e e ee R G B=


and the standard 
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illumination ( , , )a a a ae R G B=


 in the RGB space, which is 
defined as: 

1cos a e
a

a e

e eE
e e

−  •
=   • 

 

 

                       (9) 

B. Chromaticity Error 
  The chromaticity error calculates the Euclidean distance of r 
and g components of the standard light and estimated 
illumination in RGB chromaticity space: 

  ( ) ( )2 2
c a e a eE r r g g= − + −                  (10) 

ar and ag are the rg components of standard illumination, 

er and eg are the rg components of the estimated illumination. 

The lower the value of cE , and the smaller the distances of 
estimated and standard illumination, the better the method will 
perform. 

C. Perceptual Euclidean Distance 
The human visual system is more sensitive to green than red 

or blue. Because of this feature, the PED evaluation criteria, 
proposed by Gijsenij [34], is a weighted Euclidean distance 
between the standard illumination ( , , )a a a ae R G B=



 and the 

estimated illumination ( , , )e e e ee R G B=


in RGB space, 
defined as: 

( ) ( ) ( )2 2 2
p r a e g a e b a eE w r r w g g w b b= − + − + −  

                                             (11) 
A lower value of pE will result in a more effective method. 

D. Reproduction Angular Error 
The RAE measures the angle between the reproduction of a 

true achromatic surface under a white light and the actual 
reproduction of an achromatic surface when an estimated 
illumination color is divided out: 

1cos
3

a e
re

a e

e e U
E

e e
−

 •
=   • 

 

 

                     (12) 

a a

e a

e eU
e e

≈ =
 

 

                                (13) 

We compared each method’s performance using RAE, and 
the median value (Med) and maximum value (Max) were 
chosen to evaluate the statistical performance. 

IV. EXPERIMENTS 
In this section, all the methods chosen were tested on two 

real-world image sets, which are the SFU image set [42] and 
the Gray Ball image set [43] established by Barnard. The 
performance is evaluated by the RAE error measures. 

The methods we compared were: (1) unsupervised methods: 
General Gray-Edge, 1st Gray-Edge, 2nd Gray-Edge, 
Gray-World, Max-RGB, Shades of Gray, and Weighted 
Gray-Edge; (2) supervised methods: Gamut fx, Gamut fy, 

Gamut pixel, Gamut 2yy, Gamut 2xy, Gamut 2xx, Gamut 
2grad, Gamut 1grad, Smart Color Cat, and Color Cat; (3) 
combinational methods: SA, NN%, N2, NNM, and MD. 

A. Results on the Gray Ball Image Set 
The Gray Ball image set has 11345 images and 15 different 

scenes. We made a total of 4051 images taken from 6 scenes as 
Open Country scene, 3462 images taken from 4 scenes Indoor 
scene, and 708 images taken from 1 scene as City scene. 
  For the unsupervised methods, we set the parameters of 
General Gray-Edge, 1st Gray-Edge, and 2nd Gray-Edge based 
on reference [27]. Smart Color Cat and Color Cat were two 
supervised methods that used a 15-fold cross test [24]. The N% 
of N-N% was set to 30% and N in the No-N-Max was 3. The 
overall performance is shown in Table 4 and Figure 2. 

Table 4. performance comparison of all methods in Open Country 
scene, City scene, and Indoor scene (Med: median RAE error Max: 

maximum RAE error)  

Med(°) Max(°) Med(°) Max(°) Med(°) Max(°)

General Gray-Edge 5.436 21.386 5.761 16.541 5.931 22.506

1st Gray-Edge 3.834 20.995 2.005 15.832 8.24 26.03

2nd Gray-Edge 4.117 22.471 2.365 15.966 8.582 26.095

Gray-World 7.911 27.498 5.718 15.304 6.258 37.162

Max-RGB 3.033 19.644 1.572 17.078 10.811 27.354

Shades of Gray 5.622 21.621 6.041 16.884 5.468 24.495

Weighted Gray-Edge 3.834 24.595 2.361 17.355 10.278 34.272

Gamut fx 4.387 31.19 4.02 19.867 8.887 27.386

Gamut fy 4.577 24.64 4.108 18.45 9.112 26.407

Gamut pixel 2.754 19.61 1.854 17.078 10.187 26.549

Gamut 2yy 5.167 27.489 5.156 27.06 9.096 30.927

Gamut 2xy 4.353 27.185 3.804 20.859 10.21 27.22

Gamut 2xx 4.442 25.016 3.744 23.725 10.032 30.739

Gamut 2grad 4.95 23.386 4.337 20.186 9.524 27.922

Gamut 1grad 4.047 22.87 3.292 18.269 9.162 25.281

SCC 2.899 29.6 2.525 15.671 5.465 26.887

CC 3.2 22.515 2.777 17.11 6.345 33.449

SA 3.934 20.722 3.042 17.316 7.761 23.327

N-N% 4.747 21.203 4.306 16.286 6.71 24.673

N2 3.943 21.738 2.169 15.899 8.447 26.063

NNM 3.842 20.381 2.949 17.162 8.231 23.745

MD 3.834 20.995 2.005 15.832 8.24 26.03

Unsupervis
ed Methods

Supervised
Methods

Combinatio
nal

Methods

Methods
Open Country City Indoor

( )0,9,0e
( )1,1,1e
( )2,1,2e

 
Table 5 shows the performance of Gamut Mapping methods 

in the Open Country scene. From both Table 4 and Figure 2(a), 
the combinational methods do not show any improvement over 
the unsupervised and supervised methods. For unsupervised 
methods, the median RAE error of Max-RGB is 3.033, which 
is in third place. However, the Gray-World performs the worst 
of all methods with a median RAE error of 7.911. For 
Gray-Edge methods, a 1-order method (1st Gray-Edge) shows 
the best result. For supervised methods, a 0-order method 
(Gamut pixel) performs best of all the methods, which is much 
better than 1-order methods (Gamut fx, Gamut fy, Gamut 
1grad) for the Gamut Mapping methods (Table 5). SCC is in 
second place overall, which is slightly better than CC. 
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Fig 2. performance ranking of the methods based on the median of 
RAE error in 3 scenes (a) Open Country (b) City  (c) Indoor 
 
Table 5. performance comparison of Gamut Mapping methods in the 
Open Country scene(Med: median RAE error  M: the mean of 
median RAE error within each category) 

 
 

Table 6. performance comparison of Gamut Mapping methods in the 
City scene(Med: median RAE error  M: the mean of median RAE 
error within each category) 

 

 

 
Table 7. performance comparison of Gamut Mapping methods in the 
Indoor scene (Med: median RAE error  M: the mean of median RAE 
error within each category) 

 
Table 6 shows the performance of Gamut Mapping methods 

in the City scene. From Figure 2(b), in addition to the General 
Gray-Edge and Shades of Gray, the remaining methods in the 
City scene have a lower RAE error median. Similar to the 
Open Country scene, the combinational methods fail to 
improve the accuracy of unsupervised methods and supervised 
methods for the City scene. In the unsupervised methods, 
Max-RGB is the best method, with the median RAE error of 
1.572; the median RAE error of Shades of Gray is 6.041, 
which is the worst of all methods. For Gray-Edge methods, a 
1-order method (1st Gray-Edge) still outperforms other 
Gray-Edge methods. Among the supervised methods, SCC and 
CC do not show superiority; For Gamut Mapping methods, 
shown in Table 6, a 0-order method (Gamut pixel) is still the 
best and is in second place of all methods, followed by 1-order 
methods (Gamut fx, Gamut fy, Gamut 1grad). 

From Table 4, the results of all methods in the Indoor scene 
are worse than in the other scenes. As shown in Figure 2(c), 
similar to the result of combinational methods in the Open 
Country scene and City scene, the combinational methods still 
have poorer performance that the other methods. A very 
interesting phenomenon in this scene is that Shades of Gray is 
ranked second Max-RGB is ranked last, which is quite 
different from the results in the previous two scenes. A 0-order 
method (General Gray-Edge) has the best result of the 
Gray-Edge methods. For supervised methods, SCC is clearly 
the best with median RAE error of 5.465, outperforming CC. 
Table 7 shows the performance of Gamut Mapping methods 
for the Indoor scene. It can be seen that 1-order methods 
(Gamut fx, Gamut fy, Gamut 1grad) have the lowest error, 
which is different from the results of the other two scenes. 

B. Results on the SFU Image Set 
The SFU image set has 321 images with 22 kinds of objects, 

and 11 different scene light sources in the laboratory. Because 
of the characteristics of the images in the SFU image set, we 
categorized it as Lab scene.  

For General Gray-Edge, 1st Gray-Edge, 2nd Gray-Edge, we 
set the parameters as summarized in Table 8 [35] [19]. 
Weighted Gray-Edge had the same parameters as in the Gray 
Ball image set. For Smart Color Cat and Color Cat, we used a 
2-fold cross test. In the combinational methods, N% is 30% in 
the N-N% and N is 3 in the No-N-Max method. 
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Table 8. performance comparison of all methods in Lab scene 
(Med: median RAE error Max: maximum RAE error) 

Methods Med(°) Max(°)

General Gray-Edge 3.369 30.077

1st Gray-Edge 3.976 31.683

2nd Gray-Edge 3.843 40.843

Gray-World 7.492 36.975

Max-RGB 7.444 36.317

Shades of Gray 4.249 30.864

Weighted Gray-Edge 3.862 44.879

Gamut fx 4.068 37.705

Gamut fy 4.403 35.559

Gamut pixel 3.644 29.046

Gamut 2yy 4.708 36.194

Gamut 2xy 4.052 42.118

Gamut 2xx 4.759 28.449

Gamut 2grad 4.709 30.445

Gamut 1grad 3.989 28.375

SCC 9.965 25.38

CC 9.446 32.337

SA 3.611 28.705

N-N% 3.467 29.046

N2 3.467 29.046

NNM 3.406 28.878

MD 3.989 28.375

Unsupervis
ed Methods

Supervised
Methods

Combinatio
nal

Methods

( )4,14,1e
( )10,15,2e

( )0,9,0e

 
 

 
Fig 3. performance ranking of the methods based on the median of 
RAE error in the Lab scene 

Table 8 and Figure 3 show the overall performance in the 
Lab scene, and Table 9 shows the performance of Gamut 
Mapping methods in the Lab scene. It can be seen in Figure 3 
that, as a group, the ranking of combinational methods has 
notable improvement. Except for the methods in the last 4 bits, 
the median error of the other methods is not significant. 
Among the unsupervised methods, General Gray-Edge (0 order) 
is clearly the best of all methods with a median RAE error of 
3.369 (Table 8) and a maximum RAE error of 30.077 (Table 
8). In contrast, Gray-World and Max-RGB do not perform well. 
For the Gamut Mapping of supervised methods, as shown in 
Table 9, a 0-order method (Gamut pixel) is best and 2-order 
methods (Gamut 2yy, Gamut 2xy, Gamut 2xx, Gamut 2grad) 
are the worst. SCC and CC performance are significantly 
different than in the previous three scenes. This is probably 
because there are only 321 images in the set and the 
components of r and b in the rb chromaticity space are lower, 

which can be seen from Figure 4: (a) 98.98%, (b) 95.66%, (c) 
99.24%, (d) 95.25%. 
Table 9. Performance comparison of Gamut Mapping methods in the 
Lab scene(Med: median RAE error  M: the mean of median RAE 
error within each category) 

 
 

 
(a)                      (b) 

 
(c)                      (d) 

Fig 4. the correlation analysis of the ground-truth illuminations 
 in the rb chromaticity space (a) Open Country (b) Indoor (c) City    
(d) Lab 
 

 

V. CONCLUSION 
In this paper, we have presented an experimental evaluation 

of several illumination estimation methods in various scenes. 
The goal was to compare the performance of those methods in 
specific scenes and obtain suggestions for selecting methods 
for different scenes. 
  Firstly, the results show that Smart Color Cat and Color Cat 
have better performance in the Open Country and Indoor 
scenes. So, if the image belonged to the Open Country scene 
and City scene, it would be suitable to choose one of these 
methods under the premise that there are plenty of images for 
training. For the Open Country and City scenes, Max-RGB or 
Gamut pixel would be a fine choice. However, General 
Gray-Edge or Shades of Gray can be used for the Indoor scene. 
The combinational methods do not show any superiority in 
these scenes. 
  A second conclusion can be drawn that in the Lab scene, 
General Gray-Edge would be an appropriate choice because 
Smart Color Cat and Color Cat are hampered. Combinational 
methods work better than other methods in the Lab scene. 
  Finally, according to the results of the Gray-Edge methods 
and Gamut Mapping methods, for the methods that are high 
order, if the scene image is like the Open Country or City 
scenes, 1-order methods are the best choice; in contrast, 
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0-order methods are better when the scene image is similar to 
the Indoor or Lab scenes. 
 

References 
 
[1]  Foster, D. H., “Color constancy,” VISION RESEARCH, vol. 51, 

pp.674-700, 2011. 
[2]  Funt, B., F. Ciurea, and J. McCann, “Retinex in MATLAB (TM),” J 

ELECTRON IMAGING, vol.13, pp.48-57, 2004. 
[3]  Land, E. H., “Recent advances in retinex theory and some implications 

for cortical computations: color vision and the natural image,” 
Proceedings of the National Academy of Sciences of the United States 
of America, vol.80, pp.5163-5169, 1983. 

[4]  Li, D., Y. Zhang, P. Wen, and L. Bai, “A Retinex Method for Image 
Enhancement Based on Recursive Bilateral Filtering,” In 11th 
International Conference on Computational Intelligence and Security, 
pp 154-157. 2015. 

[5]  Petro, A., C. Sbert, and J. Morel, “Multiscale Retinex,” Image 
Processing On Line, vol.4, pp.71-88, 2014. 

[6]  Mikic, I. P. C. Cosman, Name G T Kogut, “Moving shadow and object 
detection in traffic scenes,” In Proceedings of the International 
Conference on Pattern Recognition. IEEE, pp 321-324, 2000. 

[7]  van de Sande, K., T. Gevers, C. Snoek, I. C. Society, “Evaluating Color 
Descriptors for Object and Scene Recognition,” IEEE T PATTERN 
ANAL, vol.32, pp.1582-1596, 2010. 

[8]  S. Huang, T., S. Mehrotra, K. Ramchandran, “Multimedia Analysis and 
Retrieval System (MARS) Project,” in Proceedings of the 33rd Annual 
Clinic on Library Application of Data Processing - Digital Image 
Access and Retrieval, University of Illinois at Urbana-Champaign, 
pp.553-554, 1996. 

[9]  Rui, Y., T. S. Huang, S. Mehrotra, “Content-based image retrieval with 
relevance feedback in MARS,” in Proceedings of IEEE Int. Conf. on 
Image Processing, Santa Barbara, California, pp.26-29, 1997. 

[10]  van de Sande, K. E. A., T. Gevers, C. G. M., “Snoek Evaluating Color 
Descriptors for Object and Scene Recognition,” IEEE T PATTERN 
ANAL , vol.32, pp.1582-1596, 2010. 

[11]  Hordley, S. D., “Scene illuminant estimation: Past, present, and 
future.,” COLOR RESEARCH AND APPLICATION, vol. 31, 
pp.303-314, 2006. 

[12]  Gijsenij, A., T. Gevers, J. van de Weijer, “Computational Color 
Constancy: Survey and Experiments,” IEEE TRANSACTIONS ON 
IMAGE PROCESSING, vol. 20, pp.2475-2489, 2011. 

[13]  Xingsheng Yuan, “Research on Color Constancy Computation and Its 
Application on Machine Vision,” Changsha: National University of 
Defense Technology, 2014. 

[14]  Li, B., W. Xiong, W. Hu, B. Funt, I. S. P. Society, “Evaluating 
Combinational Illumination Estimation Methods on Real-World 
Images,” IEEE Transactions on Image Processing, vol.23, 
pp.1194-1209, 2014. 

[15]  J. von Kries, “Influence of adaptation on the effects produced by 
luminous stimuli,” in Sources of Color Vision, D. MacAdam, Ed. MIT 
Press, pp.109–119, 1970 . 

[16]  Zheng Tang, Hongzhe Liu, Jiazheng Yuan, “Advances Research on 
Color Constancy Computation under Single Illuminant,” Computer 
science, vol.43, pp.12-18, 2016. 

[17]  Land, E. H., “The retinex theory of color vision,” Scientific American, 
vol.237, pp.108-128, 1977. 

[18]  Buchsbaum, G., “A spatial processor model for object colour 
perception,” Journal of the Franklin Institute, vol.310, pp.1-26, 1980. 

[19]  Van de Weijer, J., T. Gevers, A. Gijsenij, “Edge-based color 
constancy,” IEEE TRANSACTIONS ON IMAGE PROCESSING, 
vol.16, pp.2207-2214, 2007. 

[20]  Gijsenij, A., T. Gevers, and J. van de Weijer, “Generalized Gamut 
Mapping using Image Derivative Structures for Color Constancy,” 
INTERNATIONAL JOURNAL OF COMPUTER VISION, vol. 86, 
pp.127-139, 2010. 

[21]  Finlayson, G. D., S. D. Hordley, P. M. Hubel, “Color by Correlation: A 
Simple, Unifying Framework for Color Constancy,” IEEE Trans. 
Pattern Anal. Mach. Intell, vol.23, pp.1209-1221, 2001. 

[22]  Brainard, D. H., W. T. Freeman, “Bayesian color constancy,” 
JOURNAL OF VISION, vol.14, pp.1393-1411, 1997. 

[23]  R. Rosenberg, C., T. P. Minka, A. Ladsariya, “Bayesian Color 
Constancy with Non-Gaussian Models,” in Neural Information 
Processing Systems, 2003. 

[24]  Banic, N., S. Loncaric, “Color Cat: Remembering Colors for 
Illumination Estimation,” IEEE Signal Processing Letters, vol.22, 
pp.651-655, 2015. 

[25]  Banic, N. and S. Loncaric, “Using the red chromaticity for illumination 
estimation,” in 2015 9th International Symposium, pp.131-136, 2015. 

[26]  L.TÖRÖK, ÁKOS ZARÁNDY, “CNN based color constancy method,” 
in Proceedings of the 7th IEEE International Workshop Frankfurt, 
pp.22-24, 2002. 

[27]  C. Cardei, V. and B. Funt, “Committee-Based Color Constancy,” in 
IS&T/SID's Color Imaging Conference, pp.311-313, 1999. 

[28]  Bianco. S, Ciocca.G, Cusano.C, Schettini.R, “Automatic color 
constancy algorithm selection and combination,” PATTERN 
RECOGNITION, vol.43, pp.695-705, 2010. 

[29]  Li, B., D. Xu, C. Lang, “Colour constancy based on texture similarity 
for natural images,” COLOR TECHNOL, vol.125, pp.328-333, 2009. 

[30]  Bianco, S., G. Ciocca, C. Cusano, R. Schettini, “Automatic color 
constancy method selection and combination,” PATTERN RECOGN, 
vol.43, pp.695-705, 2010. 

[31]  Wu, M., J. Sun, J. Zhou, G. Xue, “Color constancy based on texture 
pyramid matching and regularized local regression,” JOURNAL OF 
THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE 
AND VISION, vol.27, pp.2097-2105, 2010. 

[32]  Barnard, K., V. Cardei, B. Funt, “A comparison of computational color 
constancy methods - Part I: Methodology and experiments with 
synthesized data,” IEEE TIP, vol.11, pp.972-983, 2002. 

[33]  Gijsenij, A., T. Gevers, M. P. Lucassen, “Perceptual analysis of distance 
measures for color constancy methods,” Journal of the Optical Society 
of America. A, Optics, image science, and vision, vol.26, 
pp.2243-2256, 2009. 

[34]  Gijsenij, A., T. Gevers, M. P. Lucassen, “A Perceptual Comparison of 
Distance Measures for Color Constancy Methods,” in Proceedings of 
the 10th European Conference on Computer Vision: Part I. 
Springer-Verlag, Marseille, France, pp 208-221, 2008. 

[35]  Finlayson, G., R. Zakizadeh, “Reproduction Angular Error: An 
Improved Performance Metric for Illuminant Estimation,” in 
Proceedings of the British Machine Vision Conference, 2014. 

[36]  Bianco, Simone Schettini, Raimondo, “Computational color 
constancy,” 3rd European Workshop on Visual Information 
Processing, EUVIP 2011 - Final Program, pp.1-7,2011.  

[37]  Bing Li, “Research on Color Constancy Computation,” Beijing: Beijing 
Jiaotong University, 2009. 

[38]  Martinez-Verdu, F., M. J. Luque, J. Malo, A. Felipe, J. M. Artigas, 
“Implementations of a novel method for colour constancy,” Vision 
research, vol.37, pp.1829-1844, 1997. 

[39]  Gijsenij, A., T. Gevers, J. van de Weijer, “Generalized Gamut Mapping 
using Image Derivative Structures for Color Constancy,” 
INTERNATIONAL JOURNAL OF COMPUTER VISION, vol.86, 
pp.127-139, 2010. 

[40]  Bianco, S., F. Gasparini, R. Schettini, “Consensus-based framework for 
illuminant chromaticity estimation,” Journal of Electronic Imaging, 
vol.17, 2008. 

[41]  Barnard, K., L. Martin, B. Funt, A. Coath, “A data set for color 
research,” Color Research and Application, vol.27, pp.147-151, 2002. 

[42]  Ciurea, F., B. Funt, “A Large Image Database for Color Constancy 
Research,” in Proceedings of the Imaging Science and Technology 
Eleventh Color Imaging Conference, pp.160-164, 2003. 

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 12, 2018

ISSN: 1998-4464 41




