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Abstract—Gaussian-type quadrature rules for oscillatory integrand
functions are presented. The weights and nodes depend on the
frequency of the problem and they are constructed by following the
exponential fitting theory. The error analysis proves that the expo-
nentially fitted Gaussian rules are more accurate than the classical
Gaussian rules when oscillatory functions are treated. The numerical
approximation to Volterra integral equations with oscillatory solu-
tion through these formulas is presented. Some numerical tests are
reported.
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I. INTRODUCTION

In this paper we illustrate quadrature rules specially tuned
on oscillatory integrand functions. These integrals arise, for ex-
ample, in the numerical solution of Volterra integral equations
(VIEs) with periodic solution, which model a considerable
variety of periodic phenomena, as for example seasonal bio-
logical phenomena [1] and the response of a nonlinear circuit
to a periodic input [74]–[76]. Further examples are furnished
in [11], [22], [26], [63], [72].

A successful strategy in the numerical treatment of oscilla-
tory functions has been furnished by the theory of exponential
fitting, introduced in [65] (see also the monograph [66]). As
a matter of fact several methods for a number of different
problems has been proposed so far, from the application to
ordinary differential problems [59], [62], [68], [73], to the
integral equations [19], [21], [24]–[26], [67], to fractional
differential equations [14], to partial differential equations
[19], [20], [56], [61] also by means of a special modification
of IMEX methods (compare e.g. [2], [3], [29]–[31]).

Following the exponential fitting theory, in [25] authors
proposed a Simpson-type formula, called ef-Simpson rule,
for integrals over bounded intervals, which is exact on the
set of functions {1, cos(ωs), sin(ωs)}. As a consequence, the
weights of this formula depend on the frequency ω. This
formula has the same order of the classical Simpson rule, but
has a smaller error constant when periodic integrand functions
are treated. Here we describe how to construct more accurate
quadrature rules, without increasing the computational cost. In
particular we consider exponential fitting quadrature formulas
of Gaussian type and analyze the error. We will see that the
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order is the same as the classical Gauss-Legendre formula, but
the error is smaller for oscillatory integrand functions. The first
Gauss rule for oscillatory integrands, derived by means of the
exponential fitting approach, has been proposed in [67].

These ef-quadrature rules represent a powerful tool to con-
struct highly accurate numerical method for Volterra integral
equations (VIEs) with periodic or oscillatory solution. In the
sequel, we describe how to derive ef direct quadrature (DQ)
methods based on such formulas and analyze the convergence.

The paper is organized as follows. In Sec. 3 and 4 we
construct and analyze ef-Gaussian quadrature rules for inte-
grals over a bounded and unbounded intervals, respectively.
In Sec. 5, we show the performances of the ef-DQ methods
based on such formulas, on some significative test examples.
Last section contains some concluding remarks and some ideas
on future development of the present work.

II. QUADRATURE RULES ON BOUNDED INTERVAL

In this section we illustrate the construction and analysis of
a family of Gaussian quadrature formulas for an integral on a
bounded interval, which are specially tuned for an oscillatory
integrand functions. A former example of a similar type of
formulas has been derived in [24] and in [34]. In particular
we construct a quadrature rule for the integral

I[g](X) =

∫ X+h

X−h

g(x)dx,

where X > 0 and h > 0, which is exact on the fitting space

B := {xke(α±iω)x , k = 0, . . . , P − 1}. (1)

The quadrature formula is of type

Q[g](X) := h
P−1∑
k=0

akg(X + ξkh) (2)

where the weights and nodes

ak = ak(αh, ωh), ξk = ξk(αh, ωh), (3)

k = 0, 1, . . . , P − 1, will be derived through the exponential
fitting theory [65], [66]. To simplify the notation, we will skip
the dependence of weights and nodes on αh and ωh. Following
the exponential fitting formalism introduced by Ixaru, we
introduce the functional L:

L[h,a, ξ]g(X) :=

∫ X+h

X−h

g(s)ds− h
P−1∑
k=0

akg(X + ξkh)),
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where a = (a0, . . . , aP−1) and ξ = (ξ0, . . . , ξP−1) and ask
that it annihilates on the fitting space. Since

L[h,a, ξ]Xke(α+iω)X and L[h,a, ξ]Xke(α−iω)X

are complex conjugate, to annihilate both it is sufficient to
impose

L[h,a, ξ]Xke(α+iω)X = 0. (4)

Functions L[h,a, ξ]Xke(α+iω)X can be expressed in the com-
pact form:

L[h,a, ξ]e(α+iω)X = ℓ0e
(α+iω)X ,

L[h,a, ξ]Xe(α+iω)X = (ℓ0X + ℓ1)e
(α+iω)X ,

L[h,a, ξ]X2e(α+iω)X = (ℓ0X
2 + 2ℓ1X + ℓ2)e

(α+iω)X ,

L[h,a, ξ]X3e(α+iω)X =(
ℓ0X

3 + 3ℓ1X
2 + 3ℓ2X + ℓ3

)
e(α+iω)X ,

. . .

where ℓk are complex coefficients depending on u = αh, z =
ωh, ak, ξk, k = 0, . . . , P − 1. Thus, the quadrature rule (2) is
exact on the fitting space B if and only if

ℓk = 0, ℓ = 0, . . . , P − 1, (5)

i.e. if the real and the imaginary parts of ℓk vanish. The
system (5) is linear with respect to the weights {ak}k and
non linear with respect to the nodes {ξk}k, thus the exact
solution cannot be derived in a closed form and a numerical
method is necessary.

The following theorem analyzes the error of the quadrature
formula (2):

E[g](X) :=

∫ X+h

X−h

g(s)ds−Q[g](X).

Theorem 2.1: [21] Let assume that g(x) is differentiable
indefinitely many times on [X−h,X+h]. The error from the
quadrature formula Q[g] (2) with weights and nodes given by
the system (5) is

E[g](X) =
∞∑
k=0

h2P+1+kTkD
k((D − α)2 + ω2)P g(X), (6)

where D is the derivative operator and {Tk}k depend on u =
αh, z = ωh, and on {ak, ξk}P−1

k=0 . In particular

T0 =
2−

∑P−1
k=0 ak

(u2 + z2)P

T1 =

2Puz2P−2
(
2−

∑P−1
k=0 ak

)
− (u2 + z2)P

∑P−1
k=0 akξk

(u2 + z2)2P

A. Composite quadrature formula

We introduce now a composite quadrature formula based
on the rule (2), to approximate the integral

I[g] =

∫ b

a

g(s)ds.

We take the equally spaced points a = t0 < t1 < ... < tm = b,
with h = tj+1 − tj = b−a

m . By applying the quadrature for-
mula (2) on each subinterval [tj , tj+1], we get the composite
formula

I[g] ≈ Qm[g] := h

m−1∑
j=0

P−1∑
k=0

ãkg(tj + ξ̃kh), (7)

with

ãk =
1

2
ak, ξ̃k =

1

2
+

1

2
ξk, k = 0, . . . , P − 1.

If g ∈ C2P ([a, b]), it results that the error Em[g] = I[g] −
Qm[g] satisfy the following inequality

|Em[g]| ≤ C(b− a)h2P , (8)

where C depends on ||((D − α)2 + ω2)P g||∞.

III. QUADRATURE RULES ON UNBOUNDED INTERVALS

We now consider quadrature formulae for integrals of
oscillatory functions over unbounded intervals. Let f(x) be
a function of the form

f(x) = f1(x) sin(ωx) + f2(x) cos(ωx), (9)

where the coefficients f1(x) and f2(x) are assumed smooth
enough to be well approximated by polynomials.

Then we consider quadrature formulae of the form

I =

∫ ∞

0

e−xf(x)dx ≃ IN =

N∑
k=1

wkf(xk). (10)

We associate to the quadrature formula (10) the functional

L[f(x),a] =
∫ ∞

0

e−xf(x)dx−
N∑

k=1

, wkf(xk),

where a = [w1,w2, ..., wN , x1, x2, ..., xN ] is a vector with 2N
components which collects the weights and the nodes, and
impose its exactness on the fitting space

F = {xn−1e±µx, n = 1, 2, ..., N, }, (11)

as described in [44], [46], [48] for unbounded integration
interval, and [67] for bounded integration interval.

Let us define the set of functions ηm(Z), m = −1, 0, 1, 2, ...
are as follows (see for instance [43], [66]):

η−1(Z) =


cos(|Z|1/2) if Z ≤ 0

cosh(Z1/2) if Z > 0

, (12)

η0(Z) =


sin(|Z|1/2)/|Z|1/2 if Z < 0

1 if Z = 0

sinh(Z1/2)/Z1/2 if Z > 0

(13)

and

ηm(Z) =
1

Z
[ηm−2(Z)− (2m− 1)ηm−1(Z)], m ≥ 1 (14)
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if Z ̸= 0, with following values at Z = 0:

ηm(0) =
1

(2m+ 1)!!
, m ≥ 1. (15)

By imposing the exactness on the fitting space (11) we then
obtain the nonlinear system

N∑
k=1

wkx
n−1
k

η⌊n−2
2 ⌋(x

2
kZ)

η⌊n−2
2 ⌋(0)

=Mn−1(Z), n = 1, . . . , 2N,

(16)
where

Mn(Z) =
n!

(1− Z)⌈
n+1
2 ⌉ (17)

with Z = µ2 = −ω2.
Then the Exponentially Fitted (EF) Gauss-Laguerre quadra-

ture formula is of the form (10), with weights and nodes deter-
mined as solutions of the nonlinear system (16). Such formula
reduces to classical Gauss-Laguerre quadrature formula as the
frequency ω tends to zero. Moreover the error of such formula
has the asymptotic decay

|I − IN | = O(ω−N−1), ω → ∞. (18)

Then the EF Gauss-Laguerre quadrature rules have the same
optimal asymptotic order of steepest descent methods in [70]
and complex Gaussian quadrature rules in [4], also maintaining
a good accuracy for small values of ω, as they naturally tend
to the corresponding classical Gauss-Laguerre formulae for
ω → 0.

In [44] it was proved that the nonlinear system (16) can be
solved by splitting it into a linear system for the weights w =
(w1, . . . , wN )T and a nonlinear system for the nodes. Also
the Jacobian matrix of the Newton iterative method applied
to such nonlinear system has been computed by using the
differentiation properties of the ηm(Z) functions [43], [66].

The above mentioned systems can be affected by ill-
conditioning as as N and/or ω increase, and the choice of the
initial approximation for Newton’s iterative method is a quite
delicate task, in order to guarantee the convergence of the iter-
ative process. In order to overcome these problems Modified
EF (MEF) Gauss-Laguerre formulae have been proposed in
[46], which share the property of optimal behaviour for both
small and large ω values with the standard EF rules, while
reducing the computation of the nodes to the solution of a
single nonlinear equation, independently of the number N of
quadrature nodes, and also reducing the ill conditioning issues
related to the standard EF procedure as N and ω increase.

The MEF Gauss-Laguerre quadrature rule is defined by

I ≃ IN =
N∑
i=1

(aif1(xi) + bif2(xi)) (19)

where the functions f1 and f2 are given in (9). The frequency
dependent nodes xi = xi(ω), i = 1, ..., N , are defined as the
smallest N positive solutions of the nonlinear equation

fN (x, ω) = 0, (20)

where

fN (x, ω) =

N∑
n=0

CN
n (Z)xn

η⌊n−1
2 ⌋(x

2Z)

η⌊n−1
2 ⌋(0)

, Z = −ω2, (21)

where CN (Z) ≡ 1, and C0(Z), ..., CN−1(Z) are computed as
solution of the linear system

N−1∑
j=0

Mi+j(Z)C
N
j (Z) = −MN+i(Z), (22)

for i = 0, ..., N − 1, with the moments Mn(Z) defined in
(17). Moreover ai(ω), bi(ω) are frequency-dependent weights,
computed as

ai(ω) =

∫ ∞

0

e−xli(x) cos(ωx)dx,

bi(ω) =

∫ ∞

0

e−xli(x) sin(ωx)dx,

where li(x) is the i − th Lagrange fundamental polynomial
with respect to the abscissae xi, i = 1, ..., N. The solvability of
the nonlinear equation (20) has been analyzed in [46], together
with the choice of a suitable initial approximation for the
Newton iterative process, which allows to construct formulae
with a larger number of nodes with respect to EF Gauss-
Laguerre formulae. Moreover the error of the MEF Gauss-
Laguerre quadrature formulae has the same asymptotic decay
as in (18).
In order to show the effectiveness of the proposed exponen-
tially fitted formulae, we report in Figure 1 the results obtained
by classical, EF and MEF Gauss-Laguerre quadrature rules on
the problem∫ ∞

0

e−x cos[(ω + 1)x]dx =
1

1 + (1 + ω)2
. (23)

The integrand f(x) = cos[(ω + 1)x] is of form (9) with
f1(x) = sin(x) and f2(x) = cos(x). We moreover suppose
not to know the frequency exactly, i.e. by considering the exact
frequency given by ω = (1+δ)ω̄, and we derive the MEF and
EF methods in correspondence of the frequency ω̄. We plot
in Figure 1 the error obtained on problem (23) with different
values of δ. We observe as the MEF error is in any case smaller
than the classical error, and behaves in the same way as the
EF error.
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Fig. 1. The ω̄ dependence of the errors on problem (23) with N = 6
and ω = (1 + δ)ω̄.
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IV. NUMERICAL TREATMENT OF VOLTERRA INTEGRAL
EQUATIONS WITH PERIODIC SOLUTION

We focus our attention on VIEs with periodic solution of
the type

y(x) = f(x) +

∫ x

−∞
k(x− s)y(s)ds, x ∈ [0, xend]

y(x) = ψ(x), −∞ < x ≤ 0,
(24)

where k ∈ L1(IR+), f is continuous and periodic on [0, xend],
ψ is continuous and bounded on IR−. Main results on the
existence and uniqueness of a periodic solution of (24) are
given in [11], [12]. The first attempts to the numerical solution
of eq. (24) are given by [6], [11], [12] For an overview on the
numerical treatment of VIEs of general type compare [10],
[13].

Consider the uniform mesh Ih := {x0 = 0 < x1 < · · · <
xN = xend}, with xn = nh, ∀n, h = xend/N . The equation
(24) at x = xn takes the form

y(xn) = f(xn) + (Iψ)(xn) +

∫ xn

0

k(xn − s)y(s)ds, (25)

where (Iψ)(x) is the known part of the integral:

(Iψ)(x) =

∫ 0

−∞
k(x− s)ψ(s)ds, x ∈ [0, xn].

If we cannot evaluate (Iψ)(x) analytically, we may approxi-
mate it numerically without compromising the accuracy of the
overall method. As a matter of fact, we may adopt a technique
similar to that applied in [33]. Since the integrand k(x−s)y(s)
vanishes as s → −∞, we can approximate the integration
interval ] − ∞, 0] with a bounded one ] − M(h), 0], where
M(h) can be a priori estimated, in such a way that the order
of convergence of the DQ method is preserved. Further details
may be found in [21], [25], [26].

By applying the composite quadrature rule (7) to (25), we
get:

y(xn) ≈ f(xn) + (Iψ)(xn)

+ h
n−1∑
j=0

P−1∑
i=0

ãik(xn−j − ξ̃ih)y(xj + ξ̃ih) (26)

n = 1, . . . , N . Then we adopt a suitable interpolation tech-
nique to approximate y(xj + ξ̃ih):

y(xj + ξ̃ih) ≈ P(xj + ξ̃ih), (27)

where P is the either algebraic or ef interpolating polynomial
constructed on the points:

(xj+l, yj+l), l = −r−, ..., r+, (28)

with yn ≈ y(xn), ∀n. This idea follows the lines of what has
been done in [23] in the context of double delay VIEs. By
using (27) we have:

yn = f(xn) + (Iψ)(xn)+

h
n−1∑
j=0

P−1∑
i=0

ãik(xn−j − ξ̃ih)P(xj + ξ̃ih),

n = 1, ..., N . Both in the case of algebraic and ef interpolation,
we can write

P(xj + sh) =

r+∑
l=−r−

pl(s)yj+l (29)

where pl(s) does not depend on xj but only on r−, r+.
Therefore we have:

yn = f(xn) + (Iψ)(xn)+

h
n−1∑
j=0

P−1∑
i=0

ãik(xn−j − ξ̃ih)

r+∑
l=−r−

pl(ξ̃i)yj+l, (30)

n = 1, ..., N . We impose r+ ≤ 1 to avoid the use of future
mesh points. The method is explicit for r+ = 0, and implicit
for r+ = 1.

The order of convergence is the same, using both the alge-
braic interpolation and the exponentially fitting interpolation
[21], nevertheless the error constant is smaller in the latter
case when periodic problems are treated.

The following theorem analyzes the convergence of the
method.

Theorem 4.1: Assume that the equation (24) satisfies the
hypotheses for the existence and uniqueness of solution, and
assume that y(x) ∈ C2P ([0, xend]). Let {yn}Nn=1 be the
numerical solution of (24) obtained by the ef-DQ method (30)
with r++ r− = 2P − 1, where the polynomial P is either the
Lagrange polynomial or the ef-based interpolation polynomial.
Then, the error en = y(xn)− yn satisfies:

max
1≤n≤N

|en| = O(h2P ) as h→ 0.

V. NUMERICAL EXAMPLES

In this section we illustrate the performances of the ef-
DQ method (30) on some test examples. The numerical
experiments have been carried out by Matlabr. The nodes
{ξi}i have been computed by solving the nonlinear system
by Matlab routine fsolve with maximal accuracy. Now we
consider the problem of type (24), with X = 5,

k(x) = eᾱx,

and f(x) is such that

y(x) = x3 cos(ω̄x),

provided the same expression is adopted for ψ(x). We take
ᾱ = −1.
We apply the efDQ method (30) with P = 3 and r− =
5, r+ = 0, which is convergent of order six. We plotted in
Fig. 2 the error of the efDQ method and of the classical
DQ method of the same order six. We observe that the error
of the efDQ method is considerably smaller, at the same
computational cost.
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Fig. 2. Error versus number of steps of the classical DQ method and by
efDQ method (30) on the test problem 2, with ω̄ = 10 on the top and ω̄ at
the bottom. Logarithmic scale on the x- and y-axis.

VI. CONCLUSIONS

We described a specially tuned approach to quadrature
problems involving oscillatory problems. The parameters of
the method depend on an estimate of the frequency of the
integrand functions, by means of the exponential fitting tech-
nique. The proposed methods find an effective application to
periodic or oscillatory evolutionary problems, as VIEs with
periodic solution, as the theoretical and experimental analysis
proved.

The research is open to many further developments. An
issue to be addressed regards the numerical stability of ef-DQ
methods, which should be analyzed starting from the basic test
equation from the literature [5], [13], [36], [69], [71], [77],
[78], and which may take advantage from some techniques
used for ordinary differential equations, as for example the
Runge-Kutta, the quadratic and the algebraic stability [7],
[8], [27], [28], [37], [39], [40], [79]. Moreover new specially
tuned methods can be formulated, as for example multistep
collocation methods (see e.g. [16]–[18], [41], [45]) on a
suitable functional basis, considering as a starting point the
one-step collocation methods proposed in [11], [12]. More
efficient numerical methods can also be obtained by ecploiting
a parallel environment [35], [42], [47]. Another possibility to
explore new methods is to consider a special version of general
linear methods [7]–[9], [15], [27], [32], [49]–[55], [57], [58],

[60], [79].
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