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Abstract—In this paper, the principal concept of image denoising 

in wavelet domain is discussed. For this purpose, three thresholding 

approaches known as VisuShrink, SureShrink and NeighBlock are 

employed, three noise power estimators named Median absolute 

deviation, Quantile median and Marginal variance are used and four 

thresholding rules called hard, soft, Exp. and Garrot are applied. All 

methods take effort for denoising in transform domain. As a matter of 

fact, sparsity of coefficients, in addition to the noise power estimator 

efficiency, are the key roles for every thresholding method. So, we 

focus on the capability for noise power estimation to discover the 

most optimal method for image denoising in wavelet domain. Being 

consistent in estimating the noise power in every wavelet 

decomposition level, it was believed that Median absolute deviation 

was the best method. To challenge this idea, outcome of mentioned 

method and other noise power estimators is to be compared. Finally, 

some packages will be proposed that each of them introduce methods 

and algorithms that act together optimally. The performance 

evaluation is via two points of view, Speckle noise reduction and 

image quality preservation. The most optimal package which 

outperforms others is using Garrot thresholding rule and Median 

absolute deviation in VisuSrink denoising method. 

 

Keywords—Wavelet transform, Noise power estimation, 

Thresholding, Denoising. 

I. INTRODUCTION 

eal world data rarely comes clean or noise-free though the 

noise might be negligible under high signal to noise ratio 

(SNR). Having destructive effects, many models such as 

Gaussian [1], speckle [2] and poisson [3] were proposed for 

noise identification. The term "signal denoising" is general but 

it is usually devoted to the recovery of a signal that has been 

contaminated by additive white Gaussian noise (AWGN) 

rather than other types (eg. non-additive, poisson and speckle).  

Due to overcoming the noise draw backs, many approaches 

either in spatial domain [4] or frequency domain [5], were 

proposed. Median and Wiener filters [6]-[10] are two popular 

method in signal domain but fail to preserve the image details. 

In frequency domain, wavelet transform is widely used for data 

denoising. According to the fact that it simplifies signal 
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statistics, the wavelet transform is so popular between all 

transforms. 

As a general rule, wavelet threshold based denoising 

techniques perform well in presence of additive noise [11]-

[14]. The orthogonality of discrete wavelet transform (DWT) 

leads to the feature that the white noise transformed into white 

noise [11]-[14] which means spreading. For each 

decomposition level  , the DWT produces four wavelet sub-

images:  dvhA ,,, , where 


A is the approximation or coarse 

coefficient and  dvh ,, are the horizontal, vertical, diagonal 

details coefficients. 

It is known that one important characteristic of noise is 

adding high-frequency components to the original signal. As 

approximation coefficients ( A ) represent "low-frequency" 

terms, they are less affected by noise. Hence, thresholding 

methods are usually applied to the detail coefficients.  

Two properties of the discrete wavelet transform are: 

1. Sparsity, that means a few large coefficients dominate 

the representation.  

2. Decorrelation, that means the coefficients tend to be 

much less correlated than the original data.  

So, the wavelet coefficients can be processed independently 

(decorrelation property) and small valued coefficients are 

removed (sparsity) [15].  

There are several nonlinear thresholding methods [15], [16] 

which are used in transform domain. In general, all wavelet 

based thresholding methods replace noisy coefficients with 

zeros according to a fixed value as the threshold, and keeping 

the others. The performance of this nonlinear process known 

as wavelet shrinkage depends on the threshold value [5], [17]. 

So, the noise power 
n̂  in each decomposition level should be 

estimated at first [18], [19], then the threshold value   

obtained.  

In this paper the performance of three popular denoising 

algorithms named VisuShrink, SureShrink and NeighBlock are 

compared according to visual evaluation as well as three image 

assessment parameters. In this regard, Median absolute 

deviation, Quantile median, Marginal variance are used for 

noise power estimation and hard, soft, Exp., Garrot are applied 

as thresholding rules. 

The organization of this paper is as follows. Section 2 

briefly explains the thresholding theory, thresholding rules, 

noise power estimators and threshold-based denoising 

algorithms in any transform domain such as DWT. Section 3 

shows the experimental results belong to three well known 
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methods under employing various noise power estimators and 

different thresholding rules. Finally, Section 4 is dedicated to 

conclusion and discussion. 

II. WAWELET THRESHOLDING 

The wavelet based thresholding methods involve three 

steps: 1. Computing the forward transform coefficients of 

noisy image, 2. Filtering the coefficients by means of a 

thresholding process, 3. Using the inverse transform to retrieve 

the denoised image, see Fig. 1. 

A. Problem Formulation 

It is proved that speckle which degrades any images of 

coherent systems like ultrasound and radar can be modeled as 

a multiplicative noise [2], [20], [21], 

 

                                          EII r                                       (1) 

 

where I  and 
rI are the noisy and noise free images and E  is 

the noise component having real and imaginary parts 

independent, zero mean and identically distributed [2], [20]. In 

order to convert the multiplicative noise model into additive, 

the homomorphic framework processing which means 

applying the algorithm function at first and exponential 

function at the end is used. Hence, the additive noise can be 

assumed approximately Gaussian [22]-[25]. 

 

                                        NFY                                      (2) 

 

where IY log  is the noisy data, rIF log  is the clean or noise 

free data and EN log  is  AWGN. For every decomposition 

level  , the wavelet transform of Eq. (2) would be: 

 

                                       
 nfy                                      (3) 

 

where y , 
f  and n  represent noisy and noise free data and 

AWGN in wavelet transform respectively. 

B. Thresholding Rules 

Sparsity that means most coefficients are approximately 

zero, plays a key role in any thresholding algorithms. The 

sparsity is a typical characteristic of wavelet domain where 

noise is uniformly spread through all coefficients and the data 

is represented by a small subset of big coefficients [16]. So, 

coefficients with small magnitude can be considered as noise 

and set to zero. The approach in which each coefficient is 

compared with a threshold in order to decide whether it 

constitute a desired part of the original data or not is called 

thresholding. As a matter of facts, the main assumption that 

indicates the validity of thresholding is the sparsity of 

coefficients. Whereas sparsity is directly related to the choice 

of a basis, the Gaussian noise representation is not sparse in 

any given basis [22]. To support the idea, Fig. 2 shows the 

histogram of clean and noisy coefficients for three detail sub-

bands of first decomposition level of DWT. As seen in Fig. 2, 

existing noise decreases the signal sparsity and also adds some 

undesired nonzero coefficients. Using thresholding rules, these 

coefficients are set to zero. 

There are four well-known thresholding rules named 

as hard [5], soft [26], Exp. [16] and Garrote [15], [27]. As a 

matter of fact, detail coefficients of noisy data y  in wavelet 

transform are used to compute the threshold value at each 

decomposition level and thresholding is applied to all detail 

coefficients, including: horizontal h , vertical v  and diagonal 

d coefficients. The corresponding equations are given in 

following and shown in part in Fig. 1, 

 

             



















dd

d
yHard

,

,0
                   (4) 

 

 
   



















ddd

d
ySoft

,sgn

,0
          (5) 

 

    

















 









dd

d
dp

ed
y

Exp

,

,
)(

               (6) 

 

      




























d

d
d

d

y
Garrote

,

,0
2                     (7) 

where   is the threshold value; y  refers to noisy detail sub-

band, including  dvh ,, ; (.)  is the output denoised 

coefficient; sgn(.)  is the signum function and p  in Eq. (6) is 

the fall degree of exponential function for th  

decomposition level which the optimized value was introduced 

in [16]. 

 In contrast with hard thresholding that preserves the 

coefficients greater than the threshold value, soft thresholding 

shrinks the coefficients and because of that, it yields bias 

estimates [15]. Therefore, hard thresholding produces less 

biased but higher variance estimates and it may be unstable 

due to discontinuous nature. In other words, discontinuity of 

hard thresholding can lose data and diminish edge 

preservation. To avoid both hard and soft thresholding 

drawbacks, the Exp. thresholding, Eq. (6), is able to gradually 

reduce the coefficients in the zero zone and the “non-negative 

Garrote” function, Eq. (7), is one of the represented ad-hoc 

rules [27].  

C. Estimating Noise Power 

Finding the optimal value   is an important issue for any 

thresholding method. However, the first step for this purpose is 

noise power estimation. Median absolute deviation [19], 

Quantile median [28] and Marginal variance [29] were 

proposed for this purpose. Although there are three detail 

coefficients, only diagonal coefficients d  are used for 

computing the noise power.  
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C.1. Median Absolute Deviation 

A popular estimate of noise standard deviation at 

th  level is based on the diagonal detail coefficients [19]. 

 

                              
 
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ˆ

d
n                             (8) 

 

Eq. (8) is based on two assumptions, the first is considering the 

noise n  an independent Gaussian random variable of zero 

mean and variance 
2ˆ
n  at each level, and the second is 

considering that the signal has sparse representation in wavelet 

domain, so that most wavelet coefficients are just noise.  

C.2. Quantile Median 

 Mathematics uses a slightly different form of Eq. (8) for the 

noise estimation [28], 
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where the Quantile refers to cut points dividing the range of a 

probability distribution into continuous intervals with equal 

probabilities. So, the denominator refers to the third quartile of 

n , which is a type of Quantile . The quartiles of a ranked set 

of data values are the three points that divide the data set into 

four equal groups, each group comprising a quarter of the data. 

In fact, quartiles are the three cut points that will divide a 

dataset into four equal-size groups. The first quartile is defined 

as the middle number between the smallest number and the 

median of the data set, the second quartile is the median of the 

data and the third quartile is the middle value between the 

median and the highest value of the data set. The difference 

between the constant 0.6745 and the ¾ quartile of the normal 

distribution is 
51002498.1   or a relative difference of 

0.0015%.   

C.3. Marginal Variance 

 According to the Marginal variance method [29], the noise 

standard deviation n̂  at th  level is, 

 

                                 
2 2ˆ

n y
                                (10) 

where   is obtained by Eq. (8), 
2 21( )
y

y Y

S y


   is 

the Marginal variance and S is the size of picture. In fact, y  

and 1y  are noisy versions of noise-free coefficients f  and 

1f  where 1f is the coefficient at the same position as f  , 

but at the next coarser scale. 

III. THRESHOLD BASED DENOISING METHODS 

The choice of a threshold value is a crucial phase for the 

wavelet threshold based methods. In fact, the threshold 

separates the undesired coefficients corresponding to the noise 

and the significant coefficients useful to recover the data. A 

low threshold value preserves the details but does not reduce 

the noise sufficiently while a large threshold value reduces the 

noise but may destroy the details [16]. In order to balance the 

side effects, different thresholding techniques were proposed. 

Each method, considering the noise power n̂ , uses its own 

procedure to compute the threshold value  . 

A. VisuShrink 

 This method takes into account only the image size S and 

the noise standard deviation n̂  in order to obtain the 

universal threshold for all sub-bands [30]: 

 

                             2 2ˆ log
Universal

n
S                        (11) 

B. SureShrink 

 This method computes the threshold values for each sub-

band, 
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i
d  . 

C.  NeighBlock 

 The NeighBlock threshold [31] value is, 

                          

         
2
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where 
2
BS  denotes the energy of each analyzing block (sum 

of squared coefficients), L  is the block size and 505.4C  

according to [32]. In fact, the wavelet coefficients are grouped 

into disjoint blocks ( b ) of length 









2

log
0

S
L  and each 

block is extended by an amount of   21 01 ,max LL   in 

every direction. So, overlapping blocks ( B ) of 

length 10 2 LLL   are formed. The threshold value in each 

block ( b ) is estimated according to Eq. (13). 

The basic motivation of working with blocks is that if 

neighboring coefficients contain important part of the signal, 

then it is likely that the current coefficient is also important 

and so lower threshold is to be used. This yields a local 

tradeoff between data and noise. Besides, this method 
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increases the estimation precision by utilizing information 

about neighboring wavelet coefficients. The threshold level is 

chosen per group (blocks) of coefficients according to their 

local properties, where each group contains a subset of the 

coefficients in the current resolution level. 

IV. EXPERIMENTAL RESULTS 

In this section, for Barbara test image with size 256256   

and 256  gray levels, the performance of denoising algorithms 

are evaluated. For this purpose, hard, soft, Exp. and Garrot as 

thresholding rules; VisuShrink, SureShrink and NeighBlock as 

thresholding methods; and Median absolute deviation, 

Quantile Median and Marginal variance as noise power 

estimators are used. Fig. 1 shows the block diagram.  

In order to compare the three introduced noise power 

estimators, we have used a flat gray image (i.e. the gray level 

of all pixels is 128 and so the image variance intensity is zero) 

with size 256256  . The image is corrupted by noise of 

variances 0.1, 0.3 and 0.5. Then the noise power of different 

levels in wavelet transform are estimated by using Median 

absolute deviation, Quantile median and Marginal variance. As 

seen in Fig. 3, while the Median absolute deviation estimates 

the noise power values accurately for all seven decomposition 

levels, Quantile median and Marginal variance experience 

inconsistency after the sixth decomposition level. Moreover, 

Quantile median has a bias for low power noise but it 

estimates the high power noise precisely. 

In this paper, an input image is decomposed into five levels 

by DWT where “db4” as the wavelet is used. For Barbara as a 

sample test image, the results are shown in Figs. 4 - 6, where 

the speckle noise variance is 0.3. As seen in Fig. 4 for 

VisuShrink thresholding method, there is a trade-off between 

denoising and detail preserving. Whereas in Fig. 5 for 

SureShrink thresholding method, the bottleneck is being 

images blur and seeing artifact. In contrast, for NeighBlock 

thresholding method as shown in Fig. 6, the images edges are 

preserved but still remaining the noise. 

As a matter of fact, detail detection is the most important 

factor which affect our eyes when they are choosing the best 

image. That is to say, regardless of the residual noise, our eyes 

prefer the images that their edges and details are more 

preserved. So, the SureShrink under using different noise 

power estimators and thresholding rules is not appropriate in 

comparison with VisuShrink in part and NeighBlock. 

However, visual evaluation and image assessment parameters 

may not agree in conclusion. Therefore, in this paper, three 

well-known image criteria are used, consisting: PSNR [16] 

which measures the image quality, SSIM [33] that predicts the 

perceived quality of picture, and   [16] which measures the 

edge preservation. Results of traditional quality indexes are 

written in Table 1 for sample image “Barbara” under the noise 

variance 0.3. As the values written in Table 1 indicates, there 

is a tradeoff between denoising and edge preservation.  

According to the limitations and characteristics of each 

method and our results, it can be concluded that the 

performance of VisuSrink with Garrot thresholding rule and 

Median absolute deviation noise power estimator is 

appropriate in comparison with other methods, noise 

estimators, and thresholding rules. 

V. CONCLUSION  

In this paper, the wavelet based denoising methods for 

despeckling were compared and the best algorithm was 

proposed by focusing on the role of noise power estimators 

and the influence of thresholding rules. Owing to the fact that 

there is a tradeoff between denoising and edge preservation, 

the best output should be determined based on the user’s 

desires. But in this paper we tried to propose the most optimal 

method as a package by comparing the output images and 

image assessment parameters precisely. To put in a nut shell, 

the most optimal package for despeckling in wavelet domain is 

introduced as using Garrot thresholding rule and Median 

absolute deviation in VisuSrink denoising method. In further 

studies, our research would be channeled to covering the 

mentioned tradeoff by analyzing and comparing more 

denoising methods. 
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Fig. 1. The block diagram of speckle denoising in DWT domain. 

 

 

   

   
 

Fig. 2. Histogram of first-level wavelet detail coefficients, 1h  (first column), 1v  (second column), 1d  (third column), for clean data (first 

row) and noisy data (second row) where the noise power is 0.1. 
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Fig. 3. Output of three proposed methods for estimating the noise power of 1 to 7 wavelet decomposition levels for flat Gray image where the 

noise variance is 0.1, 0.3 and 0.5, respectively. 
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Fig. 4. Results of VisuShrink thresholding method for denoising Barbara by using Median absolute deviation (first row), Quantile median 

(second row), Marginal variance (third row) for noise power estimation and Hard (first column), Soft (second column), Exp. (third 

column), Garrot (forth column) as the thresholding rule under noise variance 0.3. 
  

    

    

    
 Fig. 5. Results of SureShrink thresholding method for denoising Barbara by using Median absolute deviation (first row), Quantile median (second row), 

Marginal variance (third row) for noise power estimation and Hard (first column), Soft (second column), Exp. (third column), Garrot (forth column) as the 

thresholding rule under noise variance 0.3.
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Fig. 6. Results of NeighBlock thresholding method for denoising Barbara by using Median absolute deviation (first row), Quantile median (second row), 

Marginal variance (third row) for noise power estimation and Hard (first column), Soft (second column), Exp. (third column), Garrot (forth column) as the 

thresholding rule under noise variance 0.3. 

 

Table 1.  Traditional quality indexes of proposed denoising methods when image is contaminated by noise variance 0.3. 
 

  PSNR SSIM B (
4

10


 ) 

  Hard Soft Exp. Garrot Hard Soft Exp. Garrot Hard Soft Exp. Garrot 

 Median 18.36 20.03 18.34 20.33 0.38 0.47 0.38 0.46 1.43 1.36 1.44 1.36 

VisuShrink Quantile 19.96 19.65 19.96 20.08 0.45 0.47 0.45 0.48 1.43 1.37 1.43 1.37 

 Marginal 18.41 20.05 18.40 20.32 0.38 0.47 0.38 0.46 1.36 1.36 1.36 1.35 

 Median 20.04 19.19 20.05 19.57 0.47 0.46 0.47 0.46 1.34 1.36 1.34 1.35 

SureShrink Quantile 20.29 19.48 20.29 19.92 0.48 0.47 0.48 0.48 1.35 1.37 1.35 1.35 

 Marginal 20.10 19.21 20.10 19.60 0.48 0.46 0.48 0.47 1.33 1.36 1.33 1.34 

 Median 12.90 17.52 12.88 15.37 0.23 0.35 0.23 0.31 1.84 1.74 1.85 1.80 

NeighBlock Quantile 13.35 18.44 13.33 16.45 0.25 0.37 0.25 0.33 1.80 1.65 1.81 1.73 

 Marginal 12.85 17.41 12.84 15.24 0.23 0.35 0.23 0.30 1.84 1.75 1.85 1.81 
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