
 

 

Abstract— We propose a new class of divergence measures for 

Independent Component Analysis (ICA) for the de-mixing of 
multiple source mixtures.  We call it the Convex Cauchy-Schwarz 
Divergence (CCS-DIV), and it is formed by integrating convex 
functions into the Cauchy-Schwarz inequality.  The new measure is 
symmetric and the degree of its curvature with respect to the joint-
distribution can be tuned by a (convexity) parameter.  The CCS-DIV 
is able to speed-up the search process in the parameter space and 
produces improved de-mixing performance. An algorithm, generated 
from the proposed divergence, is developed which is employing the 
non-paramteric Parzen window-based distribution. Simulation 
evidence is presented to verify and quantify its superior performance 
in comparison to state-of-the-art approaches.  

Index Terms—Independent Component Analysis (ICA), Cauchy-
Schwarz inequality, non-parametric Independent Component 
Analysis (ICA), Parzen window-based distribution. 

I. INTRODUCTION 

Blind Signal Separation (BSS) is one of the most 

challenging and emerging areas in signal processing. BSS has 

a solid theoretical foundation and numerous potential 

applications. BSS remains a very important and challenging 

area of research and development in many domains, e.g. 

biomedical engineering, image processing, communication 

system, speech enhancement, remote sensing, etc. BSS 

techniques do not assume full apriori knowledge about the 

mixing environment, source signals, etc. and do not require 

training samples. Independent Component Analysis (ICA) is 

considered a key approach in BSS and unsupervised learning 

algorithms [1], [2].  

ICA specializes to Principal Component Analysis (PCA) 

and Factor Analysis (FA) in multivariate analysis and data 

mining, corresponding to second order methods in which the 

components are in the form of a Gaussian distribution [6 - 9], 

[1], [2]. However, ICA is a statistical technique that exploits 

higher order statistics (HOS), where the goal is to represent a 

set of random variables as a linear transformation of 

statistically independent components. 
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We provide a brief overview relevant to this paper. The 

metrics of cumulants, likelihood function, negentropy, 

kurtosis, and mutual information have been developed to 

obtain a demixing matrix in different adaptations of ICA-

based algorithms [1]. Recently, Comon [7] proposed Robust 

Independent Component Analysis (R-ICA). He used a 

truncated polynomial expansion rather than the output 

marginal probability density functions to simplify the 

estimation processes. In [10 – 12], the authors have presented 

ICA using mutual information. They constructed a 

formulation by minimizing the difference between the joint 

entropy and the marginal entropies of signals. 

The so-called convex ICA [13] is established by incor-

porating a convex function into a Jenson’s inequality-based 

divergence measure. Xu et al [14] used the approximation of 

Kullback–Leibler (KL) divergence based on the Cauchy–

Schwartz inequality. Boscolo et al. [15] established 

nonparametric ICA by minimizing the mutual information 

contrast function and by using the Parzen window distribution. 

 A new contrast function based on a nonparametric 

distribution was developed by Chien and Chen [16], [17] to 

construct an ICA-based algorithm. They used the cumulative 

distribution function (CDF) to obtain a uniform distribution 

from the observation data.   Moreover, Matsuyama et al. [18] 

proposed the alpha divergence approach. Also, the f-

divergence was proposed by Csiszár et al. [3], [19].  

In addition, the maximum-likelihood (ML) criterion [21] is 

another tool for BSS algorithms [21]–[23]. It is used to 

estimate the demixing matrix by maximizing the likelihood of 

the observed data. However, the ML estimator needs to know 

(or estimate) all the source distributions. Recently, in terms of 

divergence measure, Fujisawa et al. [24] have proposed a very 

robust similarity measure to outliers and they called it the 

Gamma divergence. In addition, the Beta divergence was 

proposed in [25] and investigated by others in [3].  

Xu et al [5] proposed the quadratic divergence based on the 

Cauchy-Schwartz inequality, namely, Cauchy-Schwartz 

divergence (CS-DIV).  CS-DIV is used to implement the ICA 

procedure, but it lacks the optimality and the stability in terms 

of performance since the CS-DIV is not a convex divergence.  

While there are numerous measures, performance in terms 

of the quality of the estimated source signals still in need of 

improvements.  Thus, the present work focuses on enhancing 

the performance in terms of the quality of the estimated 

demixed signals. To that end, we develop a new class of 

divergence measures for ICA algorithms based on the 

conjunction of a convex function into a Cauchy–Schwarz 

inequality-based divergence measure. This symmetric measure 
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has a wide range of effective curvatures since its curvature is 

controlled by a convexity parameter. With this convexity, 

unlike CS-DIV, the proposed measure is more likely to attain 

an optimal solution and speed up the convergence in the 

separation process. As a result, the proposed divergence 

results in better performance than other methods, especially 

CS-DIV. Moreover, it is considered to be an effective 

alternative measure to Shannon’s mutual information measure. 

The convex Cauchy–Schwarz divergence ICA (CCS–ICA) 

uses the Parzen window density to distinguish the non-

Gaussian structure of source densities. The CCS-ICA has 

succeeded in solving the BSS of speech and Music signals 

with and without additive noise and it has shown a better 

performance than other ICA-based methods. Finally, it is 

important to highlight that while the divergence measure is 

convex with respect to the joint probability density, it is only 

locally convex with respect to the filtering parameters. It is 

well-known that the BSS problem has a (scaling and) 

permutation ambiguity and thus there are multiple solutions. 

 

The paper is organized as follows. Section II proposes the 

new convex Cauchy–Schwarz divergence measure. Section III 

presents the CCS–ICA method. The comparative simulation 

results and conclusions are given in Section IV and Section V, 

respectively. 

II. A BRIEF DESCRIPTION OF PREVIOUS DIVERGENCE 

MEASURES 

Divergence, or the related (dis)similarity, measures play an 

important role in the areas of neural computation, pattern 

recognition, learning, estimation, inference, and optimization 

[3]. In general, they measure a quasi-distance or directed 

difference between two probability distributions which can 

also be expressed for unconstrained arrays and patterns. 

Divergence measures are commonly used to find a distance 

between two n-dimensional probability distributions, say �	 = 	 (��, ��, … �
) and	�	 = 	 (
�, 
�, … 

). Such a 

divergence measure is a fundamental key factor in measuring 

the dependency among observed variables and generating the 

corresponding ICA-based procedures.  

A metric is the distance between two pdfs if the following 

conditions hold: (�)	�(�||�) = ∑ �(�� , 
�) ≥ 0
���  with 

equality if and only if 	� = �, (��)	�(�||�) = �(�||�) 
and	(���)	the	triangular	inequality, i. e. , �(�||�) ≤�(�||&) + �(&||�), for	another	distribution	&. Distances 

which are not a metric are referred to as divergences [3].  

This paper considers on distance-type divergence measures 

that are separable, thus, satisfying the condition	�(�||�) =∑ �(�� , 
�) ≥ 0
���  with equality holds if and only if	� = �. 

But they are not necessarily symmetric as in condition (ii) 

above, nor   do necessarily satisfy the triangular inequality as 

in condition (iii) above.  

Usually, the vector � corresponds to the observed data and 

the vector � is the estimated or expected data that are subject 

to constraints imposed on the assumed models. For the BSS 

(ICA and NMF) problems, �	corresponds to the observed 

sample data matrix - and � corresponds to the estimated 

sample matrix	. = /0. Information divergence is a measure 

between two probability curves. In other words, the distance-

type measures under consideration are not necessarily a metric 

on the space 1 of all probability distributions [3]. 

 Next, we propose a novel divergence measures with one-

dimensional probability curves. 

A. New Divergence Measure 

While there exist a wide range of measures, performance 

especially in audio and speech applications still requires 

improvements. The quality of an improved measure should 

provide geometric properties for a contrast function in 

anticipation of a dynamic (e.g., gradient) search in a parameter 

space of the de-mixing matrices. The motivation here is to 

introduce a simple measure and incorporate controllable 

convexity in order to control convergence to an optimal 

solution. To improve the performance of the divergence 

measure and to speed up convergence, we have conjugated a 

convex function into the Cauchy–Schwarz inequality. In this 

context, one takes advantage of the convexity’s parameter, say 

alpha, to control the convexity of the divergence function and 

to speed up the convergence in the corresponding ICA and 

NMF algorithms. For instance, incorporating the joint 

distribution (12 = p(4�, 4�)) and the marginal distributions 

(56 = p(4�)p(4�)) into the convex function, say, 7(. )and 

conjugating them to the Cauchy–Schwartz inequality yields  89f:1;<=, =f:5><?8� ≤	 9=f:1;<, f:1;<	?= ∙ =9f:5><, f:5><=? 
    89f:p(4�, 4�)<=, =f:p(4�)p(4�)<?8� ≤	9=f:p(4�, 4�)<, f:p(4�, 4�)<	?= ∙ =9f:p(4�)p(4�)<, f:p(4�)p(4�)<=?                       

 

(1) 

where 〈∙	,∙〉 is an inner product; f(.) is a convex function, e.g.,   7(C) = D�EFG H�EF� + �IF� C − CKLMG N		for	C ≥ 0									(2)	
  Now, based on the Cauchy–Schwartz inequality a new 

symmetric divergence measure is proposed, namely:  	DQQR	:12 , 56 , α< = 	log∬ f�:12<d4�d4� 	 ∙ 	∬ f�(56)d4�d4�	U∬ f:12< ∙ f(56) d4�d4�V�  

= log∬ f�:p(4�, 4�)<d4�d4� 	 ∙ 	∬ f�:p(4�) ∙ p(4�)<d4�d4�	U∬ f:p(4�, 4�)< ∙ f:p(4�)p(4�)< d4�d4�V�  

	(3)	
 

where, as usual, DQQR:12 , 56 , α< ≥ 0 and equality holds if and 

only if	�(4�) = �(4�).	This divergence function is then used to 

develop the corresponding ICA and NMF algorithms. We note 

that the joint distribution and the product of the marginal 

densities in DQQR:12 , 56 , α<	is symmetric. This symmetrical 

property does not hold for the KL-DIV, α-DIV, and f-DIV.  

We anticipate that this symmetry would be desirable in the 

geometric structure of the search space to exhibit similar 

dynamic trajectories towards a minimum. Additionally, the 

CCS-DIV is tunable by the convexity parameter α. In contrast 
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to the C-DIV [13] and the α-DIV [18], the range of the 

convexity parameter α is extendable. However, Based on 

l'Hôpital's rule, one can derive the realization of CCS-DIV for 

the case of X = 1 and X = −1 by finding the derivatives, with 

respect to	X, of the numerator and denominator for each parts 

of  DQQR:12 , 56 , α<.	 Thus, the CCS-DIV with	X = 1 and X = −1	are respectively given in (4) and (5). 

B.  Link to other Divergences: 

This CCS-DIV distinguishes itself from previous divergences 

in the literature by incorporating the convex function into (not 

merely a function of) the Cauchy Schwarz inequality. The 

paper develops a framework for generating a family of 

dependency measure based on conjugating a convex function 

into the Cauchy Schwarz inequality. Such convexity is 

anticipated (as is evidenced by experiments) to reduce local 

minimum near the solution and enhance searching the non-

linear surface of the contrast function. The motivation behind 

this divergence is to render the CS-DIV to be convex similar 

to the f-DIV. For this work, we shall focus on one convex 

function		f(t) as in (2), and its corresponding CCS-DIVs in 

(3), (4) and (5). It can be seen that the CCS-DIV, for the  α = 1 and α = −1	cases, is implicitly based on Shannon 

entropy (KL divergence) and Renyi’s quadratic entropy, 

respectively. Also, it is to show that the CCS_DIVs for the α = 1 and α = −1	cases are convex functions in contrast to 

the CS-DIV. (See Fig. 2 and sub-section E in the next page.)  

C. Geometrical Interpretation of the Proposed Divergence 

for X = 1 and	X = −1. 

For compactness, let’s define the following terms:  
 Z2 = [(�(4�, 4�))��4��4� 

 Z6 = [(�(4�)�(4�))��4��4� 

 Z\ = [�(4�, 4�)�(4�)�(4�)�4��4� 

 

Z22 =
]̂_̂
`[ab�(4�, 4�) ∙ log(�(4�, 4�))−�(4�, 4�) + 1 c�	d �4��4�	 		X = 1	[ab log(�(4�, 4�))−�(4�, 4�) + 1c�d �4��4�	 															X = −1 = 

 
 

Z66
=
]̂_̂
` [ab�(4�)�(4�) ∙ log(�(4�)�(4�))−�(4�)�(4�) + 1 c�d �4��4�	 				X = 1	[ab log(�(4�)�(4�))−�(4�)�(4�) + 1c�d �4��4�			 																									X = −1= 

Zee

=
]̂̂
_̂
^̂̂
` []_̀

b�(4�, 4�) ∙ log(�(4�, 4�))−�(4�, 4�) + 1 c ∙
b�(4�)�(4�) ∙ log(�(4�)�(4�))−�(4�)�(4�) + 1 cfg

h�4��4� 		X = 1
	

[]_̀
b log(�(4�, 4�))−�(4�, 4�) + 1c ∙b log(�(4�)�(4�))−�(4�)�(4�) + 1c	fg

h�4��4�		 																					X = −1
= 

 

With these terms, one can express the CCS-DIV and the 

CS-DIV as  �eei = log:Z22< + log(Z66) − 2log(Zee)	  (6) �ei = log:Z2< + log(Z6) − 2log(Ze)	   (7)  

In Fig. 1, we illustrate the geometrical interpretation of the 

proposed divergence (CCS-DIV), which is equivalent to the 

Cauchy Schwarz Divergence (CS-DIV). Geometrically, we 

 
Fig.1: Illustration of the Geometrical Interpretation of the proposed Divergence 

 

jkkl= −mno((pnqrkkl)s)t 

uvv 

uww 

ukk = xyz(rkkl){uwwuvv 

|(}(&~)�(&s)) 

|(}(&~, &s)) 

rkkl 

DQQR:1;,5>, 1< = 

	log �∬ �:p(41, 42) ∙ log:p(41, 42)< − p(41, 42) + 1<�	�d41d42	� ∙ �∬�:p(41) ∙ p(42) ∙ log:p(41) ∙ p(42)< − p(41) ∙ p(42) + 1<��d41d42	�[∬�:p(41, 42) ∙ log:p(41, 42)< − p(41, 42) + 1< ∙ :p(41) ∙ p(42) ∙ log:p(41) ∙ p(42)< − p(41) ∙ p(42) + 1<	�d41d42]�  

DQQR:1;,5>, −1< = log �∬�:log:p(41, 42)< − p(41, 42) + 1<�	�d41d42	� ∙ �∬ �:log:p(41) ∙ p(42)< − p(41) ∙ p(42) + 1<��d41d42	�[∬�:log:p(41, 42)< − p(41, 42) + 1< ∙ :log:p(41) ∙ p(42)< − p(41) ∙ p(42) + 1<�d41d42]�  

(4)

(5)
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can show that the angle between the Joint pdfs and Marginal 

pdfs in the CCS-DIV is given as following: 

 �eei = acos b ���{������c ≡ �ei = acos b ��{����c   (8) 

where	���� denotes the cosine inverse. As a matter of fact, 

the convex function  7 renders the CS-DIV a Convex contrast 

function for the X = 1 and X = −1.	Cases. Moreover, in 
practice, it provides the proposed measure an advantage over 
the CS-DIV in terms of potential speed and accuracy, see fig. 
2. 

D. Evaluation of Divergence Measures 

In this section, the relations among the KL-DIV, E-DIV, 

CS-DIV, JS-DIV, α-DIV, C-DIV and the proposed CCS-DIV 

are discussed. C-DIV, α-DIV and the proposed CCS-DIV with α = 1, α = 0	and	α = −1 are evaluated. Without loss of 

generality, a simple case has been chosen to elucidate the 

point. Two binomial variables {y�, y�} in the presence of the 

binary events {A, B} have been considered as in [7], [13]. The 

joint probabilities of p�K,�G(A, A), p�K,�G(A, B), p�K,�G(B, A)	and p�K,�G(B, B) and the marginal probabilities p�K(A), p�K(B), p�G(A) and p�G(B) are identified. Different 

divergence methods are tested by fixing the marginal 

probabilities p�K(A) = 0.7, p�K(B) = 0.3, p�G(A) = 0.5 

and	p�G(B) = 0.5, and setting the joint probabilities of p�K,�G(A, A) and p�K,�G(B, A) free in intervals (0, 0.7) and (0, 

0.3), respectively. Fig. 2 shows the different divergence 

measures versus the joint probability	p�K,�G(A, A). All the 

divergence measures reach to the same minimum at p�K,�G(A, A) = 0.35 which means that the two random values 

are independent. Fig. 3 shows the CCS-DIV and α-DIV at 

different values of α which controls the slope of curves, 

respectively. Among these measures the steepest curve is 

obtained by CCS-DIV at	α = −1. Nonetheless, the CCS-DIV 

is comparatively sensitive to the probability model and obtains 

the minimum divergence effectively.  However, the CCS-DIV 

should be a good choice as a contrast function for devising the 

ICA algorithm. Since, the probability model is closely related 

to the demixing matrix in the ICA algorithm. 

III. CONVEX CAUCHY-SCHWARZ DIVERGENCE INDEPENDENT 

COMPONENT ANALYSIS (CCS-ICA) 

Without loss of generality, we develop the ICA algorithm 

by using the CCS-DIV as a contrast function. Let us consider 

a simple system that is described by the vector-matrix form � = �z + �                                           (9) 

where � = [x�, … , x�]�	is a mixture observation vector, z = [s�, … , s�]� is a source signal vector, � = [v�, … , v�]� is 
an additive (Gaussian) noise vector, and � is an unknown full 
rank M×M mixing matrix, where M is the number of source 
signals. Let  	¡¢	£¤	 M×M  parameter matrix. To obtain a 
good estimate, say, ¥ = /� of the source signals	z, the 
contrast function CCS-DIV should be minimized with respect 
to the demixing filter matrix	 . Thus, the components of ¥ 
become least dependent when this demixing matrix   

becomes a rescaled permutation of	�E�. Following a standard 
ICA procedure, the estimated source ¥ can becarried out in 
two steps: 1) the original data ¦ should be preprocessed by 
removing the mean §E[�] = 0© and by a whitening 

matrix�	ª = «E� �¬ ­��, where the matrix ­	represents the 

eigenvectors and the (diagonal) matrix  « represents the 
eigenvalues of the autocorrelation of the observations, 
namely,		§®�� = E[���]©. Consequently, the whitened data 
vector §�¯ = ª�©	would have its covariance equal to the 

identity matrix, i.e., �®�°�° = ±²�. The demixing matrix can be 

iteratively computed by, e.g., the (stochastic) gradient descent 
algorithm [2]: /(k + 1) = /(k) − γ µ¶··¸(0,/(¹))µ/(¹)               (10) 

where º represents the iteration index and γ is a step size or a 
learning rate. Therefore, the updated term in the gradient 
descent is composed of the differentials of the CCS-DIV with 

respect to each element w¼½ of the M×M demixing 

matrix	/. The differentials	µ¶··¸(0,/(¹))µ¾¿À(¹) 	 , 1 ≤ m, l ≤ M are 

calculated using a probability model and CCS-DIV measures 
as in [3], [13] and [14]. The update procedure (10) will stop 
when the absolute increment of the CCS-DIV measure meets a 
predefined threshold value. During iterations, one should 

 
Fig. 2 Different divergence measures versus the joint probability 1ÂK,ÂG(Ã, Ã) 

 

Fig. 3 CCS-DIV and α-DIV versus the joint probability 1ÂK,ÂG(Ã, Ã) 
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make the normalization step ¾¼ = ¾¼ ||¾¼||¬  for each row 

of /,	 where ||. ||	denotes a norm. Please refer to Algorithm 1 
for thedetails about the algorithm based on gradient descent. 

In deriving the CCS–ICA algorithm, based on the 

proposed CCS-DIV measure 	DQQR:Äw,Å6, α<,  usually, vector Ä2 corresponds to the probability of the observed data �p(¥Æ) = p(/�¯) = Ç(�¯)|ÈÉÊ	(/)|�  and vector Å6 corresponds to 

the probability of the estimated or expected 

data	(∏ p(yÌÆ�� ) = ∏ �(¾Ì�¯)6� ) . Here, the CCS–ICA 
algorithm is detailed as follows. Let the demixed signals ¥¯ = /�¯ with its mth component denoted as 	yÌÆ = ¾Ì�¯. 
Then, Ä2 = p(¥Æ) = p(/�¯) and	56 = ∏ p(yÌÆ�� ) =∏ �(¾Ì�¯)6� . Thus, the CCS-DIV as the contrast function, 

with the built-in convexity parameter α,	is DQQR:Ä2 , 56 , α<= log∬ f�:Ä2<dÍ�…dÍ6 	 ∙ 	∬ f�(56)dÍ�…dÍ6 	[∬ f:Ä2< ∙ f(56) dÍ�…dÍ6]�  

= log∬ f�:p(/�¯)<dÍ�…dÍ6 	 ∙ 	∬ f�(∏ p(yÌÆ�� ))dÍ�…dÍ6 	[∬ f:p(/�¯)< ∙ f(∏ p(yÌÆ�� )) dÍ�…dÍ6]�  

   (11) 
For any convex function, we use the Lebesgue measure to 

approximate the integral with respect to the joint distribution 

of		yÊ = §y�, y�, … , y�©. The contrast function thus becomes 
 DQQR(Ä2 , 56, α) = log∑ f�:�(/�¯)< ∙ ∑ f�(∏ p(yÌÆ�� ))����[∑ f:�(/�¯)< ∙ f(∏ p(yÌÆ�� ))�� ]�  

 = log∑ f�:�(/�¯)< ∙ ∑ f�:∏ :�(wÌÆ�¯)<�� <����[∑ f:�(/�¯)< ∙ f:∏ :�(wÌÆ�¯)<�� <�� ]�  

  (12) 
The adaptive CCS–ICA algorithms are carried out by 

using the derivatives of the proposed divergence, i.e.,  

Î	µ¶··¸(Ä2 , 56 , α) µw¼½Ï Ð as derived in Appendix A. Note 

that in Appendix A, the derivative of the determinant 

demixing matrix (det	(/)) with respect to the element (w¼½	) 
equals the cofactor of entry	(m, l)		in the calculation of the 

determinant of		/, which we denote as	�ÑÈÉÊ(/)ÑÒÓÔ = W¼½�. Also 

the joint distribution of the output is determined by  p(¥Æ) =Ç(�¯)|ÈÉÊ	(/)|.  
For simplicity, we can write DQQR(Ä2 , 56, α) as a function 

of three variables. DQQR:Ä2 , 56 , α< = log Z� ∙ Z�(ZÖ)�  

      (13) 
Then, 
 ∂DQQR:Ä2 , 56 , α<∂w¼½ = V�ÙV� + V�V�Ù − 2V�V�VÖÙV�V�VÖ  

     (14) 
where 

V� = Úf�:Ä2<	,			�
Ê�� V�Ù = Ú2f(Ä2)f Ù(Ä2)Û2Ù�

Ê��  

V� = Úf�(56)		,				�
Ê�� V�Ù = Ú2f(56)f Ù(56)Q6Ù

�
Ê��  

VÖ = Úf:Ä2<�
Ê�� f(56)	, 

VÖÙ = Úf Ù(Ä2)f(56)Û2Ù�
Ê�� +Úf(Ä2)f Ù(56)Q6Ù

�
Ê��  

Ä2 = p(/�Æ)and	56 = Ýp(¾¼�Æ)�
¼��  

 Û2Ù = ∂Ä2∂w¼½ = − p(�Æ)|det(/)|� ∙ ∂ det(/)∂w¼½ ∙ sign(det(/), 
where	ÑÈÉÊ(/)ÑÒÓÔ = W¼½. 
 

Q6Ù = ∂56∂w¼½ = ÞÝp:¾ß�Æ<�
ß�¼ à ∂p(¾á�Æ)∂(¾á�Æ) ∙ x½. 

where	x½	denotes	the	âCℎ	entry	of	�Æ . 
 

In general, the estimation accuracy of a demixing matrix 
in the ICA algorithm is limited by the lack of knowledge of 
the accurate source probability densities.  However, non-
parametric density estimate is used in [1], [7], [15], by 
applying the effective Parzen window estimation. One of the 
attributes of the Parzen window is that it must integrate to one. 
Thus, it is typical to be a pdf itself, e.g., a Gaussian Parzen 
window, non-Gaussian or other window functions. 
Furthermore, it exhibits a distribution shape that is data-driven 

and is flexibly formed based on its chosen Kernel functions.. 
Thus, one can estimate the density function �(ä) of the 

process generating the >-dimensional sample ä�, ä�…	ä6 
due to the Parzen Window estimator. For all these reasons, a 
non-parametric CCS–ICA algorithm is also presented by 

minimizing the CCS-DIV to generate the demixed signals	¥ =[y�, y�, … , y�]	�. The demixed signals are described by the 
following univariate and multivariate distributions [18], p(y¼) = ��å∑ ϑ��ÓE�Óçå ��Ê��                       (15) 

 p(ä) = ��åè∑ φ �¥E¥çå ��Ê��                         (16) 

where the univariate Gaussian Kernel is ϑ(u) = (2π)EKGeEëGG  

and the multivariate Gaussian Kernel is φ(ì) = (2π)EíGeîKG ìïð
. 

The Gaussian kernel(s), used in the non-parametric ICA, 
are smooth functions. We note that the performance of a 
learning algorithm based on the non-parametric ICA is better 
than the performance of a learning algorithm based on the 

parametric ICA. By substituting (15) and (16) with ¥Ê = /�Ê 
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and y¼Ê = ¾¼�Ê into (12), the nonparametric CCS-DIV 
becomes 

Ä2 = p(¥Æ) = p(/�¯) = 1Th�Úφò/(�ó − ¦ô)h õ�
Ê��  

Or  
 Ä2 = p(¥Æ) = p(�¯)|det	(/)| 

56 = Ýp(yÌÆ
�
� ) = Ý �(¾Ì�¯)6

�
= Ý 1ThÚϑò¾m(�ó − ¦ô)h õT

i=1
M
1  

 	DQQR:Ä;,5>, α< = 							log ∑ öG:Ä;<∙∑ öG:5><ïç÷Kïç÷K[∑ ö:Ä;<∙ö:5><ïç÷K ]G                

(17) 
However, there are two common methods to minimize 

this divergence function: one is based on the gradient descent 
approach and the other is based on an exhaustive search such 
as the Jacobi method.  In this section, we have presented the 
derivation of the proposed algorithm in Appendix A in order to 
use it in the non-parametric gradient descent ICA algorithm, 
see Algorithm 1.  

IV. SIMULATION RESULTS 

Several illustrative simulation results are conducted to 

compare the performance of different ICA-based algorithms. 

This illustraton provides results that have a diversity of 

experimental data and conditions. 

A. Sensitivity of CCS-DIV measure  

This experiment evaluates the proposed CCS-DIV 

divergence measure in relation to the sensitivity of the 

probability model of the discrete variables. Results indicate 

that the CCS-DIV with α=1 and α=-1 successfully reach the 

minimum point of the measure. Let us consider the case as in 

[13], [14], [15], where the mixed signals X=AS, to 

investigate the sensitivity of CCS-DIV with α=1 and α=-1, 

respectively. Simulated experiments in [13], [15] were 

performed for two sources (M=2) and with a demixing 

matrix W W = øcos	θ� sin θ�cos θ� sin θ�ú                              (18) 

where W,	in this case, is a parametrized matrix that 

establishes a polar coordinate rotation. The row vectors in W 

have unit norms and provide the counterclockwise rotation of θ�	and	θ�	, respectively. The orthogonal rows in W include 

the orthogonal matrix rotation when  when 	θ� = θ� ± ü�. 

Notably, the amplitude should not affect the independent 

sources. By varying θ�	and	θ�	, we get different demixing 

matrices. However, consider the simple case, i.e., mixtures of 

signals of two zero mean continuous variables; one variable 

is of a sub-Gaussian distribution and the other variable is of a 

super-Gaussian distribution. For the sub-Gaussian 

distribution, we use the uniform distribution p(��)= a 12ýK 																					��∈:-��,��<							0																							Otherwise																	d      (19) 

and for the super-Gaussian distribution, we use the Laplacian 

distribution p(s�) = ���G exp H− |�G|
�G N                 (20) 

In this task, data samples T = 1000	are selected and 

randomly generated by using	τ� = 3	 and	τ� = 1. Kurtosis for 

the two signals are −1.2,	and 2.99,	respectively, and they are 

evaluated using	Kurt(s) = E[sD	] ⁄ (E[s�])� 	− 3. 
Without loss of generality, we take the mixing matrix as the 2 × 2 identity matrix, thus, 
� = s� and x� = s� [5], [15]. The 

normalized divergence measures of the demixing signals and 

their sensitivity to the variation of the demixing matrix is 

shown in fig. 4. As shown in fig. 4, the variations of the 

demixing matrix are represented by the polar systems θ1	and	θ2.		A wide variety of demixing matrices are 

considered by taking the interval of angles {θ�	and	θ�	} from 

0 to π. Furthermore, fig. 4 evaluates the CCS-DIV along with 

E-DIV, KL-DIV, and C-DIV with α = −1 . The minimum 

(i.e., close to zero) divergence is achieved at the same 

conditions H�θ� = 0, θ� = ü�� , �θ� = ü� , θ� = 0� , �θ� =ü� 	 , θ� = π����	 �θ� = π, θ� = ü��N as is clearly seen in fig. 4. 

In addition, one can observe that the CS-DIV does not exhibit  

a good curvature form in contrast to CCS-DIV from the 

graphs in Fig. 4. However, the values of CCS-DIV with α = 1 

are low and flat within the range of θ1	and	θ2	between 0.5 

and 2.5. This performance is similar to other divergence 

measures as in [13], [15]. Contrarily, the values of CCS-DIV 

with α = −1 enable a relatively increased curvature form in 

the same range. Thus, the CCS-DIV with α = −1 would result 

in the steepest descent to the minimum point of the CCS-DIV 

measure. 

Algorithm 1: ICA Based on the gradient descent  

§- = 	u ∗ - = 
^(−1 ⁄ 2)	�^�		-©, 

  =  − �
�jeei(Ä2 , 56 , α)

�   

Input: (>	
	�) matrix of realization�	-, Initial demixing 

matrix	  = �v, Max. number of iterations	�C�, Step Size � 

i.e.	�	 = 0.3, X, i.e.	X = −0.99999 

Perform Pre-Whitening  

For loop: for each I Iteration do 

For loop: for each C = 1,… ,� 

Evaluate the proposed contrast function and its 

derivative Î	�jkkl(Ä2 , 56 ,�)
���mÏ Ð 

End For 

Update de-mixing matrix   

 

Check Convergence 

‖∆�\‖ ≤ � i.e.	� = 10ED 

 

End For  

Output: Demixing Matrix  , estimated signals y  
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(a)  CCS-DIV with α=1       (b)  CCS-DIV with α=-1 

    
 

(c) KL-DIV                      (d) E-DIV          

 
 

(e)  CS-DIV                        (f) C-DIV with α=-1 
 

 
Fig. 4. Comparison of (a) CCS-DIV with α = 1, (b) CCS-DIV with α = -1, (c) KL-DIV, (d) E-DIV, (e) CS-DIV and (f) C-DIV with α = -1 of demixed signals as a function 

of the demixing parameters �� and	��. 
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Observe that the CCS-DIV with α = 1	has a flat curve with 

respect to the minima in θ�	and	θ�. For other	α values, the 

CCS-DIV, as a contrast function, can produce large 

detrimental steps of the demixing matrix towards convergence 

to a successful demixing solution, as in fig. 5 depicting the 

contour of CCS-DIV with	α = −1. It explicitly depicts four 

locally convex solution minima  

B. Performance evaluation of the proposed CCS-ICA 

algorithms versus existing ICA-based algorithms 

In this section, Monte Carlo Simulations are carried out. It 

is assumed that the number of sources is equal to the number 

of observations “sensors”. All algorithms have used the same 

whitening method. The experiments have been carried out 

using the MATLAB software on an Intel Core i5 CPU 2.4-

GHz processor and 4G MB RAM.  

First, we compare the performance and convergence speed 

of the gradient descent ICA algorithms based on the CCS-

DIV, CS-DIV, E-DIV, KL-DIV, and C-DIV with X = 1	and X = −1. In all tasks, the standard gradient descent method is 

used to devise the parameterized and non-parameterized ICA 

algorithms based on CCS-DIV with � = 0.7 and � = 0.3 for 

α=1  and α=-1 cases, respectively , CS-DIV with � = 0.3, E-

DIV with γ=0.06, KL-DIV with � = 0.17 as in [14], and C-

DIV with γ=0.008 and γ=0.1 for the α=-1  and α=1 cases, 

respectively as in [13]. During the comparison, we use a 

bandwidth as a function of sample size, namely, h = 1.06TîK
�  

as in [13-15]. To study the parametric scenario for the ICA 

algorithms, we use mixed signals that consist of two signal 

sources with a mixing matrix	A = [[0.5		0.6]�	[0.3			0.4]�], 
which has a determinant	� C(Ã) = 0.02. One of the signal 

sources has a uniform distribution (sub-Gaussian) and the 

other has a Laplacian distribution (with kurtosis values -

1.2109 and 3.0839, respectively). T = 1000 sampled data are 

taken using a learning rate γ=0.3 and for 250 iterations. The 

gradient descent ICA algorithms based on the CCS-DIV, CS-

DIV, E-DIV, KL-DIV, and C-DIV with α=1 and α=-1, 

respectively, are implemented to recover the estimated source 

signals. The initial demixed matrix W is taken as an identity 

matrix. Fig. 6 shows the demixed signals resulting from the 

application of the various ICA-based algorithms. Clearly, the 

parameterized CCS–ICA algorithm outperforms all other ICA 

algorithms in this scenario with signal to interference ratio 

(SIR) of 41.9 dB and 32 dB, respectively. Additionally, Fig. 7 

shows the “learning curves” of the parameterized CCS–ICA 

algorithm with α=1 and α=-1 when compared to the other ICA 

algorithms, as it graphs the DIV measures versus the iterations 

(in epochs). As shown in Fig. 7, the speed convergence of the 

CCS–ICA algorithm is comparable to the C-ICA and KL-ICA 

algorithms. 

C. Experiments on Speech and Music Signals 

Two experiments are presented in this section to evaluate 

the CCS–ICA algorithm. Both experiments are carried out 

involving speech and music signals under different conditions.  

The source signals are two speech signals of different male 

speakers and a music signal. The first experiment is to 

separate three source signals from their mixtures given by 

X = AS where the 3 x 3 mixing matrix 	A =[[0.8			0.3			 − 0.3]�			[0.2		 − 0.8				0.7]�		[0.3			0.2				0.3]�		].  
The three speech signals are sampled from the ICA ’99 

conference BSS test sets at http://sound.media.mit.edu/ica-

bench/ [13], [15] with an 8 kHz sampling rate. The non- 

parametrized CCS–ICA algorithms (as well as the other 

algorithms) with α = 1	and	α = −1 are applied to this task. 

The resulting waveforms are acquired and the signal to 

interference ratio (SIR) of each estimated source is calculated. 

We use the following to calculate the SIR:  

Given the source signals S = §��, ��, … �6© and demixed 

signals	Y = §Í� , Í�, … Í6©, the SIR in decibels is calculated by  

 

SIR	(dB) = 10 log ∑ ‖�°‖Gèç÷K∑ ‖�°E�°‖Gèç÷K                      (21) 

The summary results are depicted in Fig. 8. In addition, Fig. 

8 shows the SIRs for the other algorithms, namely, JADE1, 

Fast ICA2, Robust ICA 3, KL-ICA and C-ICA with α =1	and	α = −1. As shown in Fig. 8, the proposed CCS–ICA 

algorithm achieves significant improvements in terms of SIRs. 

Also, the proposed algorithm has consistency and obtained the 

best performance among the host of algorithms.  

Moreover, a second experiment is conducted to examine the 

comparative performance in the presence of additive noise. 

We now consider the model  � = Az + � that contains the 

same source signals with additive noise and with a different 

mixing matrix A = [[0.8			0.3			 − 0.3]�			[0.2		− 0.8				0.7]�		[0.3			0.2				0.3]�		] 
The noise � is an M x T vector with zero mean and σ�I 

covariance matrix. In addition, it is independent from the 

source signals. Fig. 9 shows the separated source signals in the 

noisy BSS model with SNR = 20 dB. In comparison, fig. 10 

presents the SNRs of all the other algorithms. Clearly, the 

 
1 http://www.tsi.enst.fr/icacentral/algos.html 
2 http://www.cis.hut.fi/projects/ica/fastica/code/dlcode.html 
3 http://www.i3s.unice.fr/~zarzoso/robustica.html 

 
 

Fig. 5.  The contour of the CCS-DIV with α = -1 1 of demixed signals as a 

function of the demixing parameters �� and	��. 
 

 

 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 12, 2018

ISSN: 1998-4464 101



 

proposed algorithm has the best performance when compared 

to others even though its performance decreased in the noisy 

BSS model. Notably, the SNRs of JADE, Fast ICA and 

Robust ICA were very low as they rely on the criterion of non

Gaussianity, which is unreliable in the 

environment. In contrast,   C-ICA, KL-ICA, and the prop

algorithm, which are based on different mutual information 

measures, achieved reasonable results. We note that one can 

also conduct and use the CCS-DIV to recover the source 

signals from the convolutive mixtures in the frequency domain 

as in [1], [20]. For brevity, Readers can get

non-parametric of CCS-ICA algorithm

http://www.egr.msu.edu/bsr/ . 

V. CONCLUSION  

A new divergence measure has been presented based on 

integrating a convex function into Cauchy-Schwarz inequality. 

This divergence measure has been used as a contrast function in 

order to build a new ICA algorithm to solve the 

Source Separation) problem. The CCS-DIV attains 

decent to the solution point. Sample experiments and examples 

are carried out to show the performance of the proposed 

divergence. This paper has developed the nonparametric CCS

ICA approach using the Parzen window density

 
Fig. 6.  Comparison of SIRs (dB) of demixed signals by using different ICA 

algorithms in parametric BSS task. 

Fig. 7. Comparison of learning curves of C-ICA, E-ICA, KL
CCS-ICA with α=1, and α=-1 in a two-source BSS task.
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CCS-ICA alpha = 1

proposed algorithm has the best performance when compared 

rformance decreased in the noisy 

BSS model. Notably, the SNRs of JADE, Fast ICA and 

Robust ICA were very low as they rely on the criterion of non-

in the Gaussian-noise 

ICA, and the proposed 

based on different mutual information 

We note that one can 

DIV to recover the source 

signals from the convolutive mixtures in the frequency domain 

get more results of 

ICA algorithm at 

divergence measure has been presented based on 

Schwarz inequality. 

This divergence measure has been used as a contrast function in 

order to build a new ICA algorithm to solve the BSS (Blind 

DIV attains steeper 

experiments and examples 

are carried out to show the performance of the proposed 

developed the nonparametric CCS-

the Parzen window density estimate. The 

proposed CCS-ICA  achieved the highest SIR in se

tested speech and music signals relative to other ICA 

algorithms.  

APPENDIX A

THE CONVEX CAUCHY–SCHWARZ 

DERIVATIVE

Assume the demixed signals are given by

the (Cℎ component is y¼Ê = ¾¼�ó. Now

DIV as a contrast function with a convexity parameter 
follows:  DQQR(-, , α)= log∬ f�(p(¥ó))dÍ�…dÍ6 	 ∙ 	∬ f[∬ f:p(¥ó)< ∙ f(∏ p(��

By using the Lebesgue measure to approximate the 

integral with respect to the joint distribution of§y�, y�, … , y6©, the contrast function becomes 
 DQQR(-, , α) = log∑ f�(p(/�ó)��[∑ f(p(/���
For simplicity, let us assume 	

V� = Úf�(¥ó)	,			�
Ê�� V�Ù = Ú�Ê�V� = Úf�(yÌÆ)		,				�

Ê�� V�Ù = Ú�Ê��VÖ = Úf(¥ó)�
Ê�� f(y

VÖÙ = Úf Ù(¥ó)f(yÌÆ)äÆÙ�
Ê�� +ÚÊ

and the convex function is (e.g.) 7(C) = D�EFG H�EF� +
7Ù(C) = 21 − X H1

then,  

¥ó = p(/�ó)	and	y¼Ê =
¥ÊÙ = ∂äÆ∂w¼½ = − p(�ó)|det(/)|� ∙ ∂ det∂
 

where		Ñ ÈÉÊ(/)ÑÒÓÔ = W¼½; 
y¼ÊÙ = ∂y¼Ê∂w¼½ = ÞÝp:¾ß�ó�

ß)¼where	x½	denotes	the	l
 
Thus, we re-write the CCS-DIV as  �eei(-, , α) = â�* Z� ∙ Z�[ZÖ]� = â�*
and its derivative  becomes 

 

.  Comparison of SIRs (dB) of demixed signals by using different ICA 
 

 
ICA, KL-ICA, and 

source BSS task. 

Signal 1

Signal 2
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3

 

C-ICA alpha = -1

KL-ICA

CS-ICA

CCS-ICA alpha = -1

C-ICA alpha = 1

CCS-ICA alpha = 1

the highest SIR in separation of 

speech and music signals relative to other ICA 

A 

CHWARZ DIVERGENCE AND ITS 

ERIVATIVE 

are given by ¥ó = /�ó where 

Now, express the CCS-

DIV as a contrast function with a convexity parameter α	(in f)  as 

f�(∏ p(yÌÆ�� ))dÍ� …dÍ6 	(yÌÆ)) dÍ�…dÍ6]�  

By using the Lebesgue measure to approximate the 

respect to the joint distribution of		¥ó =
he contrast function becomes  

)) ∙ ∑ f�(∏ (p(¾Ì�ó))�� )��ó)) ∙ f(∏ (p(¾Ì�ó))�� )]�  

Ú2f(¥ó)f Ù(¥ó)äÆÙ�
��  

Ú2f(yÌÆ)f Ù(yÌÆ)ÍÌÆÙ
�  

) (yÌÆ)	,			 
Úf(¥ó)f Ù(yÌÆ)y¼ÊÙ�
��  

�IF� C − CKLMG N   
H1 − CFE� �¬ N 
= Ýp(¾¼�ó)�

¼��  

det(/)∂w¼½ ∙ sign(det(/),	 

: ó<à ∂p(¾¼�ó)∂(¾¼�ó) ∙ x½.		 
Æ+	entry	of	�Æ. 

 â�*Z� + â�*Z� − 2â�*ZÖ 
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��eei(-, , α)
�,Ì-

= Z�ÙZ� + Z�ÙZ� − 2 ∗
ZÖÙZÖ 
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Fig. 8.  Comparison of SIRs (dB) of demixed two speeches and music signals by using different ICA algorithms in instantaneous BSS task

Fig. 9. .  the original signals and de-mixed signals by using CCS

Fig. 10. Comparison of SIRs (dB) of demixed two speeches and music signals by using different ICA algorithms in instantaneous BSS task
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