
 

 

 
Abstract— The work is devoted to the presentation of the 

approach to the construction of a short-term forecast of the dynamics 
of the atmospheric surface temperature profile. The forecast is based 
on the correction of the results of a numerical global forecast issued 
from temperature profile measurement data with the use of remote 
temperature sensing means. The data from the microwave 
temperature profiler MTP-5 applied for Pulkovo Airport (ICAO 
ULLI code) was used as the source of the measurement data. The 
relevance of this study is determined by the high requirements to the 
accuracy of the short-term forecast of weather hazards, for example, 
for the terminal area control. This approach provides the possibility 
of correcting the short-term forecast of weather hazards carried out 
by the data from real-time observations and does not require 
significant computational resources. 
 

Keywords— remote temperature sensing, nowcasting, 
temperature profile, forecasting modelling, blending, spline-
interpolation.  

I. INTRODUCTION 

NE of the active users of weather forecasts is aviation. 
Qualitative and timely weather forecasts define both 

flight safety in general, and efficiency and, for example, the 
effectiveness of take-off and landing operations at the 
aerodrome. In particular, short-term weather forecasts have a 
significant impact on the effectiveness of the terminal traffic 
management. In this regard, the Global Air Navigation Plan 
(GANP), which involves the phased upgrade of the entire air 
navigation system until 2028 [1], includes the improvement 
and expansion of meteorological information for air 
navigation services as an element of this modernization. The 
key concept of the ASBU methodology, the aviation system 
block upgrade, is the so-called "trajectory-based operations", 
which imply the rapid integration of high-resolution forecasts 
and short-term forecast products into the air traffic 
management (ATM) system. In this regard, projects are being 
actively developed in many countries to create systems for the 
nowcasting of weather hazards for airports [2-5]. 
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The quality of nowcasting systems is largely determined by 
the condition for effective assimilation of the current 
observations of meteorological parameters, since the short-
term forecasts have a relatively strong dependence on the 
initial conditions. Forecast errors in a very short time range 
(several hours) have a strong correlation with the error of the 
initial data. 

In this regard, the creation of effective algorithms for 
recording current observation data while constructing a short-
term forecast is of considerable interest. 

In the framework of this work, one of the approaches to 
solving this problem, which allows taking into account the 
data of current observations while constructing a short-term 
forecast in real time, is presented. The implementation of this 
approach is considered using the example of constructing a 
short-term forecast of the dynamics of the atmospheric surface 
temperature profile from remote sensing data.  

As a data source, we consider the MTP-5 temperature 
profiler, manufactured by ATTEX, that provides a temperature 
profile measurement with a high spatial resolution (at least 50 
m vertically) and a frequency of the measurement data every 
five minutes [6]. The urgency of applying the proposed 
approach with respect to forecasting the temperature profile is 
dictated by a number of considerations. 

1. Temperature profile is one of the important factors 
determining the formation of such weather hazards as 
fogs, low clouds, freezing precipitation [7, 8]. 

2. Numerical prediction models have a low spatial 
resolution in the atmospheric surface layer, which does 
not allow to reliably identify the temperature inversion, 
which is an important predictor, for example, while 
forecasting fogs or freezing precipitation 

To forecast the temperature profile, we use the 
extrapolation method of observed values based on the 
construction of smoothing cubic splines for a given set of 
heights (usually the heights at which measurements are made). 

The proposed technology of blending observation data and 
numerical modeling is that the combined time interval is 
considered: a certain observation time interval plus the 
required forecasting interval. The functional dependence of 
the analyzed meteorological time parameter on the basis of 
weighted spline interpolation is formed on this combined time 
interval. 

As an approximable set of values in the forecast interval, 
the forecasted temperature values obtained from the data of 
the global (or regional) numerical prediction model are used 
and adjusted according to the measured values in the 
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observation interval. 

II. BACKGROUND 

Currently approaches to the construction of short-term 
weather forecast based on data assimilation of observations 
into numerical prediction models are widely widespread. At 
the same time, a wide range of data assimilation methods is 
used, among which the methods of variatonal data assimilation 
prevail [9].  

In addition, to improve the efficiency of the forecast, 
ensemble methods are widely used. They form the final 
forecast as an weighted- average value based on the set of 
models, and the weight coefficients of the models are 
statistical estimates of the reliability of forecasts for each 
model [10]. 

The peculiarity of the short-term forecast of aviation 
hazards is that the time scales of phenomena in the lower 
troposphere that influence air traffic planning often amount to 
minutes or tens of minutes. This applies, for example, to the 
variability of visibility and altitude of the cloud base ‒ the 
main factor in the delay of flights at airports of moderate 
latitudes. 

The application of approaches that use assimilation of 
observational data requires not only significant computational 
resources for their effective application, but also a high 
density of the observational network, which forms a 
continuous stream of input data for assimilation. The 
formation of such an observational network is associated with 
significant material costs. Nevertheless, the direct data 
assimilation of the observational network now allows only 
hourly updating the forecast, for example, Rapid Refresh 
(RAP) is the operational system of hourly 
assimilation/modeling adopted by the National Centers for 
Environmental Prediction (NCEP), USA. 

In this regard, the algorithms of adaptive mixing of these 
models and observations are actively developing. The essence 
of these algorithms is that the prognostic value for each 
parameter is determined on the basis of the calculation of the 
weighted-average trend. In its turn, the value of the weighted-
average trend is calculated as a combination of the trend value 
from observational data and trend values from modeling data 
taken with their weights. Weight coefficients are calculated 
based on the analysis of the quality of the forecast for the 
previous observation period.  

III. EXTPAPOLATION METHODOLOGY 

Suppose that in the time intervalሾݐ − ߬ை,  ሿ which will callݐ
the observation interval, there are a number of measurements 
of the temperature ܶ at a given height ܪ at instants of time ݐ. 
In the time intervalሾݐ, ݐ + ߬ிሿ which we will call the forecast 
interval, there are a number of predicted temperature values ܶ 
at the same height at instants ̂ݐ. In addition, the predicted 
temperature is also known at the time point ̂ିݐଵ ≤  .ݐ

We construct the functional dependence ܵሺݐሻ of the 
temperature change on the time interval ሾݐ − ߬ை, ݐ + ߬ிሿ, 
using the blending of the available data: on the observation 

interval we use the measurement data and on the forecast 
interval we use the numerical simulation data. 

Due to errors in the prediction model for the current time, 
the predicted value of the temperature differs a priori from the 
observed one, we perform a correction of the forecast from the 
available observational data. To do this we calculate the 
smoothed value of the temperature at the current instant of 
time (to compensate the influence of measurement errors): ෨ܶ = ∑ ்ೕೕ∈ሾబషഓೞ,బሿ∑ ଵೕ∈ሾబషഓೞ,బሿ , 

where ߬௦ ≤  .ை – is a certain interval of smoothingݐ
The corrected predicted temperature values are calculated by 
numerically integrating the predicted temperature gradient 
with an initial condition equal to the smoothed measured 
value: ෨ܶଵ = ෨ܶ + ்భି ்షభ௧መభି௧መషభ ሺݐ − ଵሻ, ෨ܶିݐ̂ = ෨ܶିଵ + ܶ − ܶିଵ for ݇ > 1.      (1) 
Thus, the smoothing spline ܵሺݐሻ is built on a composite data 
set: ቄ൛൫ݐ, ܶ൯ൟ, ൛൫̂ݐ, ෨ܶ൯ൟቅ as a function satisfying the following 

conditions: 

- on each time intervalൣݐିଵ, ,ݐ൧, ሾݐ ,ݐଵሿ, ሾ̂ݐ̂  ାଵሿ theݐ̂

function ܵሺݐሻ is a polynomial of the third degree; 
- the function ܵሺݐሻ is twice continuously differentiable on the 
intervalሾݐ − ߬ை, ݐ + ߬ிሿ; 
- the function ܵሺݐሻ ensures a minimum of the functional ܬሺܵሻ =  ሾܵᇱᇱሺݐሻሿଶ݀ݐ௧బାఛಷ௧బିఛೀ + ∑ ଵ௪ೕ ൛ܵ൫ݐ൯ − ܶൟଶ +∑ ଵ௪ෝೖ ሼܵሺ̂ݐሻ − ෨ܶሽଶ .             (2) 

As additional conditions ensuring the correctness of the 
problem to determine the approximating splineܵሺݐሻ, we accept 
conditions where the second derivative at the ends of the 
interval is zeroሾݐ̅, ത0ሻݐ̅ሿ: ܵᇱᇱሺݐ = ܵᇱᇱሺݐതܮሻ = 0. 

In the presented relation for the minimized functional (2), 
the second and third summons are specially singled out to 
show that when constructing a smoothing spline the measured 
values of temperature and the predicted values obtained from 
the data of the numerical model are taken with different 
weights	ݓ and ݓෝ respectively. In this case, the values of ݓ 
are taken in such a way as to provide a greater weight of the 
observational data and, accordingly, a more accurate 
approximation of the data in the observation interval. 

To simplify the notation, we introduce the general 
numbering ݐ̅ of the observation times ݐ  and the times at 

which the numerical prediction data ̂ݐ is available. 
Accordingly, the temperature value (measured or predicted) 
for the time instant ݐ̅ will be denoted by തܶ, and the weight 
coefficients by ߩ. 

For each interval of interpolation ሾݐത݈−1	,  ሿ the value of the	ത݈ݐ
smoothing spline ܵሺݐሻ is calculated by the formula [11] 
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ܵሺݐሻ = ିଵܯ ሺݐ̅ − ݐ∆ሻଷ6ݐ + ܯ ሺݐ − ݐ∆̅ିଵሻଷ6ݐ + +ቀ ܶିଵ − ିଵܯ ∆௧మ ቁ ௧̅ି௧∆௧ + ቀ ܶ − ܯ ∆௧మ ቁ ௧ି௧̅షభ∆௧ , (3) 

where  ∆ݐ = ̅ݐ −  ,̅ିଵݐ
and the coefficients ܯ are calculated as a  solve simultaneous 
equations of the form ܽܯ + ܾܯଵ + ܿܯଶ = ݀, ܾܯ + ܽଵܯଵ + ଵܾܯଶ + ܿଵܯଷ = ݀ଵ, ܿିଶܯିଶ + ܾିଵܯିଵ + ܽܯ + ܾܯାଵ + ܿܯାଶ = ݀, (4) ܿିଷܯିଷ + ܾିଶܯିଶ + ܽିଵܯିଵ + ܾିଵܯ = ݀ିଵ, ܿିଶܯିଶ + ܾିଵܯିଵ + ܽܯ = ݀, 
where ܽ = 13 ሺ∆ݐିଵ + ሻݐ∆ + ିଵଶݐ∆1 ିଵߩ1 + +ቀ ଵ∆௧షభ + ଵ∆௧ቁଶ ଵఘ + ଵ∆௧మ ଵఘ, ݈ = 1,… , ܮ − 1, ܾ = ଵ ݐ∆ − ଵ∆௧ ቂቀ ଵ∆௧షభ + ଵ∆௧ቁ ଵఘ + ቀ ଵ∆௧ + ଵ∆௧శభቁ ଵఘశభቃ, ݈ = 1,… , ܮ − 2, ܿ = ଵ∆௧ ଵ∆௧శభ ଵఘశభ, ݈ = 1,… , ܮ − 3, ݀ = ത்శభି ത்∆௧శభ − ത்ି ത்షభ∆௧ , , ݈ = 1,… , ܮ − 1, ܽ = ܽ = 1, ܾ = ܿ = ܿିଶ = ܾିଵ = ݀ = ݀ = 0. 

The presented system of equations (4) is easily solved by 
the sweep method. After solving it the temperature values are 
calculated by formula (3) for an arbitrary moment of time. 

IV. RESULTS AND DISCUSSION 

The measurement data obtained by the MTP-5 temperature 
profile in the area of Pulkovo Airport (ICAO ULLI code) from 
12.2017 to 01.2018, as well as the results of the numerical 
model GFS with a grid step of 0.25, interpolated for the point 
of installation of the measuring device, were used for the 
analysis.  

The results of applying the above approach for calculating 
the temperature forecast for the time interval ߬ி = 4 hours are 
presented below. 

The following notation is used in these figures: 
- magenta color markers indicate predicted temperature 

values according to the global forecast model (GFS); 
- dashed green color line shows the values of the forecast 

value adjusted for observational data	 ෨ܶ (1); 
- red line with markers is measured temperature values 

(MTP-5 data); 
- dashed magenta color line is the temperature forecast 

based on the smoothing spline-extrapolation described 
above (3). 

As the moment of the forecast on the presented schedules 
the moment of time is sݐ = 16: 00. 

Fig. 1, 2 show the results reflecting the effect of the 
observation interval used on the construction of the 
approximating spline. The observation intervals ݐை = 1 and ݐை = 2 are considered. It can be seen that although the 
influence of the observation interval on a large forecast 

interval is feebly marked, it can nevertheless be noted that the 
use of the observation interval ݐை = 2 hours gives slightly 
better convergence of observational and forecast data in the 
time interval ሾݐ, ݐ + ߬ிሿ, and the trend is manifested at large 
intervals of forecast time (3-4 hours).  

It can also be noted that the forecast based on the numerical 
model (magenta color markers), even with correction based on 
observation data, can give a significant error of 2-3 degrees on 
the observation interval. 

The forecast based on spline extrapolation, gives a fairly 
high degree of convergence with observation data especially 
in the ultra-short range prediction (up to two hours). On a 
larger forecast range, the accuracy of the forecast is influenced 
by the adequacy of predicting the temperature dynamics. 

From the presented comparison results it is clearly seen that 
the error of the GFS model of calculating the temperature 
profile in the surface layer can be 3-4 and in certain adverse 
situations 5-6 as fig. 3, 4 show. These figures show the 
results of calculation of the forecast error in comparison with 
the data of the temperature profiler measurements for heights 
0 (blue), 100 (red), 200 (magenta), 500m (green). 

Fig. 5 shows the results of calculations based on the spline-
extrapolation of temperature profiles and their comparison 
with the obtained measurement data. It can be seen that the 
use of the proposed method for constructing a short-term 
weather forecast gives a fairly high accuracy of forecasting the 
profile: the profile forecast error does not exceed two degrees 
in the surface layer.  

 
Fig.1 temperature forecast at the observation interval of 1 hour. 

 
Fig.2 temperature forecast at the observation interval of 2 hours. 
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Fig.3 the error of the forecast temperature profile (20-21.12.2017, 

ULLI). 

 
Fig.4 the error of the forecast temperature profile (12-13.01.2018, 

ULLI). 

 
Fig.5 hourly forecasts of temperature profile in comparison with 

the measured values of the profiles at the same time points. 
 
It should be noted that due to the fact that the reference data 

used to form the final short-term forecast is the data of a 
numerical forecast model that is weakly sensitive to the 
altitude distribution of temperature in the surface layer, the 
forecast formed at a specific observation moment for the next 
few hours may not reflect the dynamics of changes in 
temperature stratification. 

In particular, Fig. 4 reflects this result, where it can be seen 
that the surface inversion in the lower 100-m layer, which 
existed at the time of the forecast compilation, continues to 
change. Two hours later, surface isotherm is formed in the 
lower layers, which then transforms into a temperature profile 
close to the adiabatic temperature profile. 

Nevertheless, the predicted temperature profile retains the 
type of stratification that existed at the time the forecast was 
compiled. Although, at large, the discrepancy between the 
predicted and observed temperature profile over the entire 

prediction interval (4 hours) does not exceed 2, nevertheless, 
an inadequate forecast of the stratification type can lead to 
unreliable forecasting of weather hazards. In particular, as 
shown by the analysis of observational data, the presence of 
temperature inversion in the lower 100-m layer is a factor 
determining the possibility of formation of a radiation fog 
[12]. An error in determining the type of stratification can 
cause inadequate prediction of this dangerous meteorological 
event. 

An error in predicting the type of stratification is due to the 
fact that at the time of the forecasting (16:00) a trend of a 
sharp change in temperature is formed (Fig. 2, a red line with 
markers, observational data). However, the results of the 
numerical prediction do not reflect this trend (magenta color 
markers), showing a constant temperature trend. 
Correspondingly, the same trend (with a zero time gradient) 
has data corrected from the results of observations (see 
formula (1)), which are the initial data for the formation of 
forecast values. 

Nevertheless, the conducted analysis shows that due to the 
implementation of operational assimilation of observational 
data, it is possible to provide an operative correction of the 
short-term forecast.  

For example, Fig. 6-9 show the dynamics of the change in 
the predicted temperature. Note that at the observation interval 
of 14:00 - 16:00 the numerical model produced a significant 
error in the forecast of temperature (3-4), predicting a trend 
of maintaining these values. However, around 16:00, an 
intensive increase in temperature begins. The increase cannot 
be identified by the original forecast or the corrected and 
described above algorithm (Fig.6).  

However, already at 16:10 due to the operational 
assimilation of observational data the presented algorithm 
correction of short-term forecast captures the trend of 
temperature increase and gives a more adequate hourly 
forecast, the error of which does not exceed 0.5. However, 
over a long period of 4 hours, the corrected forecast still 
provides a significant discrepancy with observation data. 

Data assimilation in the subsequent moments of time allows 
to obtain an adequate estimation of the formed trend of 
temperature change and to improve the quality of the forecast 
on a longer interval of time (Fig. 8-9). It should be noted that 
the adjustment of short-term forecast occurs almost at 
reception rate of the observational data 

 
Fig.6 temperature forecast in a time of 16:00. 
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Fig.7 temperature forecast in a time of 16:10. 

 
Fig.8 temperature forecast in a time of 16:20. 

 
Fig.9 temperature forecast in a time of 16:30. 

 

V. CONCLUSION 

The work describes an approach to the formation of a short-
term forecast of meteorological parameter values by adjusting 
the data of numerical models of the forecast according to 
operational observations. The calculation methodology is 
based on the application of weighted interpolation methods. 
As an interpolated set of data, a collection of observational 
data on a certain time interval that precedes the moment of 
forecasting and numerical modeling data for the prediction 
time interval are considered. Observation data are taken with 
much greater weight than the modeling data, which ultimately 
provides an improvement in the quality of the short-term 
forecast. 

The presented results on the example of forecasting the 
dynamics of the atmospheric surface temperature profile show 
the possibility to improve the quality of the forecast with a 
reduction of errors in predicting the temperature values by a 
factor of two. The presented results show that the application 

of this approach is expedient in the formation of a short-term 
forecast on a time interval of up to 4 hours, while it is rational 
to use observation data for a 2-hour period preceding the 
moment of making the forecast. 

The described approach has a high operational efficiency, 
which allows correcting the forecast of weather hazards 
practically in real time by taking into account the 
observational data. Despite the fact that the results are 
presented on the example of forecasting the dynamics of the 
stratification of the atmospheric surface layer, this approach 
can be used for a short-term forecast of other meteorological 
parameters. 
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